organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-methyl-N-{[1-(4-methyl­benzo­yl)piperidin-4-yl]meth­yl}benzamide

aPG and Research Department of Physics, Queen Mary's College, Chennai-4, Tamilnadu, India, and bDepartment of Chemistry, Madras Christian College, Chennai-59, India
*Correspondence e-mail: guqmc@yahoo.com

Edited by G. Smith, Queensland University of Technology, Australia (Received 27 August 2014; accepted 6 October 2014; online 15 October 2014)

In the title compound, C22H27N2O2, the piperidine ring adopts a half-chair conformation with the benzene rings inclined in a trans orientation with respect to the piperidine ring [dihedral angle between the benzene rings = 89.1 (1)°]. In the crystal, a three-centre asymmetric N—H⋯O/C—H⋯O hydrogen-bonding inter­action leads to the formation of chains extending along the a-axis direction.

1. Related literature

For the synthesis of the title compound, see: Prathebha et al. (2013[Prathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.], 2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.]). For the biological activity of piperdine derivatives, see: Prostakov & Gaivoronskaya (1978[Prostakov, N. S. & Gaivoronskaya, L. A. (1978). Russ. Chem. Rev. 47, 447-469.]); O'Hagan (2000[O'Hagan, D. (2000). Nat. Prod. Rep. 17, 435-446.]); Pinder (1992[Pinder, A. R. (1992). Nat. Prod. Rep. 9, 491-504.]). For related structures, see: Prathebha et al. (2014[Prathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.]); Luo et al. (2011[Luo, X., Huang, Y.-C., Gao, C. & Yu, L.-T. (2011). Acta Cryst. E67, o1066.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C22H26N2O2

  • Mr = 350.45

  • Orthorhombic, P b c a

  • a = 15.3749 (6) Å

  • b = 13.1575 (5) Å

  • c = 19.2929 (9) Å

  • V = 3902.9 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.20 × 0.15 × 0.10 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.998

  • 26551 measured reflections

  • 4831 independent reflections

  • 1847 reflections with I > 2σ(I)

  • Rint = 0.051

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.172

  • S = 0.93

  • 4831 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.86 2.10 2.953 (3) 169
C21—H21⋯O1i 0.93 2.59 3.262 (3) 130
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Piperidines are an important group of compounds in the field of medicinal chemistry owing to the fact that they can frequently be found in the structures of numerous naturally occurring alkaloid and synthetic compounds with interesting biological and pharmacological properties (Prostakov et al., 1978). Piperidine and its derivatives have a high impact on the medical field due to their wide range of pharmacological activities. The piperidine ring system is a ubiquitous structural component of naturally occurring alkaloid and pharmaceuticals (O'Hagan et al., 2000; Pinder et al., 1992). We report in this communication, the synthesis and crystal structure of a new piperidine derivative, the title compound C22H27N2O2.

In the title compound (Fig. 1), the bond lengths in the substituted benzene rings A and B are in good agreement with literature values. The C—N distances [1.460 (3)–1.523 (3) Å] are in the normal range and are in good agreement with those in similar reported structures (Prathebha et al., 2013; Luo et al., 2011). The bond angles around the N1 and N2 atoms [359.6 (1)° and 360.0 (2)°, respectively], show sp3 hybridization of the atoms. The two benzene rings A and B (C1–C6 and C16–C21) are inclined to one another [dihedral angle = 89.1 (1)°]. The piperdine ring (C9/C10/C11/C12/C13/N1) adopts a half-chair conformation with puckering parameters of q2 = 0.0280 (2) Å, ϕ2 = 114.04(5.18)°, q3 = 0.5563 (2) Å, QT = 0.5570 (2) Å and θ2 = 2.89 (2)°.

In the crystal, the molecules are linked by a asymmetric three-centre cyclic hydrogen-bonding interaction involving N1—H and C21—H donors and O1i (Table 1), giving an R1 2(7) motif and forming a chain which extends along the a axis (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Prathebha et al. (2013, 2014). For the biological activity of piperdine derivatives, see: Prostakov & Gaivoronskaya (1978); O'Hagan (2000); Pinder (1992). For related structures, see: Prathebha et al. (2014); Luo et al. (2011).

Experimental top

The procedure (Prathebha et al., 2013; 2014) adopted in the synthesis of a typical diamide is re-presented here (Fig. 3). 4-Aminomethylpiperidine (0.03 mol) was placed in a 250 mL round-bottomed flask and 120 mL of ethyl methyl ketone was added and the mixture was stirred at room temperature. After 10 minutes, triethylamine (0.06 mol) was added and the mixture was stirred for a further 15 minutes. 4-Methylbenzoyl chloride (0.06 mol) was then added and the reaction mixture was stirred at room temperature for about 3 h. A white precipitate of triethylammonium chloride was generated which was filtered and the filtrate was evaporated to obtain the crude product which was recrystallized twice from ethyl methyl ketone, giving the title compound: yield: 79%.

Refinement top

H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93–0.98 Å and N—H = 0.86 Å, with U iso(H) = 1.5Ueq(C-methyl) or 1.2Ueq(N, C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 30% probability level.

Fig. 2. The packing of the molecules in the crystal structure. Unassociated H-atoms are omitted and dashed lines indicate the hydrogen bonds.

Fig. 3. Experimental procedure
4-Methyl-N-{[1-(4-methylbenzoyl)piperidin-4-yl]methyl}benzamide top
Crystal data top
C22H26N2O2F(000) = 1504
Mr = 350.45Dx = 1.193 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 4831 reflections
a = 15.3749 (6) Åθ = 2.3–28.3°
b = 13.1575 (5) ŵ = 0.08 mm1
c = 19.2929 (9) ÅT = 293 K
V = 3902.9 (3) Å3Block, colourless
Z = 80.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4831 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and ϕ scanθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1720
Tmin = 0.975, Tmax = 0.998k = 1712
26551 measured reflectionsl = 1225
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0588P)2 + 1.589P]
where P = (Fo2 + 2Fc2)/3
4831 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C22H26N2O2V = 3902.9 (3) Å3
Mr = 350.45Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.3749 (6) ŵ = 0.08 mm1
b = 13.1575 (5) ÅT = 293 K
c = 19.2929 (9) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4831 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1847 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.998Rint = 0.051
26551 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.172H-atom parameters constrained
S = 0.93Δρmax = 0.18 e Å3
4831 reflectionsΔρmin = 0.22 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C220.6965 (2)0.4676 (2)0.47887 (18)0.0948 (10)
H22A0.75160.43770.49020.114*
H22B0.70330.51220.43990.114*
H22C0.67530.50550.51790.114*
N10.24058 (14)0.06231 (14)0.21465 (13)0.0678 (7)
C10.00836 (15)0.31788 (17)0.17840 (14)0.0539 (7)
C20.03275 (17)0.28524 (18)0.11916 (15)0.0634 (7)
H20.02160.31830.07750.076*
C30.08988 (16)0.20487 (19)0.12001 (15)0.0631 (7)
H30.11580.18350.07900.076*
C40.10897 (14)0.15576 (17)0.18134 (14)0.0504 (6)
C50.06856 (16)0.18834 (19)0.24129 (14)0.0566 (7)
H50.08090.15630.28310.068*
C60.01028 (15)0.26771 (18)0.23982 (14)0.0571 (7)
H60.01700.28800.28060.069*
C70.07222 (18)0.4045 (2)0.17671 (17)0.0831 (9)
H7A0.09430.41630.22250.100*
H7B0.11950.38780.14620.100*
H7C0.04360.46470.16030.100*
C80.16482 (16)0.0623 (2)0.18032 (15)0.0582 (7)
C90.29448 (18)0.0291 (2)0.21712 (17)0.0756 (9)
H9A0.34510.01990.18780.091*
H9B0.26160.08650.19950.091*
C100.32335 (16)0.05074 (18)0.29030 (15)0.0653 (8)
H10A0.36180.10920.29040.078*
H10B0.27300.06720.31840.078*
C110.37020 (15)0.03968 (18)0.32161 (15)0.0595 (7)
H110.42150.05350.29300.071*
C120.31090 (17)0.13214 (18)0.31724 (16)0.0704 (8)
H12A0.26020.12110.34630.084*
H12B0.34150.19120.33480.084*
C130.28185 (17)0.15248 (19)0.24409 (17)0.0758 (9)
H13A0.24100.20870.24370.091*
H13B0.33160.17140.21600.091*
C140.40150 (18)0.0214 (2)0.39565 (15)0.0701 (8)
H14A0.42870.08310.41260.084*
H14B0.35140.00760.42470.084*
C150.43907 (18)0.1546 (2)0.42462 (14)0.0650 (7)
C160.50989 (17)0.2317 (2)0.43383 (13)0.0596 (7)
C170.48785 (18)0.3334 (2)0.42988 (14)0.0682 (8)
H170.43110.35160.41860.082*
C180.5486 (2)0.4082 (2)0.44237 (15)0.0724 (8)
H180.53240.47600.43810.087*
C190.63257 (19)0.3850 (2)0.46102 (14)0.0695 (8)
C200.65476 (19)0.2835 (2)0.46459 (16)0.0776 (9)
H200.71120.26560.47700.093*
C210.59503 (18)0.2076 (2)0.45019 (14)0.0688 (8)
H210.61230.13990.45150.083*
N20.46281 (13)0.06195 (16)0.40288 (12)0.0649 (6)
H2A0.51650.05140.39280.078*
O10.13858 (11)0.01377 (14)0.14932 (11)0.0784 (6)
O20.36348 (13)0.17709 (15)0.43739 (12)0.0903 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C220.094 (2)0.103 (2)0.088 (3)0.014 (2)0.0037 (19)0.0161 (19)
N10.0524 (13)0.0512 (13)0.0998 (19)0.0038 (11)0.0208 (13)0.0054 (12)
C10.0500 (15)0.0491 (14)0.0626 (19)0.0003 (12)0.0012 (13)0.0051 (13)
C20.0760 (19)0.0608 (16)0.0534 (18)0.0120 (15)0.0029 (14)0.0044 (13)
C30.0696 (18)0.0681 (17)0.0518 (18)0.0097 (15)0.0032 (13)0.0024 (14)
C40.0442 (14)0.0494 (14)0.0575 (17)0.0011 (11)0.0046 (12)0.0013 (13)
C50.0592 (17)0.0620 (16)0.0486 (17)0.0039 (14)0.0040 (13)0.0010 (13)
C60.0566 (16)0.0605 (16)0.0543 (18)0.0043 (14)0.0087 (13)0.0079 (13)
C70.079 (2)0.0688 (18)0.102 (3)0.0132 (16)0.0057 (17)0.0044 (17)
C80.0517 (16)0.0571 (17)0.0659 (19)0.0026 (13)0.0026 (14)0.0014 (14)
C90.0630 (18)0.0685 (18)0.095 (3)0.0176 (15)0.0140 (16)0.0107 (17)
C100.0535 (16)0.0542 (16)0.088 (2)0.0099 (13)0.0041 (15)0.0025 (15)
C110.0425 (14)0.0619 (16)0.074 (2)0.0021 (13)0.0008 (13)0.0039 (14)
C120.0559 (16)0.0542 (16)0.101 (3)0.0060 (13)0.0106 (16)0.0082 (15)
C130.0550 (17)0.0574 (17)0.115 (3)0.0053 (14)0.0228 (16)0.0050 (17)
C140.0614 (17)0.0717 (18)0.077 (2)0.0026 (15)0.0065 (15)0.0039 (15)
C150.0598 (19)0.080 (2)0.0554 (18)0.0082 (16)0.0033 (14)0.0081 (15)
C160.0611 (18)0.0724 (19)0.0451 (16)0.0070 (15)0.0011 (12)0.0101 (13)
C170.0668 (18)0.082 (2)0.0558 (19)0.0141 (17)0.0077 (14)0.0083 (15)
C180.084 (2)0.0709 (19)0.062 (2)0.0063 (18)0.0051 (15)0.0078 (15)
C190.070 (2)0.083 (2)0.0557 (19)0.0009 (17)0.0004 (14)0.0113 (15)
C200.0625 (19)0.091 (2)0.079 (2)0.0083 (18)0.0071 (15)0.0125 (18)
C210.0663 (19)0.0714 (18)0.069 (2)0.0080 (16)0.0049 (15)0.0095 (15)
N20.0518 (13)0.0738 (15)0.0691 (17)0.0011 (12)0.0025 (11)0.0105 (12)
O10.0663 (12)0.0677 (12)0.1013 (17)0.0074 (10)0.0196 (11)0.0242 (11)
O20.0584 (13)0.1027 (15)0.1098 (18)0.0099 (11)0.0146 (11)0.0269 (13)
Geometric parameters (Å, º) top
C22—C191.505 (4)C10—H10A0.9700
C22—H22A0.9600C10—H10B0.9700
C22—H22B0.9600C11—C121.523 (3)
C22—H22C0.9600C11—C141.526 (4)
N1—C81.340 (3)C11—H110.9800
N1—C131.460 (3)C12—C131.504 (4)
N1—C91.461 (3)C12—H12A0.9700
C1—C21.375 (3)C12—H12B0.9700
C1—C61.386 (3)C13—H13A0.9700
C1—C71.505 (3)C13—H13B0.9700
C2—C31.375 (3)C14—N21.452 (3)
C2—H20.9300C14—H14A0.9700
C3—C41.380 (3)C14—H14B0.9700
C3—H30.9300C15—O21.224 (3)
C4—C51.381 (3)C15—N21.340 (3)
C4—C81.500 (3)C15—C161.499 (4)
C5—C61.376 (3)C16—C171.382 (3)
C5—H50.9300C16—C211.383 (3)
C6—H60.9300C17—C181.379 (4)
C7—H7A0.9600C17—H170.9300
C7—H7B0.9600C18—C191.374 (4)
C7—H7C0.9600C18—H180.9300
C8—O11.233 (3)C19—C201.381 (4)
C9—C101.507 (4)C20—C211.384 (4)
C9—H9A0.9700C20—H200.9300
C9—H9B0.9700C21—H210.9300
C10—C111.516 (3)N2—H2A0.8600
C19—C22—H22A109.5C10—C11—C12108.7 (2)
C19—C22—H22B109.5C10—C11—C14113.5 (2)
H22A—C22—H22B109.5C12—C11—C14111.5 (2)
C19—C22—H22C109.5C10—C11—H11107.6
H22A—C22—H22C109.5C12—C11—H11107.6
H22B—C22—H22C109.5C14—C11—H11107.6
C8—N1—C13124.8 (2)C13—C12—C11111.8 (2)
C8—N1—C9120.6 (2)C13—C12—H12A109.2
C13—N1—C9114.2 (2)C11—C12—H12A109.2
C2—C1—C6117.8 (2)C13—C12—H12B109.2
C2—C1—C7121.2 (2)C11—C12—H12B109.2
C6—C1—C7120.9 (2)H12A—C12—H12B107.9
C1—C2—C3121.6 (2)N1—C13—C12110.4 (2)
C1—C2—H2119.2N1—C13—H13A109.6
C3—C2—H2119.2C12—C13—H13A109.6
C2—C3—C4120.4 (2)N1—C13—H13B109.6
C2—C3—H3119.8C12—C13—H13B109.6
C4—C3—H3119.8H13A—C13—H13B108.1
C3—C4—C5118.5 (2)N2—C14—C11114.4 (2)
C3—C4—C8119.6 (2)N2—C14—H14A108.7
C5—C4—C8121.5 (2)C11—C14—H14A108.7
C6—C5—C4120.7 (2)N2—C14—H14B108.7
C6—C5—H5119.6C11—C14—H14B108.7
C4—C5—H5119.6H14A—C14—H14B107.6
C5—C6—C1120.9 (2)O2—C15—N2122.8 (3)
C5—C6—H6119.6O2—C15—C16120.2 (3)
C1—C6—H6119.6N2—C15—C16117.1 (2)
C1—C7—H7A109.5C17—C16—C21117.8 (3)
C1—C7—H7B109.5C17—C16—C15118.1 (2)
H7A—C7—H7B109.5C21—C16—C15124.0 (3)
C1—C7—H7C109.5C16—C17—C18121.0 (3)
H7A—C7—H7C109.5C16—C17—H17119.5
H7B—C7—H7C109.5C18—C17—H17119.5
O1—C8—N1121.6 (2)C19—C18—C17121.6 (3)
O1—C8—C4119.0 (2)C19—C18—H18119.2
N1—C8—C4119.4 (2)C17—C18—H18119.2
N1—C9—C10110.7 (2)C18—C19—C20117.4 (3)
N1—C9—H9A109.5C18—C19—C22120.9 (3)
C10—C9—H9A109.5C20—C19—C22121.7 (3)
N1—C9—H9B109.5C19—C20—C21121.6 (3)
C10—C9—H9B109.5C19—C20—H20119.2
H9A—C9—H9B108.1C21—C20—H20119.2
C9—C10—C11111.4 (2)C16—C21—C20120.5 (3)
C9—C10—H10A109.4C16—C21—H21119.7
C11—C10—H10A109.4C20—C21—H21119.7
C9—C10—H10B109.4C15—N2—C14122.7 (2)
C11—C10—H10B109.4C15—N2—H2A118.7
H10A—C10—H10B108.0C14—N2—H2A118.7
C6—C1—C2—C30.7 (4)C14—C11—C12—C13178.4 (2)
C7—C1—C2—C3178.7 (2)C8—N1—C13—C12132.7 (3)
C1—C2—C3—C41.4 (4)C9—N1—C13—C1255.1 (3)
C2—C3—C4—C50.8 (4)C11—C12—C13—N155.1 (3)
C2—C3—C4—C8174.3 (2)C10—C11—C14—N260.6 (3)
C3—C4—C5—C60.3 (3)C12—C11—C14—N2176.3 (2)
C8—C4—C5—C6173.0 (2)O2—C15—C16—C1725.0 (4)
C4—C5—C6—C11.0 (3)N2—C15—C16—C17155.7 (2)
C2—C1—C6—C50.5 (3)O2—C15—C16—C21151.0 (3)
C7—C1—C6—C5179.9 (2)N2—C15—C16—C2128.4 (4)
C13—N1—C8—O1170.9 (3)C21—C16—C17—C180.5 (4)
C9—N1—C8—O10.8 (4)C15—C16—C17—C18175.7 (2)
C13—N1—C8—C411.1 (4)C16—C17—C18—C191.8 (4)
C9—N1—C8—C4177.3 (2)C17—C18—C19—C202.1 (4)
C3—C4—C8—O163.0 (3)C17—C18—C19—C22176.1 (3)
C5—C4—C8—O1110.2 (3)C18—C19—C20—C210.2 (4)
C3—C4—C8—N1118.9 (3)C22—C19—C20—C21178.0 (3)
C5—C4—C8—N167.9 (3)C17—C16—C21—C202.4 (4)
C8—N1—C9—C10132.0 (3)C15—C16—C21—C20173.6 (3)
C13—N1—C9—C1055.5 (3)C19—C20—C21—C162.1 (4)
N1—C9—C10—C1155.6 (3)O2—C15—N2—C142.9 (4)
C9—C10—C11—C1255.8 (3)C16—C15—N2—C14176.4 (2)
C9—C10—C11—C14179.5 (2)C11—C14—N2—C1599.6 (3)
C10—C11—C12—C1355.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.102.953 (3)169
C21—H21···O1i0.932.593.262 (3)130
C9—H9B···O10.972.332.738 (3)104
C14—H14B···O20.972.452.794 (3)100
Symmetry code: (i) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.862.102.953 (3)169
C21—H21···O1i0.932.593.262 (3)130
Symmetry code: (i) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank Professor D. Velmurugan of the Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

References

First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLuo, X., Huang, Y.-C., Gao, C. & Yu, L.-T. (2011). Acta Cryst. E67, o1066.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationO'Hagan, D. (2000). Nat. Prod. Rep. 17, 435–446.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPinder, A. R. (1992). Nat. Prod. Rep. 9, 491–504.  CrossRef CAS Web of Science Google Scholar
First citationPrathebha, K., Reuben Jonathan, D., Shanmugam, S. & Usha, G. (2014). Acta Cryst. E70, o771.  CSD CrossRef IUCr Journals Google Scholar
First citationPrathebha, K., Revathi, B. K., Usha, G., Ponnuswamy, S. & Abdul Basheer, S. (2013). Acta Cryst. E69, o1424.  CSD CrossRef IUCr Journals Google Scholar
First citationProstakov, N. S. & Gaivoronskaya, L. A. (1978). Russ. Chem. Rev. 47, 447–469.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds