research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tin(IV) chloride octa­hydrate

aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: horst.schmidt@chemie.tu-freiberg.de

Edited by I. D. Brown, McMaster University, Canada (Received 13 October 2014; accepted 4 November 2014; online 12 November 2014)

The title compound, [SnCl4(H2O)2]·6H2O, was crystallized according to the solid–liquid phase diagram at lower temperatures. It is built-up of SnCl4(H2O)2 octa­hedral units (point group symmetry 2) and lattice water mol­ecules. An intricate three-dimensional network of O—H⋯O and O—H⋯Cl hydrogen bonds between the complex molecules and the lattice water molecules is formed in the crystal structure.

1. Chemical context

The inter­est in the stability of tin(IV) salts, especially at lower temperatures, has increased with the recent new determination of the redox potential in aqueous solutions, which is complicated by the presence of chlorido complexes (Gajda et al., 2009[Gajda, T., Sipos, P. & Gamsjäger, H. (2009). Monatsh. Chem. 140, 1293-1303.]). The phase diagram of tin(IV) chloride is not well investigated. Only some points in dilute solutions have been determined by Loomis (1897[Loomis, E. H. (1897). Phys. Rev. (Series I), 4, 273-296.]). For the existing hydrates (R = 8, 5, 4, 3 and 2), Meyerhoffer (1891[Meyerhoffer, M. (1891). Bull. Soc. Chem. Paris, 3, 85-86.]) described the melting points and the existence fields. The crystal structures of the dihydrate (Semenov et al., 2005[Semenov, S. N., Maltsev, E. Y., Timokhin, I. G., Drozdov, A. A. & Troyanov, S. I. (2005). Mendeleev Commun. 15, 205-207.]), trihydrate (Genge et al., 2004[Genge, A. R. J., Levason, W., Patel, R., Reid, G. & Webster, M. (2004). Acta Cryst. C60, i47-i49.]; Semenov et al., 2005[Semenov, S. N., Maltsev, E. Y., Timokhin, I. G., Drozdov, A. A. & Troyanov, S. I. (2005). Mendeleev Commun. 15, 205-207.]), tetra­hydrate (Genge et al., 2004[Genge, A. R. J., Levason, W., Patel, R., Reid, G. & Webster, M. (2004). Acta Cryst. C60, i47-i49.]; Shihada et al., 2004[Shihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841-847.]) and penta­hydrate (Barnes et al., 1980[Barnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949-953.]; Shihada et al., 2004[Shihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841-847.]) have been determined previously. For these salt hydrates, vibrational spectra are also available, classifying all hydrate spectra with point group D4h symmetry (Brune & Zeil, 1962[Brune, H. A. & Zeil, W. (1962). Z. Phys. Chem. Neue Folge, 32, 384-400.]).

2. Structural commentary

The tin(IV) ion in tin(IV) chloride octa­hydrate is situated on a twofold rotation axis and is coordinated by four Cl atoms and two water mol­ecules in a cis-octahedral geometry (Fig. 1[link]), as was observed before for the tetra- and penta­hydrate (Shihada et al., 2004[Shihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841-847.]). In addition, three water mol­ecules (O1, O2 and O3) are located around the octa­hedra as non-coordinating water mol­ecules. Every water mol­ecule of the first coordination sphere is connected with two water mol­ecules of the second shell by hydrogen bonds. The chlorine atoms form only one hydrogen bond towards `free' water mol­ecules of the second shell (Fig. 2[link]).

[Figure 1]
Figure 1
The building units in tin(IV) chloride octa­hydrate [symmetry code: (i) −x, y, −z + [{1\over 2}]]. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
The coordination of tin(IV) in the second coordination shell of tin(IV) chloride octa­hydrate [symmetry code: (i) −x, y, −z + [{1\over 2}]]. Hydrogen bonds are shown as dashed lines.

3. Supra­molecular features

Having a larger view of the crystal structure in direction [001] (Fig. 3[link]), it becomes obvious that these non-coordinating water mol­ecules form chains between the octa­hedrally coordinated tin(IV) ions. These water mol­ecules (O1 and O2) are connected via hydrogen bonds (Table 1[link]) and the chains are oriented along the b-axis direction. Considering all types of hydrogen bonding, a three-dimensional network between the complex molecules and the lattice water molecules results.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O2i 0.84 (1) 1.90 (2) 2.729 (3) 169 (6)
O2—H2B⋯O3ii 0.84 (1) 2.04 (2) 2.825 (3) 157 (5)
O2—H2A⋯O1iii 0.84 (1) 1.94 (2) 2.762 (3) 168 (5)
O1—H1A⋯Cl3iv 0.84 (1) 2.68 (3) 3.389 (2) 143 (4)
O3—H3A⋯O2 0.84 (1) 1.95 (2) 2.763 (3) 163 (4)
O3—H3B⋯Cl1v 0.83 (1) 2.43 (1) 3.260 (2) 173 (4)
O4—H4B⋯O1vi 0.83 (1) 1.77 (1) 2.598 (3) 176 (4)
O4—H4A⋯O3vii 0.84 (1) 1.80 (1) 2.635 (3) 176 (4)
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iv) -x+1, -y+1, -z+1; (v) [-x, y, -z+{\script{1\over 2}}]; (vi) x-1, y+1, z; (vii) x, y+1, z.
[Figure 3]
Figure 3
Formation of chains by water mol­ecules O1 and O2 (bold). Dashed lines indicate hydrogen bonds.

4. Database survey

For crystal structure determination of other tin(IV) chloride hydrates, see: Shihada et al. (2004[Shihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841-847.]); Semenov et al. (2005[Semenov, S. N., Maltsev, E. Y., Timokhin, I. G., Drozdov, A. A. & Troyanov, S. I. (2005). Mendeleev Commun. 15, 205-207.]); Genge et al. (2004[Genge, A. R. J., Levason, W., Patel, R., Reid, G. & Webster, M. (2004). Acta Cryst. C60, i47-i49.]); Barnes et al. (1980[Barnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949-953.]).

5. Synthesis and crystallization

Tin(IV) chloride octa­hydrate was crystallized from an aqueous solution of 53.39 wt% SnCl4 at 263 K after 2 d. For preparing this solution, tin(IV) chloride penta­hydrate (Acros Organics, 98%) was used. The content of Cl was analysed by titration with AgNO3. The crystals are stable in their saturated solution over a period of at least four weeks.

The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray diffraction analysis

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms were placed in the positions indicated by difference Fourier maps. Distance restraints were applied for the geometries of all water molecules, with O—H and H—H distance restraints of 0.84 (1) and 1.4 (1) Å, respectively.

Table 2
Experimental details

Crystal data
Chemical formula [SnCl4(H2O)2]·6H2O
Mr 404.62
Crystal system, space group Monoclinic, C2/c
Temperature (K) 200
a, b, c (Å) 16.0224 (15), 7.8530 (8), 12.6766 (12)
β (°) 119.739 (7)
V3) 1384.9 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 2.63
Crystal size (mm) 0.34 × 0.23 × 0.12
 
Data collection
Diffractometer Stoe IPDS 2T
Absorption correction Integration (Coppens, 1970[Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.492, 0.731
No. of measured, independent and observed [I > 2σ(I)] reflections 13041, 1600, 1451
Rint 0.030
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.11
No. of reflections 1600
No. of parameters 92
No. of restraints 12
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 1.01, −0.71
Computer programs: X-AREA and X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The inter­est in the stability of tin(IV) salts, especially at lower temperatures, has increased with the recent new determination of the redox potential in aqueous solutions, which is complicated by the presence of chloro­complexes (Gajda et al., 2009). The phase diagram of tin(IV) chloride is not well investigated. Only some points in dilute solutions have been determined by Loomis (1897). For the existing hydrates (R = 8, 5, 4, 3 and 2), Meyerhoffer (1891) described the melting points and the existence fields. The crystal structures of the dihydrate (Semenov et al., 2005), trihydrate (Genge et al., 2004; Semenov et al., 2005), tetra­hydrate (Genge et al., 2004; Shihada et al., 2004) and penta­hydrate (Shihada et al., 2004) have been determined previously. For these salt hydrates, vibrational spectra are also available, classifying all hydrate spectra with point group D4h symmetry (Brune & Zeil, 1962).

Structural commentary top

The tin(IV) ion in tin(IV) chloride o­cta­hydrate is coordinated by four Cl atoms and two water molecules in a cis geometry (Fig. 1), as was observed before for the tetra- and penta­hydrate (Shihada et al., 2004). In addition, three water molecules (O1, O2 and O3) are located around the o­cta­hedra as non-coordinating water molecules. Every water molecule of the first coordination sphere is connected with two water molecules of the second shell by hydrogen bonds. The chlorine atoms form only one hydrogen bond towards `free' water molecules of the second shell (Fig. 2).

Supra­molecular features top

Having a larger view of the crystal structure in direction [001] (Fig. 3), it becomes obvious that these non-coordinating water molecules form chains between the o­cta­hedrally coordinated tin(IV) ions. These water molecules (O1 and O2) are connected via hydrogen bonds (Table 1) and the chains are oriented along the b-axis direction.

Database survey top

For crystal structure determination of other tin(IV)chloride hydrates, see: Shihada et al. (2004); Semenov et al. (2005); Genge et al. (2004); Barnes et al. (1980).

Synthesis and crystallization top

Tin(IV) chloride o­cta­hydrate was crystallized from an aqueous solution of 53.39 wt% SnCl4 at 263 K after 2 d. For preparing this solution, tin(IV)chloride penta­hydrate (Acros Organics, 98%) was used. The content of Cl- was analysed by titration with AgNO3. The crystals are stable in their saturated solution over a period of at least four weeks.

The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray diffraction analysis

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2.

Related literature top

For related literature, see: Barnes et al. (1980); Brune & Zeil (1962); Gajda et al., (2009) Genge et al. (2004); Loomis (1897); Meyerhoffer (1891); Semenov et al. (2005); Shihada et al. (2004).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular unit in tin(IV) chloride octahydrate [symmetry code: (i) -x, y, -z+1/2].

The coordination in the second coordination shell in tin(IV) chloride octahydrate [symmetry code: (i) -x, y, -z+1/2].

Formation of chains by water molecules O1 and O2 (bold). Dashed lines indicate hydrogen bonds.
Tin(IV) chloride octahydrate top
Crystal data top
[SnCl4(H2O)2]·6H2OF(000) = 792
Mr = 404.62Dx = 1.941 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.0224 (15) ÅCell parameters from 13366 reflections
b = 7.8530 (8) Åθ = 1.8–29.6°
c = 12.6766 (12) ŵ = 2.63 mm1
β = 119.739 (7)°T = 200 K
V = 1384.9 (2) Å3Plate, colourless
Z = 40.34 × 0.23 × 0.12 mm
Data collection top
Stoe IPDS 2T
diffractometer
1600 independent reflections
Radiation source: fine-focus sealed tube1451 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.030
rotation method scansθmax = 27.5°, θmin = 2.9°
Absorption correction: integration
(Coppens, 1970)
h = 2221
Tmin = 0.492, Tmax = 0.731k = 1010
13041 measured reflectionsl = 1717
Refinement top
Refinement on F212 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021All H-atom parameters refined
wR(F2) = 0.049 w = 1/[σ2(Fo2) + (0.0133P)2 + 4.9358P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max = 0.001
1600 reflectionsΔρmax = 1.01 e Å3
92 parametersΔρmin = 0.71 e Å3
Crystal data top
[SnCl4(H2O)2]·6H2OV = 1384.9 (2) Å3
Mr = 404.62Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.0224 (15) ŵ = 2.63 mm1
b = 7.8530 (8) ÅT = 200 K
c = 12.6766 (12) Å0.34 × 0.23 × 0.12 mm
β = 119.739 (7)°
Data collection top
Stoe IPDS 2T
diffractometer
1600 independent reflections
Absorption correction: integration
(Coppens, 1970)
1451 reflections with I > 2σ(I)
Tmin = 0.492, Tmax = 0.731Rint = 0.030
13041 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02112 restraints
wR(F2) = 0.049All H-atom parameters refined
S = 1.11Δρmax = 1.01 e Å3
1600 reflectionsΔρmin = 0.71 e Å3
92 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.86619 (3)0.25000.02527 (8)
Cl30.17022 (5)0.89264 (10)0.37662 (6)0.04076 (17)
O40.00709 (13)1.0623 (3)0.35862 (18)0.0342 (4)
Cl10.01591 (7)0.66227 (10)0.12053 (8)0.0504 (2)
O10.83339 (14)0.1224 (3)0.35849 (18)0.0341 (4)
O20.24917 (15)0.3119 (3)0.34936 (19)0.0377 (4)
O30.11311 (15)0.3211 (3)0.4228 (2)0.0380 (4)
H4A0.030 (2)1.146 (3)0.376 (3)0.057 (11)*
H4B0.0574 (14)1.086 (4)0.359 (3)0.044 (9)*
H3B0.085 (3)0.414 (3)0.414 (4)0.070 (13)*
H3A0.145 (3)0.326 (6)0.387 (4)0.082 (15)*
H1A0.837 (3)0.169 (5)0.420 (2)0.063 (12)*
H2A0.270 (4)0.405 (3)0.341 (5)0.100 (18)*
H2B0.291 (3)0.251 (5)0.404 (3)0.099 (18)*
H1B0.805 (4)0.190 (6)0.299 (4)0.14 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03433 (13)0.02255 (12)0.02383 (12)0.0000.01815 (10)0.000
Cl30.0320 (3)0.0591 (4)0.0315 (3)0.0162 (3)0.0161 (3)0.0064 (3)
O40.0290 (9)0.0348 (10)0.0440 (10)0.0046 (8)0.0220 (8)0.0141 (9)
Cl10.0809 (6)0.0363 (4)0.0615 (5)0.0147 (4)0.0563 (5)0.0188 (3)
O10.0356 (10)0.0410 (11)0.0311 (9)0.0046 (8)0.0206 (8)0.0013 (8)
O20.0387 (11)0.0412 (11)0.0372 (10)0.0055 (9)0.0218 (9)0.0020 (9)
O30.0369 (10)0.0334 (10)0.0508 (12)0.0016 (8)0.0273 (10)0.0054 (9)
Geometric parameters (Å, º) top
Sn1—O42.1064 (18)Sn1—Cl32.3906 (7)
Sn1—O4i2.1064 (18)Sn1—Cl12.3954 (7)
Sn1—Cl3i2.3906 (7)Sn1—Cl1i2.3954 (7)
O4—Sn1—O4i86.01 (12)Cl3i—Sn1—Cl194.12 (3)
O4—Sn1—Cl3i87.81 (6)Cl3—Sn1—Cl192.55 (3)
O4i—Sn1—Cl3i84.90 (5)O4—Sn1—Cl1i88.99 (6)
O4—Sn1—Cl384.90 (5)O4i—Sn1—Cl1i174.47 (6)
O4i—Sn1—Cl387.81 (6)Cl3i—Sn1—Cl1i92.55 (3)
Cl3i—Sn1—Cl3170.03 (4)Cl3—Sn1—Cl1i94.12 (3)
O4—Sn1—Cl1174.47 (6)Cl1—Sn1—Cl1i96.09 (4)
O4i—Sn1—Cl188.99 (6)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2ii0.84 (1)1.90 (2)2.729 (3)169 (6)
O2—H2B···O3iii0.84 (1)2.04 (2)2.825 (3)157 (5)
O2—H2A···O1iv0.84 (1)1.94 (2)2.762 (3)168 (5)
O1—H1A···Cl3v0.84 (1)2.68 (3)3.389 (2)143 (4)
O3—H3A···O20.84 (1)1.95 (2)2.763 (3)163 (4)
O3—H3B···Cl1i0.83 (1)2.43 (1)3.260 (2)173 (4)
O4—H4B···O1vi0.83 (1)1.77 (1)2.598 (3)176 (4)
O4—H4A···O3vii0.84 (1)1.80 (1)2.635 (3)176 (4)
Symmetry codes: (i) x, y, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+1/2, z; (v) x+1, y+1, z+1; (vi) x1, y+1, z; (vii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O2i0.840 (10)1.900 (16)2.729 (3)169 (6)
O2—H2B···O3ii0.835 (10)2.04 (2)2.825 (3)157 (5)
O2—H2A···O1iii0.837 (10)1.938 (15)2.762 (3)168 (5)
O1—H1A···Cl3iv0.836 (10)2.68 (3)3.389 (2)143 (4)
O3—H3A···O20.837 (10)1.952 (17)2.763 (3)163 (4)
O3—H3B···Cl1v0.834 (10)2.431 (11)3.260 (2)173 (4)
O4—H4B···O1vi0.833 (10)1.767 (11)2.598 (3)176 (4)
O4—H4A···O3vii0.837 (10)1.800 (11)2.635 (3)176 (4)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1; (iii) x1/2, y+1/2, z; (iv) x+1, y+1, z+1; (v) x, y, z+1/2; (vi) x1, y+1, z; (vii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[SnCl4(H2O)2]·6H2O
Mr404.62
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)16.0224 (15), 7.8530 (8), 12.6766 (12)
β (°) 119.739 (7)
V3)1384.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)2.63
Crystal size (mm)0.34 × 0.23 × 0.12
Data collection
DiffractometerStoe IPDS 2T
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Tmin, Tmax0.492, 0.731
No. of measured, independent and
observed [I > 2σ(I)] reflections
13041, 1600, 1451
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.049, 1.11
No. of reflections1600
No. of parameters92
No. of restraints12
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)1.01, 0.71

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBarnes, J. C., Sampson, H. A. & Weakley, T. J. R. (1980). J. Chem. Soc. Dalton Trans. pp. 949–953.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrune, H. A. & Zeil, W. (1962). Z. Phys. Chem. Neue Folge, 32, 384–400.  CrossRef CAS Google Scholar
First citationCoppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationGajda, T., Sipos, P. & Gamsjäger, H. (2009). Monatsh. Chem. 140, 1293–1303.  Web of Science CrossRef CAS Google Scholar
First citationGenge, A. R. J., Levason, W., Patel, R., Reid, G. & Webster, M. (2004). Acta Cryst. C60, i47–i49.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLoomis, E. H. (1897). Phys. Rev. (Series I), 4, 273–296.  Google Scholar
First citationMeyerhoffer, M. (1891). Bull. Soc. Chem. Paris, 3, 85–86.  Google Scholar
First citationSemenov, S. N., Maltsev, E. Y., Timokhin, I. G., Drozdov, A. A. & Troyanov, S. I. (2005). Mendeleev Commun. 15, 205–207.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShihada, A.-F., Abushamleh, A. S. & Weller, F. (2004). Z. Anorg. Allg. Chem. 630, 841–847.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds