organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1288-o1289

Crystal structure of 2-(di­phenyl­phos­phanyl)phenyl 4-(hy­dr­oxy­meth­yl)benzoate

aInstitut für Radiopharmazeutische Krebsforschung, Bautzner Landstr. 400, D-01328 Dresden, Germany, and bUniversität Rostock, Institut für Chemie, Anorganische Festkörperchemie, Albert-Einstein-Str. 3a, D-18059 Rostock, Germany
*Correspondence e-mail: c.mamat@hzdr.de

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 14 October 2014; accepted 10 November 2014; online 26 November 2014)

The title compound, C26H21O3P, was obtained as by-product due to the hydrolysis of the desired tosyl­ated compound. The dihedral angles between the three aromatic rings attached to the P atom lie in the range 78.1 (1)–87.6 (1)°. The hy­droxy­methyl group is disordered between two conformations in a 0.719 (9):0.281 (9) ratio. The hy­droxy H atom is not involved in inter­molecular inter­actions, while the hy­droxy O atom serves as a donor for weak C—H⋯O hydrogen bonds, which link the mol­ecules into chains propagating in [0-11].

1. Related literature

For a general introduction to the chemistry and radiochemistry of benzoate functionalized 2-(di­phenyl­phosphanyl)phenol derivatives, see: Mamat et al. (2009[Mamat, C., Flemming, A., Köckerling, M., Steinbach, J. & Wuest, F. R. (2009). Synthesis, pp. 3311-3321.]); Pretze et al. (2010[Pretze, M., Wuest, F., Peppel, T., Köckerling, M. & Mamat, C. (2010). Tetrahedron Lett. 51, 6410-6414.]). For applications of chloro­methyl and hy­droxy­methyl benzoates, see: Mamat et al. (2011[Mamat, C., Franke, M., Peppel, T., Köckerling, M. & Steinbach, J. (2011). Tetrahedron, 67, 4521-4529.]); Wodtke et al. (2015[Wodtke, R., König, J., Pigorsch, A., Köckerling, M. & Mamat, C. (2015). Dyes Pigm. 113, 263-273.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C26H21O3P

  • Mr = 412.40

  • Triclinic, [P \overline 1]

  • a = 9.8197 (3) Å

  • b = 10.6503 (3) Å

  • c = 11.6744 (3) Å

  • α = 74.245 (1)°

  • β = 80.428 (1)°

  • γ = 66.493 (1)°

  • V = 1075.23 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 296 K

  • 0.41 × 0.39 × 0.31 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.954

  • 40695 measured reflections

  • 12072 independent reflections

  • 7599 reflections with I > 2σ(I)

  • Rint = 0.019

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.176

  • S = 1.02

  • 12072 reflections

  • 292 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O3Ai 0.93 2.52 3.143 (5) 125
C18—H18A⋯O3Bi 0.93 2.62 3.408 (9) 143
Symmetry code: (i) x, y-1, z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Benzoate functionalized 2-(diphenylphosphano)phenol derivatives are important starting materials for various labeling purposes using the traceless Staudinger Ligation (Mamat et al., 2009). 4-(Halomethyl) and 4-(hydroxymethyl)benzoates were developed, especially, for the insertion of fluorescence markers (Wodtke et al., 2015) or for the introduction of radiolabels such as fluorine-18 (Mamat et al., 2011). For the later purpose, good leaving groups were required. The title compound was obtained as by-product after the tosylation step during the preparation of the tosylated title compound which was further used as precursor for radiofluorinations.

Related literature top

For a general introduction to the chemistry and radiochemistry of benzoate functionalized 2-(diphenylphosphano)phenol derivatives, see: Mamat et al. (2009); Pretze et al. (2010). For applications of chloromethyl and hydroxymethyl benzoates, see: Mamat et al. (2011); Wodtke et al. (2015).

Experimental top

2-(Diphenylphosphano)phenyl-4-(iodomethyl)benzoate was dissolved in acetonitrile and treated with AgOTs in the dark. After 16 h, the precipitate was filtered and the residue was purified by column chromatography after removal of the solvent. The title compound was obtained as by-product due to the hydrolysis of the desired tosylated compound during the purification step.

Colorless crystals of the title compound were obtained by crystallization from ethyl acetate/petroleum ether after chromatographic separation.

Refinement top

All hydrogen atoms were placed on geometrically calculated positions [C—H 0.93–0.97 Å; O—H 0.82 Å], and refined using a riding model, with Uiso(H) = 1.2 – 1.5 Ueq of the parent atom.

The hydroxymethyl group disordered between two orientations was treated using a split model with the occupancies refined to 0.719 (9)/0.281 (9).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014/1 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of the title compound, with the atom labels and 50% probability displacement ellipsoids. Only the major component of the disordered hydroxymethyl group is shown.

Fig. 2. A portion of the crystal packing viewed approximately down the a axis. H atoms have been omitted for clarity.
2-(Diphenylphosphanyl)phenyl 4-(hydroxymethyl)benzoate top
Crystal data top
C26H21O3PF(000) = 432
Mr = 412.40Dx = 1.274 Mg m3
Triclinic, P1Melting point: 437 K
a = 9.8197 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6503 (3) ÅCell parameters from 9899 reflections
c = 11.6744 (3) Åθ = 2.7–35.0°
α = 74.245 (1)°µ = 0.15 mm1
β = 80.428 (1)°T = 296 K
γ = 66.493 (1)°Block, colourless
V = 1075.23 (5) Å30.41 × 0.39 × 0.31 mm
Z = 2
Data collection top
Bruker APEXII CCD
diffractometer
12072 independent reflections
Radiation source: fine-focus sealed tube7599 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 38.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 1717
Tmin = 0.940, Tmax = 0.954k = 1818
40695 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0924P)2 + 0.0784P]
where P = (Fo2 + 2Fc2)/3
12072 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C26H21O3Pγ = 66.493 (1)°
Mr = 412.40V = 1075.23 (5) Å3
Triclinic, P1Z = 2
a = 9.8197 (3) ÅMo Kα radiation
b = 10.6503 (3) ŵ = 0.15 mm1
c = 11.6744 (3) ÅT = 296 K
α = 74.245 (1)°0.41 × 0.39 × 0.31 mm
β = 80.428 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
12072 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
7599 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.954Rint = 0.019
40695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.02Δρmax = 0.43 e Å3
12072 reflectionsΔρmin = 0.20 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.84403 (3)0.11854 (2)0.24387 (2)0.04106 (7)
C10.75048 (12)0.12573 (10)0.11847 (8)0.0442 (2)
C20.82426 (17)0.14309 (16)0.00583 (11)0.0667 (3)
H2A0.91840.14690.00180.080*
C30.7585 (2)0.1547 (2)0.09483 (13)0.0935 (6)
H3A0.80840.16630.16960.112*
C40.6202 (2)0.1492 (2)0.08396 (16)0.0973 (7)
H4A0.57660.15640.15150.117*
C50.54466 (18)0.13304 (19)0.02639 (15)0.0779 (5)
H5A0.45030.12990.03280.094*
C60.60923 (13)0.12146 (14)0.12780 (11)0.0553 (3)
H6A0.55800.11080.20210.066*
C70.92219 (10)0.06956 (9)0.31351 (8)0.03940 (17)
C80.87987 (13)0.17150 (11)0.29290 (11)0.0512 (2)
H8A0.80290.14460.24380.061*
C90.95166 (15)0.31296 (12)0.34509 (12)0.0571 (3)
H9A0.92230.38010.33110.069*
C101.06669 (14)0.35384 (12)0.41781 (11)0.0541 (2)
H10A1.11500.44850.45210.065*
C111.10998 (14)0.25441 (12)0.43962 (10)0.0525 (2)
H11A1.18630.28200.48960.063*
C121.03918 (12)0.11301 (11)0.38674 (9)0.0459 (2)
H12A1.07010.04660.40030.055*
C130.68656 (10)0.18502 (9)0.34901 (8)0.03825 (16)
C140.60240 (11)0.32942 (10)0.32357 (8)0.03978 (17)
C150.48966 (13)0.39328 (12)0.40090 (11)0.0517 (2)
H15A0.43600.48970.38130.062*
C160.45770 (15)0.31154 (15)0.50816 (11)0.0601 (3)
H16A0.38270.35310.56160.072*
C170.53712 (15)0.16834 (15)0.53568 (11)0.0597 (3)
H17A0.51440.11370.60730.072*
C180.65102 (13)0.10505 (11)0.45706 (9)0.0482 (2)
H18A0.70390.00850.47680.058*
O10.62903 (8)0.40814 (7)0.21064 (6)0.04425 (15)
C190.71938 (11)0.47982 (10)0.20030 (9)0.04134 (18)
O20.76590 (12)0.48959 (11)0.28545 (8)0.0627 (2)
C200.75123 (11)0.54141 (9)0.07365 (8)0.04067 (17)
C210.82940 (13)0.63110 (12)0.04775 (11)0.0508 (2)
H21A0.86080.65090.10930.061*
C220.86029 (14)0.69063 (14)0.06974 (12)0.0574 (3)
H22A0.91170.75110.08670.069*
C230.81488 (13)0.66056 (13)0.16261 (10)0.0543 (2)
C240.73914 (15)0.56961 (14)0.13621 (10)0.0553 (3)
H24A0.70970.54830.19800.066*
C250.70666 (13)0.51005 (11)0.01914 (9)0.0477 (2)
H25A0.65540.44950.00250.057*
C26A0.8460 (5)0.7261 (4)0.2899 (3)0.0678 (9)0.719 (9)
H26A0.94790.72150.30260.081*0.719 (9)
H26B0.83200.67650.34270.081*0.719 (9)
O3A0.7490 (5)0.8636 (4)0.3130 (3)0.126 (2)0.719 (9)
H3B0.72610.89190.25110.189*0.719 (9)
C26B0.840 (2)0.751 (3)0.2877 (14)0.141 (8)0.281 (9)
H26C0.84700.83640.27860.170*0.281 (9)
H26D0.93350.69900.32630.170*0.281 (9)
O3B0.7332 (11)0.7830 (17)0.3523 (7)0.132 (5)0.281 (9)
H3C0.75580.72590.39400.198*0.281 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.04208 (13)0.03810 (12)0.04163 (12)0.01697 (9)0.00118 (9)0.00612 (9)
C10.0481 (5)0.0389 (4)0.0357 (4)0.0074 (3)0.0001 (3)0.0079 (3)
C20.0682 (8)0.0736 (8)0.0416 (5)0.0141 (6)0.0117 (5)0.0146 (5)
C30.1029 (13)0.1108 (14)0.0398 (6)0.0092 (11)0.0030 (7)0.0262 (8)
C40.0991 (13)0.1105 (14)0.0591 (8)0.0073 (11)0.0291 (8)0.0398 (9)
C50.0613 (7)0.0883 (10)0.0766 (9)0.0000 (7)0.0249 (7)0.0375 (8)
C60.0486 (5)0.0615 (6)0.0498 (5)0.0094 (5)0.0064 (4)0.0187 (5)
C70.0392 (4)0.0384 (4)0.0395 (4)0.0136 (3)0.0019 (3)0.0088 (3)
C80.0527 (5)0.0437 (5)0.0597 (6)0.0194 (4)0.0186 (5)0.0047 (4)
C90.0675 (7)0.0415 (5)0.0664 (7)0.0238 (5)0.0177 (6)0.0052 (4)
C100.0591 (6)0.0421 (5)0.0527 (6)0.0129 (4)0.0110 (5)0.0021 (4)
C110.0551 (6)0.0546 (6)0.0439 (5)0.0159 (5)0.0145 (4)0.0051 (4)
C120.0523 (5)0.0484 (5)0.0404 (4)0.0188 (4)0.0078 (4)0.0125 (4)
C130.0449 (4)0.0381 (4)0.0344 (3)0.0188 (3)0.0009 (3)0.0081 (3)
C140.0463 (4)0.0383 (4)0.0375 (4)0.0177 (3)0.0045 (3)0.0089 (3)
C150.0520 (5)0.0481 (5)0.0541 (6)0.0131 (4)0.0014 (4)0.0199 (4)
C160.0589 (6)0.0716 (8)0.0518 (6)0.0237 (6)0.0120 (5)0.0274 (6)
C170.0692 (7)0.0698 (7)0.0421 (5)0.0342 (6)0.0117 (5)0.0121 (5)
C180.0588 (6)0.0457 (5)0.0397 (4)0.0242 (4)0.0025 (4)0.0050 (4)
O10.0553 (4)0.0405 (3)0.0401 (3)0.0223 (3)0.0096 (3)0.0036 (2)
C190.0464 (4)0.0369 (4)0.0414 (4)0.0154 (3)0.0063 (3)0.0081 (3)
O20.0853 (6)0.0788 (6)0.0444 (4)0.0514 (5)0.0092 (4)0.0111 (4)
C200.0429 (4)0.0364 (4)0.0407 (4)0.0136 (3)0.0069 (3)0.0050 (3)
C210.0548 (6)0.0529 (5)0.0501 (5)0.0273 (5)0.0088 (4)0.0057 (4)
C220.0560 (6)0.0610 (7)0.0574 (6)0.0317 (5)0.0044 (5)0.0010 (5)
C230.0505 (5)0.0569 (6)0.0452 (5)0.0173 (5)0.0019 (4)0.0005 (4)
C240.0649 (7)0.0610 (6)0.0405 (5)0.0248 (5)0.0080 (4)0.0074 (4)
C250.0570 (6)0.0466 (5)0.0428 (5)0.0229 (4)0.0076 (4)0.0072 (4)
C26A0.075 (2)0.0728 (15)0.0438 (12)0.0333 (13)0.0023 (11)0.0108 (10)
O3A0.141 (3)0.0907 (19)0.0719 (14)0.0052 (16)0.0068 (16)0.0415 (13)
C26B0.086 (9)0.26 (2)0.086 (8)0.061 (11)0.008 (6)0.061 (10)
O3B0.136 (5)0.201 (11)0.070 (4)0.120 (6)0.056 (4)0.069 (5)
Geometric parameters (Å, º) top
P1—C11.823 (1)C15—H15A0.9300
P1—C71.8330 (9)C16—C171.3805 (19)
P1—C131.8347 (9)C16—H16A0.9300
C1—C61.391 (2)C17—C181.3931 (16)
C1—C21.3950 (15)C17—H17A0.9300
C2—C31.387 (2)C18—H18A0.9300
C2—H2A0.9300O1—C191.356 (1)
C3—C41.366 (3)C19—O21.205 (1)
C3—H3A0.9300C19—C201.4824 (13)
C4—C51.380 (3)C20—C211.3943 (14)
C4—H4A0.9300C20—C251.3955 (14)
C5—C61.3881 (18)C21—C221.3850 (17)
C5—H5A0.9300C21—H21A0.9300
C6—H6A0.9300C22—C231.3930 (18)
C7—C81.3944 (14)C22—H22A0.9300
C7—C121.3973 (13)C23—C241.3866 (18)
C8—C91.3911 (15)C23—C26A1.498 (3)
C8—H8A0.9300C23—C26B1.560 (18)
C9—C101.3828 (17)C24—C251.3847 (15)
C9—H9A0.9300C24—H24A0.9300
C10—C111.3815 (17)C25—H25A0.9300
C10—H10A0.9300C26A—O3A1.372 (5)
C11—C121.3911 (15)C26A—H26A0.9700
C11—H11A0.9300C26A—H26B0.9700
C12—H12A0.9300O3A—H3B0.8200
C13—C181.3949 (13)C26B—O3B1.28 (2)
C13—C141.3986 (13)C26B—H26C0.9700
C14—C151.3796 (15)C26B—H26D0.9700
C14—O11.403 (1)O3B—H3C0.8200
C15—C161.3856 (19)
C1—P1—C7103.65 (4)C17—C16—C15120.01 (10)
C1—P1—C13102.01 (4)C17—C16—H16A120.0
C7—P1—C13102.34 (4)C15—C16—H16A120.0
C6—C1—C2118.77 (11)C16—C17—C18120.54 (11)
C6—C1—P1124.24 (8)C16—C17—H17A119.7
C2—C1—P1116.93 (10)C18—C17—H17A119.7
C3—C2—C1120.59 (16)C17—C18—C13120.66 (10)
C3—C2—H2A119.7C17—C18—H18A119.7
C1—C2—H2A119.7C13—C18—H18A119.7
C4—C3—C2119.88 (15)C19—O1—C14118.46 (7)
C4—C3—H3A120.1O2—C19—O1122.61 (9)
C2—C3—H3A120.1O2—C19—C20126.05 (9)
C3—C4—C5120.58 (14)O1—C19—C20111.34 (8)
C3—C4—H4A119.7C21—C20—C25119.77 (10)
C5—C4—H4A119.7C21—C20—C19118.68 (9)
C4—C5—C6120.09 (17)C25—C20—C19121.54 (9)
C4—C5—H5A120.0C22—C21—C20119.97 (10)
C6—C5—H5A120.0C22—C21—H21A120.0
C5—C6—C1120.08 (13)C20—C21—H21A120.0
C5—C6—H6A120.0C21—C22—C23120.42 (11)
C1—C6—H6A120.0C21—C22—H22A119.8
C8—C7—C12118.45 (9)C23—C22—H22A119.8
C8—C7—P1124.96 (7)C24—C23—C22119.28 (11)
C12—C7—P1116.47 (7)C24—C23—C26A120.0 (2)
C9—C8—C7120.66 (10)C22—C23—C26A120.7 (2)
C9—C8—H8A119.7C24—C23—C26B126.8 (7)
C7—C8—H8A119.7C22—C23—C26B113.4 (8)
C10—C9—C8120.04 (10)C25—C24—C23120.91 (11)
C10—C9—H9A120.0C25—C24—H24A119.5
C8—C9—H9A120.0C23—C24—H24A119.5
C11—C10—C9120.18 (10)C24—C25—C20119.63 (10)
C11—C10—H10A119.9C24—C25—H25A120.2
C9—C10—H10A119.9C20—C25—H25A120.2
C10—C11—C12119.87 (10)O3A—C26A—C23107.7 (3)
C10—C11—H11A120.1O3A—C26A—H26A110.2
C12—C11—H11A120.1C23—C26A—H26A110.2
C11—C12—C7120.78 (10)O3A—C26A—H26B110.2
C11—C12—H12A119.6C23—C26A—H26B110.2
C7—C12—H12A119.6H26A—C26A—H26B108.5
C18—C13—C14117.14 (9)C26A—O3A—H3B109.5
C18—C13—P1125.19 (8)O3B—C26B—C23110.1 (12)
C14—C13—P1117.47 (7)O3B—C26B—H26C109.6
C15—C14—C13122.70 (9)C23—C26B—H26C109.6
C15—C14—O1119.88 (9)O3B—C26B—H26D109.6
C13—C14—O1117.26 (8)C23—C26B—H26D109.6
C14—C15—C16118.95 (11)H26C—C26B—H26D108.2
C14—C15—H15A120.5C26B—O3B—H3C109.5
C16—C15—H15A120.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O3Ai0.932.523.143 (5)125
C18—H18A···O3Bi0.932.623.408 (9)143
Symmetry code: (i) x, y1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O3Ai0.932.523.143 (5)125
C18—H18A···O3Bi0.932.623.408 (9)143
Symmetry code: (i) x, y1, z+1.
 

References

First citationBruker (2007). APEX2, SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationMamat, C., Flemming, A., Köckerling, M., Steinbach, J. & Wuest, F. R. (2009). Synthesis, pp. 3311–3321.  Web of Science CSD CrossRef Google Scholar
First citationMamat, C., Franke, M., Peppel, T., Köckerling, M. & Steinbach, J. (2011). Tetrahedron, 67, 4521–4529.  Web of Science CSD CrossRef CAS Google Scholar
First citationPretze, M., Wuest, F., Peppel, T., Köckerling, M. & Mamat, C. (2010). Tetrahedron Lett. 51, 6410–6414.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWodtke, R., König, J., Pigorsch, A., Köckerling, M. & Mamat, C. (2015). Dyes Pigm. 113, 263–273.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1288-o1289
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds