research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of catena-poly[[silver(I)-μ-N-(pyridin-2-ylmeth­yl)pyridine-3-amine-κ2N:N′] tri­fluoro­methane­sulfonate]

aDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, bDepartment of Chemistry, Gyeongsang National University, Jinju 660-701, Republic of Korea, and cResearch Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

Edited by G. Smith, Queensland University of Technology, Australia (Received 13 October 2014; accepted 19 October 2014; online 24 October 2014)

In the asymmetric unit of the title compound, {[Ag(C11H11N3)]CF3SO3}n, there are two AgI atoms, two N-(pyridine-2-ylmeth­yl)pyridine-3-amine ligands (A and B) and two CF3SO3 anions. Both AgI atoms are bridged by two pyridine N atoms from two symmetry-related A or B ligands, forming right- or left-handed helical chains, respectively. The AgI atom of the right-handed helical chain adopts a slightly distorted linear coordination geometry [N—Ag—N = 170.69 (14)°], while that of the left-handed helical chain adopts a bent geometry [N—Ag—N = 149.42 (14)°]. Both helical chains have the same pitch length [10.8437 (5) Å], propagate along the b-axial direction and are alternately arranged via Ag⋯Ag [3.0814 (5) Å] and ππ stacking inter­actions [centroid–centroid distances = 3.514 (3) and 3.487 (3) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to the ab plane. Weak Ag⋯O [2.861 (4), 2.617 (3), and 2.624 (4) Å] and Ag⋯F [3.017 (3) Å] inter­actions as well as N—H⋯O and C—H⋯O, C—H⋯N and C—H⋯F hydrogen-bonding inter­actions occur between the helical chains and the anions.

1. Chemical context

A few silver coordination polymers based on unsymmetrical dipyridyl ligands composed of two terminal pyridines with different substituted-nitro­gen positions have been reported (Moon & Park, 2013[Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414-m415.], 2014[Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). In an extension of investigations on AgI coordination polymers with unsymmetrical dipyridyl ligands, the title compound was prepared by the reaction of silver tri­fluoro­metane­sulfonate with N-(pyridine-2-ylmeth­yl)pyridine-3-amine. The structure of title compound is related to that of the perchlorate salt (Moon & Park, 2014[Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]).

[Scheme 1]

2. Structural commentary

The molecular components of the title structure are shown in Fig. 1[link]. The asymmetric unit contains two AgI atoms (Ag1 and Ag2), two N-(pyridine-2-ylmeth­yl)pyridine-3-amine (Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]) ligands (A and B) and two tri­fluoro­methane­sulfonate anions. The Ag1 atom is coordinated by two pyridine N atoms from two symmetry-related A ligands giving a geometry which is slightly distorted from linear [N1—Ag1—N2 = 170.69 (14)°], forming a right-handed helical chain, while the Ag2 atom is coordinated by two pyridine N atoms from two symmetry-related B ligands in a bent arrangement [N4—Ag2—N5 = 149.42 (14)°], forming a left-handed helical chain. Two pyridine rings coordinating to the Ag1 and Ag2 atoms are tilted by 14.1 (3) and 28.9 (2)°, respectively, with respect to each other.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level and dashed lines represent Ag⋯Ag and Ag⋯O inter­actions [symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x, y + [{1\over 2}], −z + [{1\over 2}]; (iii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}]; (iv) −x, y − [{1\over 2}], −z + [{1\over 2}]].

3. Supra­molecular features

Both helical chains in the structure have the same pitch length [10.8437 (5) Å], propagate along the b-axial direction and are alternately arranged via Ag1⋯Ag2 inter­actions [3.0814 (5) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to the ab plane (Fig. 2[link]). Furthermore, ππ stacking inter­actions [centroid–centroid distances = 3.514 (3) and 3.487 (3) Å] between pyridine rings of both helical chains contribute to the stabilization of the two-dimensional network. In the crystal structure, the two-dimensional networks are further stabilized by Ag⋯O and Ag⋯F inter­actions [Ag1⋯O1 2.861 (4), Ag1⋯O4 2.624 (4), Ag2⋯O2 2.617 (3), Ag2⋯F3iv 3.017 (3) Å; symmetry code: (iv) −x, y − [{1\over 2}], −z + [{1\over 2}]] (Figs. 1[link] and 2[link]) as well as N—H⋯O and N—H⋯O and C—H⋯O and C—H⋯F hydrogen-bonds (Table 1[link]) between the helical chains and CF3SO3 anions.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O6i 0.88 2.51 3.206 (6) 136
N6—H6⋯O3ii 0.88 2.43 3.217 (6) 149
C1—H1⋯O5iii 0.95 2.55 3.339 (6) 141
C4—H4⋯O3ii 0.95 2.54 3.383 (6) 147
C6—H6A⋯O5i 0.99 2.57 3.471 (6) 151
C11—H11⋯F3iii 0.95 2.49 3.311 (6) 145
C11—H11⋯O1iii 0.95 2.54 3.350 (7) 143
C15—H15⋯O6ii 0.95 2.53 3.450 (6) 164
C16—H16⋯O6iv 0.95 2.58 3.316 (6) 135
C17—H17B⋯O3 0.99 2.58 3.422 (6) 143
Symmetry codes: (i) x, y-1, z; (ii) -x, -y+1, -z; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) x-1, y-1, z.
[Figure 2]
Figure 2
The two-dimensional supra­molecular network formed through Ag⋯Ag and Ag⋯O inter­actions (yellow dashed lines) and ππ stacking inter­actions (black dashed lines).

4. Synthesis and crystallization

The ligand (N-(pyridin-2-ylmeth­yl)pyridine-3-amine) was prepared according to a procedure described by Lee et al. (2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). Crystals of the title compound suitable for X-ray analysis were obtained by vapour diffusion of diethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) hexa­fluorido­phosphate in the molar ratio 1:1 in methanol.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H, 0.88 Å for amine N—H and 0.99 Å for methyl­ene C—H. For all H atoms Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C11H11N3)]·CF3SO3
Mr 442.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 13.7529 (6), 10.8437 (5), 19.5795 (9)
β (°) 99.826 (1)
V3) 2877.1 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 1.60
Crystal size (mm) 0.31 × 0.22 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.637, 0.857
No. of measured, independent and observed [I > 2σ(I)] reflections 15852, 5629, 4286
Rint 0.038
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.06
No. of reflections 5629
No. of parameters 415
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.04, −0.67
Computer programs: SMART and SAINT-Plus (Bruker, 2000[Bruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.]).

Supporting information


Chemical context top

A few silver coordination polymers based on unsymmetrical di­pyridyl ligands composed of two terminal pyridines with different substituted-nitro­gen positions have been reported (Moon & Park, 2013, 2014; Zhang et al., 2013). In an extension of investigations on AgI coordination polymers with unsymmetrical di­pyridyl ligands, the title compound was prepared by the reaction of silver tri­fluoro­metane­sulfonate with N-(pyridine-2-yl­methyl)­pyridine-3-amine. The structure of title compound is isostructural with the perchlorate salt (Moon & Park, 2014; Zhang et al., 2013).

Structural commentary top

The title compound is shown in Fig. 1. The asymmetric unit contains two AgI atoms (Ag1 and Ag2), two N-(pyridine-2-yl­methyl)­pyridine-3-amine (Lee et al., 2013) ligands (A and B) and two tri­fluoro­methane­sulfonate anions. The Ag1 atom is coordinated by two pyridine N atoms from two symmetry-related A ligands giving a geometry which is slightly distorted from linear [N1—Ag1—N2 = 170.69 (14)°], forming a right-handed helical chain, while the Ag2 atom is coordinated by two pyridine N atoms from two symmetry-related B ligands in a bent arrangement [N4—Ag2—N5 = 149.42 (14)°], forming a left-handed helical chain. Two pyridine rings coordinated to the Ag1 and Ag2 centers are tilted by 14.1 (3) and 28.9 (2)°, respectively, with respect to each other.

Supra­molecular features top

Both helical chains in the structure have the same pitch length [10.8437 (5) Å], propagate along the b-axial direction and are alternately arranged via Ag1···Ag2 inter­actions [3.0814 (5) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to the ab plane (Fig. 2). Furthermore, ππ stacking inter­actions [centroid–centroid distances = 3.514 (3) and 3.487 (3) Å] between pyridine rings of both helical chains contribute to the stabilization of the two-dimensional network. In the crystal structure, the two-dimensional networks are further stabilized by Ag···O and Ag···F inter­actions [Ag1···O1 2.861 (4), Ag1···O4 2.624 (4), Ag2···O2 2.617 (3), Ag2···F3iv 3.017 (3) Å; symmetry code: (iv) -x, y - 1/2, -z + 1/2] (Figs. 1 and 2) as well as N—H···O and N—H···O and C—H···O, C—H···N and C—H···F hydrogen-bonds (Table 1) between the helical chains and CF3SO3- anions.

Synthesis and crystallization top

The ligand (N-(pyridin-2-yl­methyl)­pyridine-3-amine) was prepared according to a procedure described by Lee et al. (2013). Crystals of the title compound suitable for X-ray analysis were obtained by vapour diffusion of di­ethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) hexafluoridophosphate in the molar ratio 1:1 in methanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and refined using a riding model, with d(C—H) = 0.95 Å for Csp2—H, 0.88 Å for amine N—H and 0.99 Å for methyl­ene C—H. For all H atoms Uiso(H) = 1.2Ueq(C,N).

Related literature top

For related literature, see: Lee et al. (2013); Moon & Park (2013, 2014); Zhang et al. (2013).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1. A view of the molecular structure of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level and dashed lines represent Ag···Ag and Ag···O interactions [symmetry codes: (i) -x + 1 , y + 1/2, -z + 1/2; (ii) -x, y + 1/2, -z + 1/2; (iii) -x + 1, y - 1/2, -z + 1/2; (iv) -x, y - 1/2, -z + 1/2].

Figure 2. The two-dimensional supramolecular network formed through Ag···Ag and Ag···O interactions (yellow dashed lines) and ππ stacking interactions (black dashed lines).
catena-Poly[[silver(I)-µ-N-(pyridin-2-ylmethyl)pyridine-3-amine-κ2N:N'] trifluoromethanesulfonate] top
Crystal data top
[Ag(C11H11N3)]·CF3SO3F(000) = 1744
Mr = 442.17Dx = 2.042 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5639 reflections
a = 13.7529 (6) Åθ = 2.4–28.2°
b = 10.8437 (5) ŵ = 1.60 mm1
c = 19.5795 (9) ÅT = 173 K
β = 99.826 (1)°Plate, colorless
V = 2877.1 (2) Å30.31 × 0.22 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD area detector
diffractometer
5629 independent reflections
Radiation source: fine-focus sealed tube4286 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1616
Tmin = 0.637, Tmax = 0.857k = 139
15852 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0369P)2 + 6.3774P]
where P = (Fo2 + 2Fc2)/3
5629 reflections(Δ/σ)max = 0.001
415 parametersΔρmax = 1.04 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Ag(C11H11N3)]·CF3SO3V = 2877.1 (2) Å3
Mr = 442.17Z = 8
Monoclinic, P21/cMo Kα radiation
a = 13.7529 (6) ŵ = 1.60 mm1
b = 10.8437 (5) ÅT = 173 K
c = 19.5795 (9) Å0.31 × 0.22 × 0.10 mm
β = 99.826 (1)°
Data collection top
Bruker SMART CCD area detector
diffractometer
5629 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4286 reflections with I > 2σ(I)
Tmin = 0.637, Tmax = 0.857Rint = 0.038
15852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.06Δρmax = 1.04 e Å3
5629 reflectionsΔρmin = 0.67 e Å3
415 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.30869 (3)0.63691 (3)0.192614 (19)0.02491 (11)
Ag20.17632 (3)0.43820 (3)0.24204 (2)0.02787 (11)
N10.3183 (3)0.4818 (4)0.1251 (2)0.0220 (9)
N20.7006 (3)0.2705 (3)0.2265 (2)0.0223 (9)
N30.4684 (3)0.2087 (4)0.1066 (2)0.0284 (10)
H30.47270.15380.07420.034*
C10.3913 (3)0.3969 (4)0.1368 (2)0.0231 (11)
H10.44280.40780.17530.028*
C20.3940 (3)0.2938 (4)0.0943 (2)0.0228 (10)
C30.3168 (3)0.2794 (5)0.0383 (2)0.0252 (11)
H3A0.31520.21030.00830.030*
C40.2434 (4)0.3662 (5)0.0272 (3)0.0275 (11)
H40.19040.35690.01040.033*
C50.2462 (4)0.4662 (5)0.0701 (2)0.0237 (11)
H50.19560.52650.06070.028*
C60.5398 (4)0.2033 (5)0.1695 (3)0.0288 (12)
H6A0.56180.11670.17740.035*
H6B0.50710.22790.20870.035*
C70.6299 (4)0.2836 (4)0.1702 (3)0.0234 (11)
C80.6403 (4)0.3658 (5)0.1181 (3)0.0327 (12)
H80.58970.37350.07870.039*
C90.7247 (4)0.4367 (5)0.1237 (3)0.0346 (13)
H90.73300.49280.08790.042*
C100.7964 (4)0.4258 (5)0.1812 (3)0.0324 (12)
H100.85430.47510.18680.039*
C110.7815 (4)0.3405 (5)0.2307 (3)0.0314 (12)
H110.83180.33100.27010.038*
N40.1913 (3)0.0415 (3)0.1616 (2)0.0218 (9)
N50.1834 (3)0.2634 (4)0.1887 (2)0.0224 (9)
N60.0542 (3)0.2536 (4)0.0675 (2)0.0295 (10)
H60.05590.27570.02410.035*
C120.1212 (3)0.1180 (4)0.1464 (2)0.0211 (10)
H120.06510.13340.18100.025*
C130.1267 (3)0.1755 (4)0.0824 (2)0.0221 (10)
C140.2106 (4)0.1521 (4)0.0325 (2)0.0273 (11)
H140.21810.19020.01180.033*
C150.2815 (4)0.0739 (5)0.0483 (3)0.0306 (12)
H150.33850.05700.01480.037*
C160.2702 (4)0.0194 (4)0.1130 (3)0.0261 (11)
H160.31970.03520.12330.031*
C170.0244 (3)0.3012 (5)0.1190 (3)0.0271 (11)
H17A0.00310.32030.16140.033*
H17B0.04750.37980.10160.033*
C180.1121 (4)0.2185 (4)0.1389 (2)0.0227 (10)
C190.1216 (4)0.1044 (5)0.1089 (3)0.0313 (12)
H190.07060.07380.07420.038*
C200.2063 (4)0.0352 (5)0.1301 (3)0.0351 (13)
H200.21390.04300.10980.042*
C210.2788 (4)0.0807 (5)0.1806 (3)0.0340 (13)
H210.33720.03480.19610.041*
C220.2647 (4)0.1953 (5)0.2082 (3)0.0281 (11)
H220.31520.22730.24280.034*
S10.03658 (9)0.65963 (11)0.12069 (6)0.0230 (3)
O10.1266 (3)0.7218 (3)0.1137 (2)0.0390 (9)
O20.0406 (3)0.5931 (3)0.18476 (18)0.0343 (9)
O30.0106 (3)0.5974 (3)0.05959 (18)0.0369 (9)
C230.0469 (4)0.7861 (5)0.1303 (3)0.0289 (12)
F10.0609 (3)0.8570 (3)0.07437 (17)0.0480 (9)
F20.1350 (2)0.7440 (3)0.13945 (17)0.0439 (8)
F30.0113 (2)0.8558 (3)0.18486 (16)0.0381 (8)
S20.47697 (9)0.84803 (12)0.12529 (6)0.0269 (3)
O40.3758 (3)0.8093 (3)0.1188 (2)0.0380 (9)
O50.5228 (3)0.8873 (3)0.19320 (19)0.0403 (10)
O60.4983 (3)0.9245 (4)0.07004 (19)0.0410 (10)
C240.5413 (4)0.7040 (5)0.1142 (3)0.0311 (12)
F40.5337 (2)0.6255 (3)0.16634 (16)0.0347 (7)
F50.6375 (2)0.7235 (3)0.11623 (17)0.0428 (8)
F60.5059 (3)0.6481 (3)0.05552 (17)0.0539 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0246 (2)0.0220 (2)0.0286 (2)0.00393 (16)0.00586 (15)0.00514 (16)
Ag20.0321 (2)0.0252 (2)0.0282 (2)0.00139 (17)0.01060 (17)0.00680 (17)
N10.020 (2)0.021 (2)0.025 (2)0.0021 (17)0.0048 (17)0.0009 (17)
N20.022 (2)0.016 (2)0.029 (2)0.0018 (16)0.0050 (17)0.0032 (17)
N30.033 (2)0.020 (2)0.031 (2)0.0039 (18)0.0014 (19)0.0082 (18)
C10.022 (3)0.027 (3)0.021 (2)0.005 (2)0.002 (2)0.001 (2)
C20.027 (3)0.019 (2)0.023 (3)0.002 (2)0.006 (2)0.001 (2)
C30.029 (3)0.025 (3)0.022 (3)0.005 (2)0.005 (2)0.004 (2)
C40.025 (3)0.032 (3)0.024 (3)0.004 (2)0.001 (2)0.002 (2)
C50.022 (3)0.027 (3)0.022 (3)0.000 (2)0.004 (2)0.003 (2)
C60.024 (3)0.024 (3)0.038 (3)0.004 (2)0.007 (2)0.002 (2)
C70.027 (3)0.015 (2)0.029 (3)0.003 (2)0.006 (2)0.004 (2)
C80.040 (3)0.030 (3)0.029 (3)0.003 (2)0.005 (2)0.001 (2)
C90.046 (3)0.023 (3)0.038 (3)0.004 (2)0.018 (3)0.009 (2)
C100.032 (3)0.021 (3)0.049 (3)0.002 (2)0.018 (3)0.001 (2)
C110.024 (3)0.029 (3)0.040 (3)0.001 (2)0.002 (2)0.004 (2)
N40.025 (2)0.016 (2)0.025 (2)0.0020 (16)0.0047 (17)0.0005 (17)
N50.029 (2)0.019 (2)0.021 (2)0.0012 (17)0.0104 (17)0.0035 (17)
N60.035 (2)0.033 (2)0.020 (2)0.006 (2)0.0030 (18)0.0102 (19)
C120.021 (2)0.020 (2)0.021 (2)0.0001 (19)0.001 (2)0.0012 (19)
C130.026 (3)0.016 (2)0.025 (3)0.0041 (19)0.004 (2)0.000 (2)
C140.038 (3)0.023 (3)0.017 (2)0.005 (2)0.003 (2)0.000 (2)
C150.027 (3)0.028 (3)0.033 (3)0.000 (2)0.007 (2)0.009 (2)
C160.022 (3)0.020 (3)0.036 (3)0.001 (2)0.006 (2)0.001 (2)
C170.026 (3)0.024 (3)0.031 (3)0.003 (2)0.005 (2)0.003 (2)
C180.029 (3)0.018 (2)0.025 (3)0.003 (2)0.013 (2)0.001 (2)
C190.039 (3)0.024 (3)0.032 (3)0.006 (2)0.011 (2)0.001 (2)
C200.051 (4)0.023 (3)0.035 (3)0.002 (3)0.019 (3)0.004 (2)
C210.035 (3)0.031 (3)0.038 (3)0.004 (2)0.011 (3)0.004 (3)
C220.030 (3)0.027 (3)0.029 (3)0.000 (2)0.011 (2)0.004 (2)
S10.0249 (6)0.0222 (6)0.0208 (6)0.0063 (5)0.0006 (5)0.0015 (5)
O10.029 (2)0.037 (2)0.054 (2)0.0034 (17)0.0158 (18)0.0033 (19)
O20.046 (2)0.031 (2)0.0251 (19)0.0098 (17)0.0012 (17)0.0060 (16)
O30.044 (2)0.033 (2)0.030 (2)0.0092 (17)0.0026 (17)0.0112 (17)
C230.029 (3)0.028 (3)0.028 (3)0.004 (2)0.001 (2)0.006 (2)
F10.062 (2)0.0397 (19)0.0404 (19)0.0274 (17)0.0022 (16)0.0099 (16)
F20.0218 (16)0.052 (2)0.058 (2)0.0028 (15)0.0059 (15)0.0139 (17)
F30.0315 (16)0.0381 (18)0.0420 (18)0.0053 (14)0.0013 (14)0.0205 (15)
S20.0274 (7)0.0256 (7)0.0266 (7)0.0033 (5)0.0018 (5)0.0070 (5)
O40.030 (2)0.031 (2)0.055 (3)0.0000 (16)0.0120 (18)0.0148 (19)
O50.061 (3)0.028 (2)0.030 (2)0.0019 (19)0.0017 (19)0.0031 (17)
O60.035 (2)0.048 (2)0.036 (2)0.0173 (18)0.0061 (17)0.0191 (19)
C240.031 (3)0.038 (3)0.027 (3)0.005 (2)0.011 (2)0.005 (2)
F40.0365 (17)0.0227 (15)0.0456 (18)0.0006 (13)0.0087 (14)0.0061 (14)
F50.0282 (17)0.049 (2)0.055 (2)0.0043 (15)0.0179 (15)0.0013 (17)
F60.061 (2)0.061 (2)0.0378 (19)0.0073 (19)0.0040 (17)0.0228 (18)
Geometric parameters (Å, º) top
Ag1—N12.156 (4)N6—C131.377 (6)
Ag1—N2i2.167 (4)N6—C171.443 (6)
Ag1—Ag23.0814 (5)N6—H60.8800
Ag2—N4ii2.174 (4)C12—C131.390 (7)
Ag2—N52.175 (4)C12—H120.9500
N1—C51.344 (6)C13—C141.402 (7)
N1—C11.353 (6)C14—C151.367 (7)
N2—C111.338 (6)C14—H140.9500
N2—C71.347 (6)C15—C161.383 (7)
N2—Ag1iii2.167 (4)C15—H150.9500
N3—C21.369 (6)C16—H160.9500
N3—C61.439 (6)C17—C181.500 (7)
N3—H30.8800C17—H17A0.9900
C1—C21.398 (7)C17—H17B0.9900
C1—H10.9500C18—C191.385 (7)
C2—C31.398 (6)C19—C201.389 (8)
C3—C41.369 (7)C19—H190.9500
C3—H3A0.9500C20—C211.370 (8)
C4—C51.368 (7)C20—H200.9500
C4—H40.9500C21—C221.381 (7)
C5—H50.9500C21—H210.9500
C6—C71.512 (7)C22—H220.9500
C6—H6A0.9900S1—O31.429 (4)
C6—H6B0.9900S1—O11.436 (4)
C7—C81.380 (7)S1—O21.440 (4)
C8—C91.382 (8)S1—C231.819 (5)
C8—H80.9500C23—F11.324 (6)
C9—C101.369 (8)C23—F31.332 (5)
C9—H90.9500C23—F21.336 (6)
C10—C111.379 (7)S2—O61.433 (4)
C10—H100.9500S2—O51.435 (4)
C11—H110.9500S2—O41.438 (4)
N4—C161.336 (6)S2—C241.826 (6)
N4—C121.343 (6)C24—F61.317 (6)
N4—Ag2iv2.174 (4)C24—F51.334 (6)
N5—C221.341 (6)C24—F41.347 (6)
N5—C181.349 (6)
N1—Ag1—N2i170.69 (14)N4—C12—C13123.1 (4)
N1—Ag1—Ag275.41 (10)N4—C12—H12118.4
N2i—Ag1—Ag297.25 (10)C13—C12—H12118.4
N4ii—Ag2—N5149.42 (14)N6—C13—C12122.5 (4)
N4ii—Ag2—Ag186.49 (10)N6—C13—C14120.2 (4)
N5—Ag2—Ag1112.41 (10)C12—C13—C14117.3 (4)
C5—N1—C1118.3 (4)C15—C14—C13119.3 (5)
C5—N1—Ag1118.4 (3)C15—C14—H14120.4
C1—N1—Ag1123.3 (3)C13—C14—H14120.4
C11—N2—C7117.9 (4)C14—C15—C16120.0 (5)
C11—N2—Ag1iii119.1 (3)C14—C15—H15120.0
C7—N2—Ag1iii122.9 (3)C16—C15—H15120.0
C2—N3—C6124.0 (4)N4—C16—C15121.7 (5)
C2—N3—H3118.0N4—C16—H16119.1
C6—N3—H3118.0C15—C16—H16119.1
N1—C1—C2122.6 (4)N6—C17—C18116.2 (4)
N1—C1—H1118.7N6—C17—H17A108.2
C2—C1—H1118.7C18—C17—H17A108.2
N3—C2—C1121.9 (4)N6—C17—H17B108.2
N3—C2—C3120.5 (4)C18—C17—H17B108.2
C1—C2—C3117.5 (4)H17A—C17—H17B107.4
C4—C3—C2119.2 (5)N5—C18—C19121.3 (5)
C4—C3—H3A120.4N5—C18—C17115.1 (4)
C2—C3—H3A120.4C19—C18—C17123.6 (5)
C5—C4—C3120.3 (5)C18—C19—C20119.4 (5)
C5—C4—H4119.8C18—C19—H19120.3
C3—C4—H4119.8C20—C19—H19120.3
N1—C5—C4122.1 (5)C21—C20—C19119.4 (5)
N1—C5—H5119.0C21—C20—H20120.3
C4—C5—H5119.0C19—C20—H20120.3
N3—C6—C7115.1 (4)C20—C21—C22118.3 (5)
N3—C6—H6A108.5C20—C21—H21120.9
C7—C6—H6A108.5C22—C21—H21120.9
N3—C6—H6B108.5N5—C22—C21123.3 (5)
C7—C6—H6B108.5N5—C22—H22118.3
H6A—C6—H6B107.5C21—C22—H22118.3
N2—C7—C8121.4 (5)O3—S1—O1114.7 (2)
N2—C7—C6115.0 (4)O3—S1—O2115.9 (2)
C8—C7—C6123.6 (5)O1—S1—O2114.3 (2)
C7—C8—C9119.5 (5)O3—S1—C23103.8 (2)
C7—C8—H8120.3O1—S1—C23103.0 (2)
C9—C8—H8120.3O2—S1—C23102.7 (2)
C10—C9—C8119.7 (5)F1—C23—F3108.4 (4)
C10—C9—H9120.2F1—C23—F2107.6 (4)
C8—C9—H9120.2F3—C23—F2107.6 (4)
C9—C10—C11117.6 (5)F1—C23—S1111.0 (4)
C9—C10—H10121.2F3—C23—S1111.0 (3)
C11—C10—H10121.2F2—C23—S1111.0 (4)
N2—C11—C10123.9 (5)O6—S2—O5114.4 (2)
N2—C11—H11118.0O6—S2—O4115.0 (2)
C10—C11—H11118.0O5—S2—O4115.7 (2)
C16—N4—C12118.7 (4)O6—S2—C24103.9 (2)
C16—N4—Ag2iv118.0 (3)O5—S2—C24102.6 (2)
C12—N4—Ag2iv123.0 (3)O4—S2—C24102.7 (2)
C22—N5—C18118.4 (4)F6—C24—F5108.4 (4)
C22—N5—Ag2116.5 (3)F6—C24—F4107.8 (4)
C18—N5—Ag2125.1 (3)F5—C24—F4106.4 (4)
C13—N6—C17123.7 (4)F6—C24—S2112.5 (4)
C13—N6—H6118.2F5—C24—S2111.0 (4)
C17—N6—H6118.2F4—C24—S2110.4 (3)
N1—Ag1—Ag2—N4ii160.70 (15)N4—C12—C13—N6179.9 (4)
N2i—Ag1—Ag2—N4ii13.47 (14)N4—C12—C13—C140.6 (7)
N1—Ag1—Ag2—N55.50 (15)N6—C13—C14—C15179.7 (5)
N2i—Ag1—Ag2—N5168.67 (15)C12—C13—C14—C150.8 (7)
Ag2—Ag1—N1—C582.5 (3)C13—C14—C15—C160.3 (7)
Ag2—Ag1—N1—C195.0 (4)C12—N4—C16—C150.6 (7)
C5—N1—C1—C20.6 (7)Ag2iv—N4—C16—C15174.9 (4)
Ag1—N1—C1—C2177.0 (3)C14—C15—C16—N40.4 (8)
C6—N3—C2—C111.5 (7)C13—N6—C17—C1883.2 (6)
C6—N3—C2—C3167.8 (5)C22—N5—C18—C190.6 (7)
N1—C1—C2—N3180.0 (4)Ag2—N5—C18—C19178.2 (3)
N1—C1—C2—C30.6 (7)C22—N5—C18—C17178.9 (4)
N3—C2—C3—C4180.0 (4)Ag2—N5—C18—C172.3 (6)
C1—C2—C3—C40.6 (7)N6—C17—C18—N5178.1 (4)
C2—C3—C4—C50.5 (7)N6—C17—C18—C192.3 (7)
C1—N1—C5—C41.8 (7)N5—C18—C19—C200.4 (7)
Ag1—N1—C5—C4175.9 (4)C17—C18—C19—C20179.1 (5)
C3—C4—C5—N11.8 (7)C18—C19—C20—C210.3 (8)
C2—N3—C6—C787.1 (6)C19—C20—C21—C220.4 (8)
C11—N2—C7—C80.5 (7)C18—N5—C22—C210.7 (7)
Ag1iii—N2—C7—C8177.0 (4)Ag2—N5—C22—C21178.1 (4)
C11—N2—C7—C6179.0 (4)C20—C21—C22—N50.7 (8)
Ag1iii—N2—C7—C63.6 (6)O3—S1—C23—F157.7 (4)
N3—C6—C7—N2174.5 (4)O1—S1—C23—F162.2 (4)
N3—C6—C7—C86.1 (7)O2—S1—C23—F1178.8 (4)
N2—C7—C8—C90.3 (8)O3—S1—C23—F3178.4 (4)
C6—C7—C8—C9179.1 (5)O1—S1—C23—F358.5 (4)
C7—C8—C9—C100.8 (8)O2—S1—C23—F360.5 (4)
C8—C9—C10—C111.7 (8)O3—S1—C23—F261.9 (4)
C7—N2—C11—C100.5 (7)O1—S1—C23—F2178.2 (3)
Ag1iii—N2—C11—C10178.1 (4)O2—S1—C23—F259.2 (4)
C9—C10—C11—N21.6 (8)O6—S2—C24—F664.1 (4)
N4ii—Ag2—N5—C2248.9 (5)O5—S2—C24—F6176.4 (4)
Ag1—Ag2—N5—C2275.7 (3)O4—S2—C24—F656.0 (4)
N4ii—Ag2—N5—C18129.9 (4)O6—S2—C24—F557.6 (4)
Ag1—Ag2—N5—C18105.5 (3)O5—S2—C24—F561.9 (4)
C16—N4—C12—C130.1 (7)O4—S2—C24—F5177.7 (3)
Ag2iv—N4—C12—C13174.1 (3)O6—S2—C24—F4175.4 (3)
C17—N6—C13—C1211.8 (7)O5—S2—C24—F456.0 (4)
C17—N6—C13—C14167.7 (4)O4—S2—C24—F464.5 (4)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6v0.882.513.206 (6)136
N6—H6···O3vi0.882.433.217 (6)149
C1—H1···O5iii0.952.553.339 (6)141
C4—H4···O3vi0.952.543.383 (6)147
C6—H6A···O5v0.992.573.471 (6)151
C8—H8···N30.952.572.891 (7)100
C11—H11···F3iii0.952.493.311 (6)145
C11—H11···O1iii0.952.543.350 (7)143
C15—H15···O6vi0.952.533.450 (6)164
C16—H16···O6vii0.952.583.316 (6)135
C17—H17B···O30.992.583.422 (6)143
C19—H19···N60.952.592.906 (7)100
Symmetry codes: (iii) x+1, y1/2, z+1/2; (v) x, y1, z; (vi) x, y+1, z; (vii) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O6i0.882.513.206 (6)136
N6—H6···O3ii0.882.433.217 (6)149
C1—H1···O5iii0.952.553.339 (6)141
C4—H4···O3ii0.952.543.383 (6)147
C6—H6A···O5i0.992.573.471 (6)151
C11—H11···F3iii0.952.493.311 (6)145
C11—H11···O1iii0.952.543.350 (7)143
C15—H15···O6ii0.952.533.450 (6)164
C16—H16···O6iv0.952.583.316 (6)135
C17—H17B···O30.992.583.422 (6)143
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+1, y1/2, z+1/2; (iv) x1, y1, z.

Experimental details

Crystal data
Chemical formula[Ag(C11H11N3)]·CF3SO3
Mr442.17
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)13.7529 (6), 10.8437 (5), 19.5795 (9)
β (°) 99.826 (1)
V3)2877.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.60
Crystal size (mm)0.31 × 0.22 × 0.10
Data collection
DiffractometerBruker SMART CCD area detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.637, 0.857
No. of measured, independent and
observed [I > 2σ(I)] reflections
15852, 5629, 4286
Rint0.038
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.06
No. of reflections5629
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.04, 0.67

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by NRF (2010–0022675) projects.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds