organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 6-eth­­oxy­pyridin-1-ium-2-olate

aCollege of Chemistry and Materials Science, Sichuan Normal University, Chengdu, Sichuan 610068, People's Republic of China, and bAnalytical and Testing Center, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
*Correspondence e-mail: luodaibing690312@163.com

Edited by O. Blacque, University of Zürich, Switzerland (Received 5 August 2014; accepted 9 September 2014; online 4 October 2014)

In the title compound, C7H9NO2, all non-H atoms are essentially coplanar [r.m.s. deviation = 0.032 Å]. The largest deviation from the plane of the pyridine ring is 0.105 (6) Å for the terminal C atom of the eth­oxy group. In the crystal, mol­ecules are linked by pairs of N—H⋯O hydrogen bonds, forming inversion dimers. These dimers are further linked by C—H⋯π inter­actions and weak ππ inter­actions between pyridine rings [centroid–centroid distance = 4.023 (1) Å].

1. Related literature

For general background to 2-iodo-5-hy­droxy­pyridine derivatives and their applications, see: Cho et al. (2003[Cho, S. D., Park, Y. D., Kim, J. J., Lee, S. G., Ma, C., Song, S. Y., Joo, W. J., Falck, J. R., Shiro, M., Shin, D. S. & Yoon, Y. J. (2003). J. Org. Chem. 68, 7918-7920.]); Hegmann et al. (2003[Hegmann, T., Kain, J., Diele, S., Schubert, B., Bogel, H. & Tschierske, C. (2003). J. Mater. Chem. 13, 991-1003.]); Savelon et al. (1998[Savelon, L., Bizot-Espiard, J. G., Caignard, D. H., Pfeiffer, B., Renard, P., Viaud, M. C. & Guillaumet, G. (1998). Bioorg. Med. Chem. 6, 133-142.]); Wang et al. (2012[Wang, Y. F., Chen, Q., Li, Y. H., Liu, Y., Tan, H., Yu, J. T., Zhu, M. X., Wu, H. B., Zhu, W. G. & Cao, Y. (2012). J. Phys. Chem. C, 116, 5908-5914.]). For the synthesis of the title compound, see: Hutchinson et al. (2001[Hutchinson, I., Chua, M. S., Browne, H. L., Trapani, V., Bradshaw, T. D., Westwell, A. D. & Stevens, M. F. G. (2001). J. Med. Chem. 44, 1446-1455.]); Seton et al. (2001[Seton, A. W., Stevens, M. F. G. & Westwell, A. D. (2001). J. Chem. Res. (S), 3, 546-548.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C7H9NO2

  • Mr = 139.15

  • Monoclinic, P 21 /n

  • a = 8.3037 (11) Å

  • b = 7.0999 (6) Å

  • c = 12.0767 (15) Å

  • β = 93.402 (13)°

  • V = 710.74 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.3 × 0.3 × 0.2 mm

2.2. Data collection

  • Agilent Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.606, Tmax = 1.000

  • 2957 measured reflections

  • 1452 independent reflections

  • 949 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.150

  • S = 1.09

  • 1452 reflections

  • 96 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N1,C1–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.87 (2) 1.90 (2) 2.762 (2) 174 (2)
C7—H7ACgii 0.96 2.90 3.792 (3) 155
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

2-iodo-5-Hydroxypyridine derivatives are important materials for medicinal chemistry and material science. Recently, during the preparation of 2-iodo-5-hydroxypyridine, we accidentally got the 2-hydroxy-6-ethoxypyridine by-product, which is easy to sublimate to form the corresponding pyridinium by transferring hydrogen proton of 2-hydroxy to pyridine nitrogen atom. 2-hydroxy-6-ethoxypyridine can be obtained in a two-step synthesis from 2-iodo-5-nitropyridine.

In the title compound, C7H9NO2, all non-H atoms are essentially coplanar. The mean deviation for all non-hydrogen atoms of the molecule is 0.0315 Å, and the largest deviation from the least-squares plane of the six non-H atoms of the pyridine ring is 0.105 (6) Å for the terminal C atom of the ethoxy group. In the crystal, inversion-related molecules are linked through N1—H1···O1i hydrogen bonds forming dimers [symmetry operators (i): -x+1, -y+1, -z+1]. These dimers are further linked by C—H···π interactions [H···centroid distance = 2.90 Å, C—H···centroid = 155°] between H7A and one pyridine ring [symmetry operator: -x+3/2, y-1/2, -z+1/2] and weak ππ interactions between pyridine rings [centroid–centroid distance = 4.023 (1) Å).

Related literature top

For general background to 2-iodo-5-hydroxypyridine derivatives and their applications, see: Cho et al. (2003); Hegmann et al. (2003); Savelon et al. (1998); Wang et al. (2012). For the synthesis of the title compound, see: Hutchinson et al. (2001); Seton et al. (2001).

Experimental top

A mixture of 2-iodo-5-nitropyridine (0.2 g, 0.8 mmol), SnCl2.2(H2O) (0.904 g, 4 mmol) and 25 ml ethanol was refluxed under inert atmosphere for 5 h. The mixture was evaporated to remove the solvent and the residue was extracted with ethyl acetate and H2O, and the organic layer was washed with 10% aqueous NaOH and H2O and dried over anhydrous MgSO4. The crude product was purified by flash chromatography [silica gel, petroleum ether: ethyl acetate (5:1)]. A light yellow solid (yield: 24%) of 2-ethoxy-5-aminopyridine was obtained. A solution of 2-ethoxy-5-aminopyridine (0.2 g, 0.90 mmol) and 40% fluoroboric acid (2 ml) was cooled down to 5 °C, then a 25% sodium nitrite solution (1.0 ml) was added. After stirring for 2 h at 5 °C, Cu2O (0.08 g, 0.54 mmol) and 30% hydrous CuNO3 (25 ml) were added to the solution and the mixture was stirred for 5 h at room temperature. The mixture was adjusted to pH 7 by 20% hydrous K2CO3 and filtered. The filtrate was extracted by ethyl acetate, the organic layer was washed with water and dried over MgSO4. The solvent was evaporated and the solid production was chromatographed on a silica gel column [petroleum ether: ethyl acetate (2:1). A white solid (yield: 18%), 2-hydroxy-6-ethoxypyridine, was obtained. Furthermore, single crystals of ¨the title compound were obtained by sublimation. 1H NMR (DMSO, 400 MHz) δ: 10.62 (s, 1 H), 748 (t, J = 8 Hz, 1 H), 6.12 (t, J = 8 Hz, 2 H), 4.18 (d, J = 8 Hz, 2 H), 1.26 (t, J = 8 Hz, 3 H).

Refinement top

H atoms were refined as riding on their carriers with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C) for methylene H atoms, and with C—H = 0.96 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, except H1 which was freely refined.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
The molecular structure of the title complex, with non-hydrogen atoms labels and 50% probability displacement ellipsoids.

Packing of the title compound viewed along the b direction.
6-Ethoxypyridin-1-ium-2-olate top
Crystal data top
C7H9NO2F(000) = 296
Mr = 139.15Dx = 1.300 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 809 reflections
a = 8.3037 (11) Åθ = 3.8–24.3°
b = 7.0999 (6) ŵ = 0.10 mm1
c = 12.0767 (15) ÅT = 293 K
β = 93.402 (13)°Block, white
V = 710.74 (14) Å30.3 × 0.3 × 0.2 mm
Z = 4
Data collection top
Agilent Xcalibur Eos
diffractometer
1452 independent reflections
Radiation source: Enhance (Mo) X-ray Source949 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.0874 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 910
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 58
Tmin = 0.606, Tmax = 1.000l = 715
2957 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.055 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.0301P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.150(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.24 e Å3
1452 reflectionsΔρmin = 0.33 e Å3
96 parameters
Crystal data top
C7H9NO2V = 710.74 (14) Å3
Mr = 139.15Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.3037 (11) ŵ = 0.10 mm1
b = 7.0999 (6) ÅT = 293 K
c = 12.0767 (15) Å0.3 × 0.3 × 0.2 mm
β = 93.402 (13)°
Data collection top
Agilent Xcalibur Eos
diffractometer
1452 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
949 reflections with I > 2σ(I)
Tmin = 0.606, Tmax = 1.000Rint = 0.018
2957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.24 e Å3
1452 reflectionsΔρmin = 0.33 e Å3
96 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6392 (2)0.3124 (3)0.59009 (17)0.0554 (5)
C20.7456 (3)0.1850 (3)0.64769 (19)0.0642 (6)
H20.77740.20640.72180.077*
C30.8004 (3)0.0333 (3)0.5951 (2)0.0688 (7)
H30.86940.04930.63440.083*
C40.7581 (3)0.0052 (3)0.4841 (2)0.0663 (7)
H40.79790.11080.44920.080*
C50.6563 (2)0.1176 (2)0.42860 (18)0.0521 (5)
C60.6502 (3)0.0472 (3)0.2572 (2)0.0683 (7)
H6A0.62400.16490.29280.082*
H6B0.76580.04310.24950.082*
C70.5627 (3)0.0328 (4)0.1469 (2)0.0824 (8)
H7A0.59100.13760.10170.124*
H7B0.59190.08250.11170.124*
H7C0.44860.03380.15570.124*
N10.60093 (19)0.2701 (2)0.48106 (14)0.0507 (5)
H10.538 (3)0.350 (3)0.445 (2)0.082 (8)*
O10.58033 (19)0.4567 (2)0.63138 (12)0.0762 (5)
O20.60054 (17)0.11012 (17)0.32261 (12)0.0629 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0558 (12)0.0567 (11)0.0530 (12)0.0021 (9)0.0032 (10)0.0008 (10)
C20.0651 (14)0.0644 (12)0.0619 (14)0.0015 (10)0.0066 (11)0.0103 (11)
C30.0624 (14)0.0641 (13)0.0792 (17)0.0075 (11)0.0027 (12)0.0185 (12)
C40.0646 (14)0.0521 (11)0.0828 (18)0.0098 (10)0.0096 (13)0.0026 (11)
C50.0504 (11)0.0462 (10)0.0603 (13)0.0039 (8)0.0081 (10)0.0007 (9)
C60.0732 (15)0.0593 (12)0.0738 (16)0.0059 (10)0.0173 (13)0.0164 (11)
C70.0939 (19)0.0759 (15)0.0782 (18)0.0062 (13)0.0121 (15)0.0260 (13)
N10.0508 (10)0.0472 (9)0.0536 (10)0.0040 (7)0.0000 (8)0.0025 (8)
O10.0997 (13)0.0716 (10)0.0550 (10)0.0237 (9)0.0148 (9)0.0131 (7)
O20.0732 (10)0.0531 (8)0.0628 (10)0.0086 (6)0.0059 (8)0.0118 (7)
Geometric parameters (Å, º) top
C1—C21.418 (3)C5—O21.336 (2)
C1—N11.369 (2)C6—H6A0.9700
C1—O11.251 (2)C6—H6B0.9700
C2—H20.9300C6—C71.483 (3)
C2—C31.344 (3)C6—O21.442 (2)
C3—H30.9300C7—H7A0.9600
C3—C41.392 (3)C7—H7B0.9600
C4—H40.9300C7—H7C0.9600
C4—C51.363 (3)N1—H10.87 (3)
C5—N11.349 (2)
N1—C1—C2115.75 (19)C7—C6—H6A110.2
O1—C1—C2125.0 (2)C7—C6—H6B110.2
O1—C1—N1119.25 (17)O2—C6—H6A110.2
C1—C2—H2120.1O2—C6—H6B110.2
C3—C2—C1119.9 (2)O2—C6—C7107.33 (18)
C3—C2—H2120.1C6—C7—H7A109.5
C2—C3—H3118.7C6—C7—H7B109.5
C2—C3—C4122.6 (2)C6—C7—H7C109.5
C4—C3—H3118.7H7A—C7—H7B109.5
C3—C4—H4121.3H7A—C7—H7C109.5
C5—C4—C3117.5 (2)H7B—C7—H7C109.5
C5—C4—H4121.3C1—N1—H1116.0 (17)
N1—C5—C4120.1 (2)C5—N1—C1124.13 (18)
O2—C5—C4127.98 (19)C5—N1—H1119.9 (17)
O2—C5—N1111.91 (17)C5—O2—C6117.46 (16)
H6A—C6—H6B108.5
C1—C2—C3—C40.5 (3)C7—C6—O2—C5175.32 (18)
C2—C1—N1—C50.8 (3)N1—C1—C2—C30.7 (3)
C2—C3—C4—C50.3 (3)N1—C5—O2—C6179.67 (16)
C3—C4—C5—N10.3 (3)O1—C1—C2—C3179.4 (2)
C3—C4—C5—O2179.6 (2)O1—C1—N1—C5179.39 (18)
C4—C5—N1—C10.6 (3)O2—C5—N1—C1179.95 (16)
C4—C5—O2—C61.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)1.90 (2)2.762 (2)174 (2)
C7—H7A···Cgii0.962.903.792 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the N1,C1–C5 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (2)1.90 (2)2.762 (2)174 (2)
C7—H7A···Cgii0.962.903.792 (3)155
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z+1/2.
 

Acknowledgements

Support from the National Natural Science Foundation of China (grant Nos. 21072141 and 21172161) is gratefully acknowledged.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationCho, S. D., Park, Y. D., Kim, J. J., Lee, S. G., Ma, C., Song, S. Y., Joo, W. J., Falck, J. R., Shiro, M., Shin, D. S. & Yoon, Y. J. (2003). J. Org. Chem. 68, 7918–7920.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHegmann, T., Kain, J., Diele, S., Schubert, B., Bogel, H. & Tschierske, C. (2003). J. Mater. Chem. 13, 991–1003.  Web of Science CrossRef CAS Google Scholar
First citationHutchinson, I., Chua, M. S., Browne, H. L., Trapani, V., Bradshaw, T. D., Westwell, A. D. & Stevens, M. F. G. (2001). J. Med. Chem. 44, 1446–1455.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSavelon, L., Bizot-Espiard, J. G., Caignard, D. H., Pfeiffer, B., Renard, P., Viaud, M. C. & Guillaumet, G. (1998). Bioorg. Med. Chem. 6, 133–142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSeton, A. W., Stevens, M. F. G. & Westwell, A. D. (2001). J. Chem. Res. (S), 3, 546–548.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Y. F., Chen, Q., Li, Y. H., Liu, Y., Tan, H., Yu, J. T., Zhu, M. X., Wu, H. B., Zhu, W. G. & Cao, Y. (2012). J. Phys. Chem. C, 116, 5908–5914.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds