research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of bis­­(propane-1,3-diaminium) hexa­fluorido­aluminate di­aqua­tetra­fluorido­aluminate tetra­hydrate

aUniversité de Carthage, Faculté des Sciences de Bizerte, UR11ES30, 7021 Jarzouna, Tunisia, and bDepartment of Chemistry, Girls College of Science, University of Dammam, PO Box 838, Dammam 31113, Saudi Arabia
*Correspondence e-mail: amor.benali@fsb.rnu.tn

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 30 August 2014; accepted 1 November 2014; online 8 November 2014)

The title compound, (C3H12N2)2[AlF6][AlF4(H2O)2]·4H2O, was obtained by a solvothermal method in ethanol as solvent and with aluminium hydroxide, HF and 1,3-di­amino­propane as educts. The asymmetric unit contains a quarter each of two crystallographically independent propane-1,3-di­ammonium dicat­ions, [AlF6]3− and [AlF4(H2O)2] anions and four water mol­ecules. The cations, anions and three of the independent water mol­ecules are situated on special positions mm, while the fourth water mol­ecule is disordered about a mirror plane. In the crystal, inter­molecular N—H⋯F and O—H⋯F hydrogen bonds link the cations and anions into a three-dimensional framework with the voids filled by water mol­ecules, which generate O—H⋯O hydrogen bonds and further consolidate the packing.

1. Chemical context

Hybrid organic–inorganic fluoride compounds are composed of both organic and inorganic moieties. The search for new compounds in this class of materials is still intense due to their applications in many domains such as gas storage, catalysis, separation, ion-exchange and biomedicine (Horcajada et al., 2012[Horcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232-1268.]; Stock & Biswas, 2012[Stock, N. & Biswas, S. (2012). Chem. Rev. 112, 933-969.]). Various hybrid materials containing fluorine organic ligands have been described in the literature (Ben Ali et al., 2007[Ben Ali, A., Trang Dang, M., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911-1917.]). The dimensionality of the metal fluoride entities are 0D (isolated polyanions) (Adil, Ben Ali et al., 2006[Adil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci. 8, 698-703.]; Adil, Leblanc & Maisonneuve, 2006[Adil, K., Leblanc, M. & Maisonneuve, V. (2006). J. Fluor. Chem. 127, 1349-1354.]; Fourquet et al., 1987[Fourquet, J. L., Plet, F., Calage, Y. & De Pape, R. (1987). J. Solid State Chem. 69, 76-80.]) , 1D (chains) or 2D (layers) (Adil et al., 2010[Adil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. 39, 5983-5993.]). The structural architecture of hybrid materials mainly depends on the metal and an organic part. However, other physical and physicochemical factors affect the resulting products such as the synthesis method (temperature, concentration, time of heating etc.) (Su et al., 2010[Su, Z., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2010). Cryst. Growth Des. 10, 3515-3521.]). This work is a continuation of an exploration of chemical systems including metal fluoride and amine, and the study of their structures.

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title compound contains aluminum atoms located in two crystallographically independent sites with different environments, [Al2F6] and [Al1F4(H2O)2], and two independent 1,3-propane di­amine (dap) dications (Fig. 1[link]). The Al—F distances in the two octa­hedra range from 1.768 (2) to 1.809 (3) Å while the Al1—OW1 distance is longer [1.944 (4) Å]. The [AlF6] octa­hedron is regular whereas [AlF4(H2O)2] exhibits a pronounced distortion due to the strong influence of the crystal field created by the heteroligands (F/H2O). The value of the calculated valences (3.08 for Al1 and 3.01 for Al2) of the individual Al3+ cations (Brese & O'Keeffe, 1991[Brese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192-197.]) is in good agreement with the theoretical value, whereas those for the F anions are equal to 0.5. These anions complete their valence by establishing strong hydrogen bonds.

[Figure 1]
Figure 1
A portion of the crystal structure of the title compound showing the atom labelling and 50% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) [1\over2] − x, [1\over2] − y, −1 − z; (ii) 1 − x, y, z; (iii) x, y, −z; (v) [1\over2] − x, [1\over2] − y, 1 + z; (vi) −x, y, z; (vii) x, −y, −1 − z; (viii) x, y, 1 + z.]

3. Supra­molecular features

Each [AlF4(H2O)2] octa­hedron is linked via N—H⋯F or O—H⋯F hydrogen bonds (Table 1[link]) to one type of the organic cations (Fig. 2[link]), with the formation of infinite chains parallel to the a axis. These chains are linked to each other by the AlF63− dications and form infinite (H2dap)[AlF4(H2O)2] layers parallel to the ac plane (Fig. 3[link]) . These layers are connected by the second organic cations and form a three-dimensional framework showing cavities, which are filled with the lattice water mol­ecules.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F2 0.89 1.79 2.679 (6) 177
N1—H1B⋯F5i 0.89 1.99 2.846 (5) 161
N1—H1C⋯F5ii 0.89 1.99 2.846 (5) 161
N2—H2A⋯F3 0.89 1.84 2.722 (6) 173
N2—H2B⋯F1iii 0.89 2.00 2.841 (5) 158
Ow1—H1⋯F5iv 0.83 (4) 1.74 (4) 2.569 (5) 178
Ow2—H2⋯F3 0.84 (4) 2.10 (4) 2.880 (5) 178
Ow4—H4⋯Ow5v 0.84 (4) 2.13 2.910 (5) 154
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-1]; (iii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1]; (iv) x, y, z+1; (v) x, y, -z.
[Figure 2]
Figure 2
The environment of the AlF4(H2O)2 octa­hedron. Dashed lines denote hydrogen bonds.
[Figure 3]
Figure 3
The crystal packing of the title compound, viewed approximately along [001].

4. Database survey

In the Cambridge Structural Database (Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) numerous Class I fluorido­aluminates with isolated (poly)anions or extended 1D inorganic chains, 2D inorganic layers or 3D networks are mentioned. Eight compounds with AlF63− anions exist (Grottel et al., 1992[Grottel, M., Kozak, A., Maluszyriska, H. & Pajak, Z. (1992). J. Phys. Condens. Matter, 4, 1837-1848.]; Rother et al., 1996[Rother, G., Worzala, H. & Bentrup, U. (1996). Z. Anorg. Allg. Chem. 622, 1991-1996.], 1998[Rother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New. Cryst. Struct. 213, 119-120.]; Touret et al., 2001[Touret, J., Bourdon, X., Leblanc, M., Retoux, R., Renaudin, J. & Maisonneuve, V. (2001). J. Fluor. Chem. 110, 133-138.]; Adil et al., 2009[Adil, K., Leblanc, M. & Maisonneuve, V. (2009). J. Fluor. Chem. 130, 1099-1105.]; Bentrup et al., 1996[Bentrup, U., Ahmadi, A., Kang, H.-C. & Massa, W. (1998). Z. Anorg. Allg. Chem. 624, 1465-1470.]) and seven compounds containing the AlF5(H2O)2− anion (Cadiau et al., 2008[Cadiau, A., Hemon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2008). Acta Cryst. E64, m523-m524.]; Petrosyants et al., 1997[Petrosyants, S. P., Malyarik, M. A., Ilyukhin, A. B. & Buslaev, Yu. A. (1997). Zh. Neorg. Khim. 42, 1551-1557.]; Schröder et al., 1993[Schröder, L., Frenzen, G., Massa, W. & Menz, D. H. (1993). Z. Anorg. Allg. Chem. 619, 1307-1314.]). However, to our knowledge, no fluorido­aluminate hybrid compounds containing both the AlF63− and AlF5(H2O)2− anions have been reported.

5. Synthesis and crystallization

The title compound was prepared from a starting mixture of AlF3 (0.5 g) in 40% HF (1.5 ml) and ethanol (5 ml). 1,3-Di­amino­propane (0.54 ml) was added and mild hydro­thermal conditions (463 K) were applied in a Teflon-lined autoclave (25 ml). The resulting product was washed with ethanol and dried in air giving colourless single crystals.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The H atoms of the NH3 and CH2 groups of the organic mol­ecule were fixed geometrically [N—H = 0.89 (1) and C—H = 0.97 (1) Å with Uiso(H) = 1.2Ueq(N,C)]. All H atoms of the water mol­ecules were located from a Fourier difference map. The O—H distances and H—O—H angles were fixed [O—H = 0.84 (1) and H⋯H = 1.34 (1) Å with Uiso(H) =1.5Ueq(O)]. The water mol­ecule OW5 is disordered over two positions with the occupanies fixed to 0.5.

Table 2
Experimental details

Crystal data
Chemical formula (C3H12N2)2[AlF6][AlF4(H2O)2]·4H2O
Mr 504.35
Crystal system, space group Orthorhombic, Cmmm
Temperature (K) 293
a, b, c (Å) 12.975 (5), 25.115 (9), 6.452 (9)
V3) 2103 (3)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.26
Crystal size (mm) 0.24 × 0.12 × 0.05
 
Data collection
Diffractometer Siemens AED2
No. of measured, independent and observed [I > 2σ(I)] reflections 1371, 1371, 939
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.12
No. of reflections 1371
No. of parameters 105
No. of restraints 10
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.46, −0.48
Computer programs: STADI4 and X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Hybrid organic–inorganic fluoride compounds are composed of both organic and inorganic moieties.The search for new compounds in this class of materials is still intense due to their applications in many domains such as gas storage, catalysis, separation, ion-exchange and biomedicine (Horcajada et al., 2012; Stock & Biswas, 2012). Various hybrid materials containing fluorine organic ligands have been described in the literature (Ben Ali et al., 2007) .The dimensionality of the metal fluoride entities are 0D (isolated polyanions) (Adil, Ben Ali et al., 2006; Adil, Leblanc & Maisonneuve, 2006; Fourquet et al., 1987 ), 1D (chains) or 2D (layers) (Adil et al., 2010). The structural architecture of hybrid materials mainly depends on the metal and an organic part. However, other physical and physicochemical factors affect the resulting products such as the synthesis method (temperature, concentration, time of heating etc.) (Su et al., 2010). This work is a continuation of an exploration of chemical systems including metal fluoride and amine, and the study of their structures.

Structural commentary top

The asymmetric unit of the title compound contains aluminum atoms located in two crystallographically independent sites with different environments, Al2F6 and Al1F4(H2O)2, and two independent 1,3-propane di­amine (dap) dications (Fig. 1). The Al—F distances in the two o­cta­hedra range from 1.768 (2) to 1.809 (3) Å while Al1—OW1 distance is longer [1.944 (4) Å]. The AlF6 o­cta­hedron is regular whereas Al1F4(H2O)2 exhibits a pronounced distortion due to the strong influence of the crystal field created by the heteroligands (F-/H2O). The value of the calculated valence of Al3+ (Brese & O'Keeffe, 1991 ) is in good agreement with the theoretical value, whereas those for the F- anions are equal to 0.5. These anions complete their valence by establishing strong hydrogen bonds.

Supra­molecular features top

Each AlF4(H2O)2 o­cta­hedron is linked via N—H···F or O—H···F hydrogen bonds to one type of the organic cations (Fig. 2), with the formation of infinite chains parallel to the a axis. These chains are linked to each other by the AlF63- dications and form infinite (H2dap)[AlF4(H2O)2] layers parallel to the ac plane (Fig. 3 ). These layers are connected by the second organic cations and form a three-dimensional framework showing cavities filled with the crystalline water molecules.

Database survey top

In the Cambridge Structural Database (Version 5.35; Groom & Allen, 2014) numerous Class I fluoridoaluminates with isolated (poly)anions or extended 1D inorganic chains, 2D inorganic layers or 3D networks are mentioned. Eight compounds with AlF63- anions exist (Grottel et al. 1992; Rother et al. 1996, 1998; Touret et al. 2001; Adil et al. 2009; Bentrup et al. 1996) and seven compounds containing the AlF5(H2O)2- anion (Cadiau et al. 2008; Petrosyants et al. 1997; Schroder et al. 1993). However, to our knowledge, no fluoridoaluminate hybrid compounds containing both AlF63- and AlF5(H2O)2- anions have been reported.

Synthesis and crystallization top

The title compound was prepared from a starting mixture of AlF3 (0.5 g) in 40% HF (1.5 ml) and ethanol (5 ml). 1,3-Di­amino­propane (0.54 ml) was added and mild hydro­thermal conditions (463 K) were applied in a Teflon-lined autoclave (25 ml). The resulting product was washed with ethanol and dried in air giving colourless single crystals.

Refinement top

The H atoms of the NH3 and CH2 groups of the organic molecule were fixed geometrically using AFIX 33 and AFIX 23 commands, respectively. All H atoms of the water molecule were located from a Fourier difference map. The O—H distances and H—O—H angles were fixed using DFIX and DANG options. The water molecule OW5 is disordered over two positions with the occupanies fixed to 0.5.

Related literature top

For related literature, see: Adil et al. (2009, 2010); Adil, Ben Ali, Leblanc & Maisonneuve (2006); Adil, Leblanc & Maisonneuve (2006); Ben Ali, Dang, Grenèche, Hémon-Ribaud, Leblanc & Maisonneuve (2007); Bentrup et al. (1996); Brese & O'Keeffe (1991); Cadiau et al. (2008); Fourquet et al. (1987); Groom & Allen (2014); Grottel et al. (1992); Horcajada et al. (2012); Petrosyants et al. (1997); Rother et al. (1996, 1998); Schroder et al. (1993); Stock & Biswas (2012); Su et al. (2010); Touret et al. (2001).

Computing details top

Data collection: STADI4 (Stoe & Cie, 2002); cell refinement: STADI4 (Stoe & Cie, 2002); data reduction: X-RED (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
A portion of the crystal structure of the title compound showing the atom labelling and 50% probability displacement ellipsoids. Dashed lines denote hydrogen bonds. [Symmetry codes: (i) 1/2-x, 1/2-y, -1-z; (ii) 1-x, y, z; (iii) x, y, -z; (v) 1/2-x, 1/2-y, 1+z; (vi) -x, y, z; (vii) x, -y, -1-z; (viii) x, y, 1+z.]

The environment of the AlF4(H2O)2 octahedron. Dashed lines denote hydrogen bonds.

The crystal packing of the title compound, viewed approximately along [001].
Bis(propane-1,3-diaminium) hexafluoridoaluminate diaquatetrafluoridoaluminate tetrahydrate top
Crystal data top
(C3H12N2)2[AlF6][AlF4(H2O)2]·4H2OF(000) = 1056
Mr = 504.35Dx = 1.593 Mg m3
Orthorhombic, CmmmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2 2Cell parameters from 32 reflections
a = 12.975 (5) Åθ = 2–27.5°
b = 25.115 (9) ŵ = 0.26 mm1
c = 6.452 (9) ÅT = 293 K
V = 2103 (3) Å3Platelets, colourless
Z = 40.24 × 0.12 × 0.05 mm
Data collection top
Siemens AED2
diffractometer
Rint = 0.0000
Radiation source: fine-focus sealed tubeθmax = 27.5°, θmin = 1.6°
Graphite monochromatorh = 016
2θ/ω scank = 032
1371 measured reflectionsl = 08
1371 independent reflections3 standard reflections every 120 min
939 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.148 w = 1/[σ2(Fo2) + (0.0452P)2 + 2.9098P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
1371 reflectionsΔρmax = 0.46 e Å3
105 parametersΔρmin = 0.48 e Å3
10 restraintsExtinction correction: WinGX (Farrugia, 2012), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0022 (7)
Crystal data top
(C3H12N2)2[AlF6][AlF4(H2O)2]·4H2OV = 2103 (3) Å3
Mr = 504.35Z = 4
Orthorhombic, CmmmMo Kα radiation
a = 12.975 (5) ŵ = 0.26 mm1
b = 25.115 (9) ÅT = 293 K
c = 6.452 (9) Å0.24 × 0.12 × 0.05 mm
Data collection top
Siemens AED2
diffractometer
Rint = 0.0000
1371 measured reflections3 standard reflections every 120 min
1371 independent reflections intensity decay: 4%
939 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.04710 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.46 e Å3
1371 reflectionsΔρmin = 0.48 e Å3
105 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Al10.00000.37606 (7)0.00000.0234 (4)
Al20.25000.25000.50000.0245 (4)
F10.00000.42435 (10)0.2015 (4)0.0382 (6)
F20.13615 (17)0.37342 (11)0.00000.0374 (6)
F30.2107 (2)0.18091 (10)0.50000.0493 (8)
F50.15743 (14)0.26362 (8)0.7007 (3)0.0447 (5)
N10.3125 (2)0.31814 (15)0.00000.0325 (8)
H1A0.25510.33750.00000.049*
H1B0.31410.29770.11260.049*0.50
H1C0.31410.29770.11260.049*0.50
N20.3447 (3)0.09755 (14)0.50000.0331 (8)
H2A0.30550.12660.50000.050*
H2B0.38430.09740.61260.050*0.50
H2C0.38430.09740.38740.050*0.50
C10.4029 (3)0.35390 (18)0.00000.0375 (11)
H1D0.40140.37650.12190.045*0.50
H1E0.40140.37650.12190.045*0.50
C20.50000.3205 (2)0.00000.0336 (14)
H2D0.50000.29770.12150.040*0.50
H2E0.50000.29770.12150.040*0.50
C30.2784 (3)0.04975 (18)0.50000.0415 (11)
H3A0.23460.05010.62170.050*0.50
H3B0.23460.05010.37830.050*0.50
C40.3432 (5)0.00000.50000.0427 (16)
H4A0.38720.00000.62150.051*0.50
H4B0.38720.00000.37850.051*0.50
OW10.00000.32173 (12)0.2146 (6)0.0400 (8)
OW20.00000.1449 (3)0.50000.080 (2)
OW30.3272 (7)0.00000.00000.104 (3)
OW40.3732 (11)0.50000.00000.200 (6)
OW50.50000.5374 (6)0.342 (2)0.110 (4)0.50
H10.0517 (4)0.3034 (11)0.241 (9)0.165*
H20.0517 (4)0.1650 (8)0.50000.165*
H30.3669 (15)0.0267 (2)0.00000.165*
H40.4125 (17)0.50000.1039 (8)0.165*
H50.5516 (4)0.526 (5)0.408 (12)0.165*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Al10.0187 (8)0.0233 (8)0.0282 (9)0.0000.0000.000
Al20.0230 (8)0.0257 (8)0.0248 (8)0.0074 (7)0.0000.000
F10.0469 (14)0.0332 (13)0.0346 (13)0.0000.0000.0076 (11)
F20.0190 (11)0.0373 (14)0.0560 (16)0.0036 (10)0.0000.000
F30.0445 (16)0.0282 (14)0.075 (2)0.0027 (12)0.0000.000
F50.0370 (9)0.0582 (13)0.0388 (10)0.0178 (8)0.0120 (8)0.0007 (9)
N10.0211 (16)0.043 (2)0.0338 (18)0.0014 (15)0.0000.000
N20.0342 (19)0.0262 (17)0.039 (2)0.0023 (15)0.0000.000
C10.027 (2)0.030 (2)0.056 (3)0.0028 (17)0.0000.000
C20.020 (3)0.029 (3)0.053 (4)0.0000.0000.000
C30.027 (2)0.033 (2)0.064 (3)0.0040 (18)0.0000.000
C40.028 (3)0.029 (3)0.071 (5)0.0000.0000.000
OW10.0266 (14)0.0385 (16)0.055 (2)0.0000.0000.0203 (16)
OW20.065 (4)0.104 (6)0.070 (4)0.0000.0000.000
OW30.121 (7)0.090 (6)0.102 (6)0.0000.0000.000
OW40.209 (14)0.204 (17)0.188 (13)0.0000.0000.000
OW50.101 (8)0.110 (9)0.119 (10)0.0000.0000.032 (8)
Geometric parameters (Å, º) top
Al1—F2i1.768 (2)N2—H2C0.8900
Al1—F21.768 (2)C1—C21.514 (5)
Al1—F11.778 (3)C1—H1D0.9700
Al1—F1ii1.778 (3)C1—H1E0.9700
Al1—OW11.944 (4)C2—C1vi1.514 (5)
Al1—OW1ii1.944 (4)C2—H2D0.9700
Al2—F5iii1.799 (2)C2—H2E0.9700
Al2—F51.799 (2)C3—C41.505 (5)
Al2—F5iv1.799 (2)C3—H3A0.9700
Al2—F5v1.799 (2)C3—H3B0.9700
Al2—F31.809 (3)C4—C3vii1.505 (5)
Al2—F3iii1.809 (3)C4—H4A0.9700
N1—C11.476 (6)C4—H4B0.9700
N1—H1A0.8900OW1—H10.831 (10)
N1—H1B0.8900OW2—H20.840 (10)
N1—H1C0.8900OW3—H30.846 (10)
N2—C31.477 (6)OW4—H40.842 (10)
N2—H2A0.8900OW5—H50.840 (10)
N2—H2B0.8900
F2i—Al1—F2175.7 (2)H1A—N1—H1C109.5
F2i—Al1—F191.47 (7)H1B—N1—H1C109.5
F2—Al1—F191.47 (7)C3—N2—H2A109.5
F2i—Al1—F1ii91.47 (7)C3—N2—H2B109.5
F2—Al1—F1ii91.47 (7)H2A—N2—H2B109.5
F1—Al1—F1ii94.0 (2)C3—N2—H2C109.5
F2i—Al1—OW188.49 (7)H2A—N2—H2C109.5
F2—Al1—OW188.49 (7)H2B—N2—H2C109.5
F1—Al1—OW187.59 (16)N1—C1—C2108.9 (4)
F1ii—Al1—OW1178.44 (16)N1—C1—H1D109.9
F2i—Al1—OW1ii88.49 (7)C2—C1—H1D109.9
F2—Al1—OW1ii88.49 (7)N1—C1—H1E109.9
F1—Al1—OW1ii178.44 (16)C2—C1—H1E109.9
F1ii—Al1—OW1ii87.60 (16)H1D—C1—H1E108.3
OW1—Al1—OW1ii90.8 (2)C1vi—C2—C1112.7 (5)
F5iii—Al2—F5180.00 (14)C1vi—C2—H2D109.1
F5iii—Al2—F5iv87.92 (14)C1—C2—H2D109.1
F5—Al2—F5iv92.08 (14)C1vi—C2—H2E109.1
F5iii—Al2—F5v92.08 (14)C1—C2—H2E109.1
F5—Al2—F5v87.92 (14)H2D—C2—H2E107.8
F5iv—Al2—F5v180.00 (13)N2—C3—C4110.5 (4)
F5iii—Al2—F390.34 (9)N2—C3—H3A109.6
F5—Al2—F389.66 (9)C4—C3—H3A109.6
F5iv—Al2—F389.66 (9)N2—C3—H3B109.6
F5v—Al2—F390.34 (9)C4—C3—H3B109.6
F5iii—Al2—F3iii89.66 (9)H3A—C3—H3B108.1
F5—Al2—F3iii90.34 (9)C3vii—C4—C3112.2 (5)
F5iv—Al2—F3iii90.34 (9)C3vii—C4—H4A109.2
F5v—Al2—F3iii89.66 (9)C3—C4—H4A109.2
F3—Al2—F3iii180.0C3vii—C4—H4B109.2
C1—N1—H1A109.5C3—C4—H4B109.2
C1—N1—H1B109.5H4A—C4—H4B107.9
H1A—N1—H1B109.5Al1—OW1—H1122 (2)
C1—N1—H1C109.5
Symmetry codes: (i) x, y, z; (ii) x, y, z; (iii) x+1/2, y+1/2, z1; (iv) x, y, z1; (v) x+1/2, y+1/2, z; (vi) x+1, y, z; (vii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F20.891.792.679 (6)177
N1—H1B···F5viii0.891.992.846 (5)161
N1—H1C···F5iii0.891.992.846 (5)161
N2—H2A···F30.891.842.722 (6)173
N2—H2B···F1ix0.892.002.841 (5)158
Ow1—H1···F5x0.83 (4)1.74 (4)2.569 (5)178
Ow2—H2···F30.84 (4)2.10 (4)2.880 (5)178
Ow4—H4···Ow5ii0.84 (4)2.132.910 (5)154
Symmetry codes: (ii) x, y, z; (iii) x+1/2, y+1/2, z1; (viii) x+1/2, y+1/2, z+1; (ix) x+1/2, y+1/2, z1; (x) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F20.891.792.679 (6)177
N1—H1B···F5i0.891.992.846 (5)161
N1—H1C···F5ii0.891.992.846 (5)161
N2—H2A···F30.891.842.722 (6)173
N2—H2B···F1iii0.892.002.841 (5)158
Ow1—H1···F5iv0.83 (4)1.74 (4)2.569 (5)178
Ow2—H2···F30.84 (4)2.10 (4)2.880 (5)178
Ow4—H4···Ow5v0.84 (4)2.1312.910 (5)154
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z1; (iii) x+1/2, y+1/2, z1; (iv) x, y, z+1; (v) x, y, z.

Experimental details

Crystal data
Chemical formula(C3H12N2)2[AlF6][AlF4(H2O)2]·4H2O
Mr504.35
Crystal system, space groupOrthorhombic, Cmmm
Temperature (K)293
a, b, c (Å)12.975 (5), 25.115 (9), 6.452 (9)
V3)2103 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.26
Crystal size (mm)0.24 × 0.12 × 0.05
Data collection
DiffractometerSiemens AED2
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
1371, 1371, 939
Rint0.0000
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.148, 1.12
No. of reflections1371
No. of parameters105
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.48

Computer programs: STADI4 (Stoe & Cie, 2002), STADI4 (Stoe & Cie, 2002), X-RED (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

The authors are indebted to Dr Vincent Maisonneuve (University of Le Mans) for the data collection

References

First citationAdil, K., Ben Ali, A., Leblanc, M. & Maisonneuve, V. (2006). Solid State Sci. 8, 698–703.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdil, K., Leblanc, M. & Maisonneuve, V. (2006). J. Fluor. Chem. 127, 1349–1354.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdil, K., Leblanc, M. & Maisonneuve, V. (2009). J. Fluor. Chem. 130, 1099–1105.  Web of Science CSD CrossRef CAS Google Scholar
First citationAdil, K., Leblanc, M., Maisonneuve, V. & Lightfoot, P. (2010). Dalton Trans. 39, 5983–5993.  Web of Science CrossRef CAS PubMed Google Scholar
First citationBen Ali, A., Trang Dang, M., Grenèche, J.-M., Hémon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2007). J. Solid State Chem. 180, 1911–1917.  Web of Science CSD CrossRef CAS Google Scholar
First citationBentrup, U., Ahmadi, A., Kang, H.-C. & Massa, W. (1998). Z. Anorg. Allg. Chem. 624, 1465–1470.  CrossRef CAS Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrese, N. E. & O'Keeffe, M. (1991). Acta Cryst. B47, 192–197.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCadiau, A., Hemon-Ribaud, A., Leblanc, M. & Maisonneuve, V. (2008). Acta Cryst. E64, m523–m524.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFourquet, J. L., Plet, F., Calage, Y. & De Pape, R. (1987). J. Solid State Chem. 69, 76–80.  CSD CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationGrottel, M., Kozak, A., Maluszyriska, H. & Pajak, Z. (1992). J. Phys. Condens. Matter, 4, 1837–1848.  CSD CrossRef CAS Web of Science Google Scholar
First citationHorcajada, P., Gref, R., Baati, T., Allan, P. K., Maurin, G., Couvreur, P., Férey, G., Morris, R. E. & Serre, C. (2012). Chem. Rev. 112, 1232–1268.  Web of Science CrossRef CAS PubMed Google Scholar
First citationPetrosyants, S. P., Malyarik, M. A., Ilyukhin, A. B. & Buslaev, Yu. A. (1997). Zh. Neorg. Khim. 42, 1551–1557.  Google Scholar
First citationRother, G., Worzala, H. & Bentrup, U. (1996). Z. Anorg. Allg. Chem. 622, 1991–1996.  CSD CrossRef CAS Web of Science Google Scholar
First citationRother, G., Worzala, H. & Bentrup, U. (1998). Z. Kristallogr. New. Cryst. Struct. 213, 119–120.  CAS Google Scholar
First citationSchröder, L., Frenzen, G., Massa, W. & Menz, D. H. (1993). Z. Anorg. Allg. Chem. 619, 1307–1314.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N. & Biswas, S. (2012). Chem. Rev. 112, 933–969.  Web of Science CrossRef CAS PubMed Google Scholar
First citationStoe & Cie (2002). STADI4 and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationSu, Z., Fan, J., Okamura, T., Sun, W.-Y. & Ueyama, N. (2010). Cryst. Growth Des. 10, 3515–3521.  Web of Science CSD CrossRef CAS Google Scholar
First citationTouret, J., Bourdon, X., Leblanc, M., Retoux, R., Renaudin, J. & Maisonneuve, V. (2001). J. Fluor. Chem. 110, 133–138.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds