organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(piperidin-1-yl)butane-1,3-dione

aUniversity Koblenz-Landau, Institute for Integrated Natural Sciences, Universitätsstrasse 1, 56070 Koblenz, Germany, and bFriedrich-Schiller-University Jena, Institute of Inorganic and Analytical Chemistry, Humboldtstrasse 8, 07743 Jena, Germany
*Correspondence e-mail: imhof@uni-koblenz.de

Edited by R. F. Baggio, Comisión Nacional de Energía Atómica, Argentina (Received 6 November 2014; accepted 25 November 2014; online 29 November 2014)

In the title compound, C9H15NO2, the piperidine ring exhibits a chair conformation. The butane­dione subunit exhibits a conformation with the ketone C atom in an eclipsed position with respect to the amide carbonyl group. In the crystal, a two-dimensional layered arrangement is formed by hydrogen bonds of the C—H⋯O type between the methyl group and the exocyclic methyl­ene unit as donor sites and the amide carbonyl O atom as the acceptor of a bifurcated hydrogen bond. These layers are oriented parallel to the ab plane.

1. Related literature

For the synthetic procedure, see: Sridharan et al. (2010[Sridharan, V., Ruiz, M. & Menéndez, J. C. (2010). Synthesis, pp. 1053-1057.]). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999[Desiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H15NO2

  • Mr = 169.22

  • Monoclinic, P 21 /c

  • a = 5.4455 (1) Å

  • b = 9.1901 (2) Å

  • c = 17.8837 (4) Å

  • β = 94.506 (1)°

  • V = 892.22 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 133 K

  • 0.12 × 0.09 × 0.07 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.717, Tmax = 0.746

  • 5612 measured reflections

  • 2035 independent reflections

  • 1777 reflections with I > 2σ(I)

  • Rint = 0.023

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.107

  • S = 1.14

  • 2035 reflections

  • 169 parameters

  • All H-atom parameters refined

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7B⋯O1i 0.96 (2) 2.459 (17) 3.378 (3) 161 (1)
C9—H9B⋯O1ii 0.99 (2) 2.601 (18) 3.466 (3) 146 (1)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO ; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an intermediate in the synthesis of 2,2-dimethoxy-1-(pyridin-2-yl)ethanone and has been synthesized from piperidine and 2,2,6-trimethyl-4H-1,3-dioxin-4-one following a modified procedure (Sridharan et al., 2010). As it is expected the piperidine ring shows a chair conformation and the amide substructure is planar. The butanedione subunit exhibits a conformation with the ketone carbon atom in an eclipsed position with respect to the amide carbonyl group (Figure 1). The dihedral angle between the two carbonyl groups therefore measures to 81.4°. In the crystal structure, a two-dimensional layered arrangement is formed by hydrogen bonds of the C–H···O type between the methyl group and the exocyclic methylene unit as donor sites and the amide carbonyl oxygen atom as the acceptor of a bifurcated hydrogen bond. These layers are oriented along to the ab plane (Figure 2).

Related literature top

For the synthetic procedure, see: Sridharan et al. (2010). For a survey concerning weak hydrogen bonds, see: Desiraju & Steiner (1999).

Experimental top

0.2 Mol of piperidine (17.0 g, 19.8 ml), 0.2 mol of sodium acetate (17.0 g) and a slight excess (0.26 mol, 37.0 g, 34.6 ml) 2,2,6-trimethyl-4H-1,3-dioxin-4-one together with 40 ml THF are refluxed for 24 h. After cooling down to room temperature the solution is filtered and the remaining sodium acetate is washed with diethylether (3 × 20 ml). The combined THF and diethylether solutions are treated with brine (3 × 25 ml) and dried with Na2SO4. After filtration the organic solution is evaporated to dryness. The raw product may either be purified by chromatography (silica, light petroleum: ethyl acetate = 9: 1, yield 67%) or by destillation in vacuo (0.2 mbar, yield: 83%). If only the product fraction that is condensed into a Schlenk tube which is cooled with liquid nitrogen using a bath temperature above 100°C is collected, crystalline material of the title compound suitable for X-ray crystallography is obtained.

Refinement top

The positions of all hydrogen atoms have been determined from a Fourier map and all hydrogen atoms were refined without any constraints.

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Figure 1. Molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

Figure 2. Crystal structure of the title compound showing layers of molecules along the ab plane which are built up by bifurcated C–H···O hydrogen bonds.
1-(Piperidin-1-yl)butane-1,3-dione top
Crystal data top
C9H15NO2Z = 4
Mr = 169.22F(000) = 368
Monoclinic, P21/cDx = 1.260 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.4455 (1) ŵ = 0.09 mm1
b = 9.1901 (2) ÅT = 133 K
c = 17.8837 (4) ÅPrism, colourless
β = 94.506 (1)°0.12 × 0.09 × 0.07 mm
V = 892.22 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
2035 independent reflections
Radiation source: fine-focus sealed tube1777 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
phi– + ω–scanθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 76
Tmin = 0.717, Tmax = 0.746k = 711
5612 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: difference Fourier map
wR(F2) = 0.107All H-atom parameters refined
S = 1.14 w = 1/[σ2(Fo2) + (0.041P)2 + 0.4171P]
where P = (Fo2 + 2Fc2)/3
2035 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C9H15NO2V = 892.22 (3) Å3
Mr = 169.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.4455 (1) ŵ = 0.09 mm1
b = 9.1901 (2) ÅT = 133 K
c = 17.8837 (4) Å0.12 × 0.09 × 0.07 mm
β = 94.506 (1)°
Data collection top
Nonius KappaCCD
diffractometer
2035 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1777 reflections with I > 2σ(I)
Tmin = 0.717, Tmax = 0.746Rint = 0.023
5612 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107All H-atom parameters refined
S = 1.14Δρmax = 0.31 e Å3
2035 reflectionsΔρmin = 0.19 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.73273 (18)0.88779 (10)0.27173 (5)0.0232 (2)
O20.6753 (2)0.70560 (11)0.11035 (5)0.0279 (3)
N10.5948 (2)0.73198 (12)0.35732 (6)0.0202 (3)
C10.5498 (3)0.84895 (15)0.41067 (7)0.0210 (3)
H1B0.661 (3)0.8308 (18)0.4570 (9)0.022 (4)*
H1A0.594 (3)0.9416 (19)0.3881 (9)0.023 (4)*
C20.2840 (3)0.84538 (15)0.43124 (8)0.0236 (3)
H2B0.257 (3)0.9213 (19)0.4687 (10)0.027 (4)*
H2A0.175 (3)0.868 (2)0.3865 (11)0.032 (5)*
C30.2232 (3)0.69623 (16)0.46223 (8)0.0236 (3)
H3A0.331 (3)0.6804 (19)0.5103 (10)0.027 (4)*
H3B0.049 (4)0.6953 (19)0.4749 (10)0.032 (5)*
C40.2753 (3)0.57716 (16)0.40620 (8)0.0230 (3)
H4B0.166 (3)0.588 (2)0.3604 (10)0.033 (5)*
H4A0.245 (3)0.4812 (19)0.4270 (9)0.027 (4)*
C50.5391 (3)0.58557 (14)0.38390 (8)0.0212 (3)
H5B0.657 (3)0.5641 (18)0.4283 (9)0.021 (4)*
H5A0.565 (3)0.5139 (19)0.3448 (9)0.023 (4)*
C60.6852 (2)0.76255 (14)0.29111 (7)0.0170 (3)
C70.7267 (2)0.63574 (14)0.23861 (7)0.0180 (3)
H7B0.575 (3)0.5836 (18)0.2286 (9)0.022 (4)*
H7A0.854 (3)0.5704 (19)0.2607 (9)0.024 (4)*
C80.8154 (2)0.69439 (14)0.16614 (7)0.0190 (3)
C91.0830 (3)0.73141 (18)0.16694 (9)0.0270 (3)
H9C1.137 (4)0.780 (2)0.2127 (12)0.046 (6)*
H9B1.177 (4)0.639 (2)0.1650 (12)0.049 (6)*
H9A1.116 (4)0.784 (2)0.1229 (13)0.053 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0316 (5)0.0149 (5)0.0240 (5)0.0001 (4)0.0072 (4)0.0018 (4)
O20.0346 (6)0.0292 (6)0.0191 (5)0.0014 (4)0.0030 (4)0.0028 (4)
N10.0295 (6)0.0133 (5)0.0183 (5)0.0003 (4)0.0048 (4)0.0007 (4)
C10.0284 (7)0.0164 (6)0.0183 (6)0.0016 (5)0.0035 (5)0.0030 (5)
C20.0285 (7)0.0198 (7)0.0226 (7)0.0029 (5)0.0024 (5)0.0021 (5)
C30.0231 (7)0.0237 (7)0.0244 (7)0.0008 (5)0.0040 (5)0.0001 (5)
C40.0269 (7)0.0208 (7)0.0209 (7)0.0043 (5)0.0007 (5)0.0003 (5)
C50.0309 (7)0.0144 (6)0.0188 (6)0.0006 (5)0.0042 (5)0.0020 (5)
C60.0167 (6)0.0164 (6)0.0176 (6)0.0011 (5)0.0006 (5)0.0005 (5)
C70.0200 (6)0.0156 (6)0.0183 (6)0.0004 (5)0.0015 (5)0.0000 (5)
C80.0249 (7)0.0142 (6)0.0183 (6)0.0023 (5)0.0032 (5)0.0013 (5)
C90.0238 (7)0.0298 (8)0.0281 (8)0.0013 (6)0.0076 (6)0.0033 (6)
Geometric parameters (Å, º) top
O1—C61.2353 (16)C4—C51.523 (2)
O2—C81.2117 (17)C4—H4B0.980 (18)
N1—C61.3472 (17)C4—H4A0.976 (18)
N1—C51.4667 (16)C5—H5B1.001 (16)
N1—C11.4706 (16)C5—H5A0.978 (17)
C1—C21.521 (2)C6—C71.5244 (18)
C1—H1B1.001 (16)C7—C81.5171 (18)
C1—H1A0.981 (17)C7—H7B0.959 (17)
C2—C31.525 (2)C7—H7A0.976 (17)
C2—H2B0.987 (18)C8—C91.496 (2)
C2—H2A0.981 (19)C9—H9C0.96 (2)
C3—C41.525 (2)C9—H9B0.99 (2)
C3—H3A1.012 (17)C9—H9A0.95 (2)
C3—H3B0.993 (19)
C6—N1—C5125.13 (11)H4B—C4—H4A107.2 (14)
C6—N1—C1120.59 (11)N1—C5—C4110.79 (11)
C5—N1—C1114.27 (10)N1—C5—H5B107.6 (9)
N1—C1—C2110.57 (11)C4—C5—H5B110.1 (9)
N1—C1—H1B107.1 (9)N1—C5—H5A110.0 (10)
C2—C1—H1B108.7 (9)C4—C5—H5A110.2 (9)
N1—C1—H1A108.0 (10)H5B—C5—H5A108.2 (13)
C2—C1—H1A112.9 (9)O1—C6—N1122.69 (12)
H1B—C1—H1A109.4 (13)O1—C6—C7119.67 (12)
C1—C2—C3110.19 (11)N1—C6—C7117.64 (11)
C1—C2—H2B110.2 (10)C8—C7—C6109.09 (10)
C3—C2—H2B109.9 (10)C8—C7—H7B110.2 (10)
C1—C2—H2A108.8 (11)C6—C7—H7B109.2 (10)
C3—C2—H2A110.9 (11)C8—C7—H7A107.6 (10)
H2B—C2—H2A106.8 (14)C6—C7—H7A110.8 (10)
C2—C3—C4110.44 (12)H7B—C7—H7A109.9 (14)
C2—C3—H3A108.1 (10)O2—C8—C9122.56 (13)
C4—C3—H3A109.2 (10)O2—C8—C7120.78 (12)
C2—C3—H3B109.2 (10)C9—C8—C7116.62 (12)
C4—C3—H3B111.9 (10)C8—C9—H9C110.5 (13)
H3A—C3—H3B107.8 (14)C8—C9—H9B108.1 (12)
C5—C4—C3111.32 (11)H9C—C9—H9B107.5 (18)
C5—C4—H4B107.5 (11)C8—C9—H9A110.6 (13)
C3—C4—H4B110.3 (11)H9C—C9—H9A113.9 (18)
C5—C4—H4A109.8 (10)H9B—C9—H9A105.9 (18)
C3—C4—H4A110.6 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.96 (2)2.459 (17)3.378 (3)161 (1)
C9—H9B···O1ii0.99 (2)2.601 (18)3.466 (3)146 (1)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7B···O1i0.96 (2)2.459 (17)3.378 (3)161 (1)
C9—H9B···O1ii0.99 (2)2.601 (18)3.466 (3)146 (1)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Acknowledgements

MS gratefully acknowledges a PhD grant from the Deutsche Bundesstiftung Umwelt.

References

First citationDesiraju, G. R. & Steiner, T. (1999). In The Weak Hydrogen Bond. Oxford University Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridharan, V., Ruiz, M. & Menéndez, J. C. (2010). Synthesis, pp. 1053–1057.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds