research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-(2,4-di­chloro­phen­yl)-4-hy­droxy-9-phenyl­sulfonyl-9H-carbazole-3-carbaldehyde

aResearch and Development Centre, Bharathiyar University, India, bDepartment of Chemistry, Pallavan College of Engineering, Kanchipuram, Tamilnadu, India, cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, dDepartment of Sciences, Chemistry and Materials Research Laboratory, Amrita Vishwa Vidyapeetham University, Ettimadai, Coimbatore 641 112, India, and eDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: ryamuna1@gmail.com, chakkaravarthi_2005@yahoo.com

Edited by V. V. Chernyshev, Moscow State University, Russia (Received 18 October 2014; accepted 31 October 2014; online 8 November 2014)

In the title compound, C25H15Cl2NO4S, the di­chloro­phenyl ring is twisted by 68.69 (11)° from the mean plane of the carbazole ring system [r.m.s. deviation = 0.084 (2)°]. The hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, pairs of C—H⋯Cl hydrogen bonds link mol­ecules into inversion dimers with an R22(26) motif. Weak C—H⋯O inter­actions further link these dimers into ribbons propagating in [100].

1. Chemical context

In continuation of our studies of carbazole derivatives, which are found to possess various biological activities, such as anti-oxidative (Tachibana et al., 2001[Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589-5594.]), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999[Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444-447.]), anti­biotic, anti­fungal and cytotoxic (Chakraborty et al., 1965[Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681-685.], 1978[Chakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834-835.]), we report herein on the synthesis and crystal structure of the title compound (I)[link] (Fig. 1[link]).

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link] showing the atomic labelling scheme and 50% probability displacement ellipsoids.

2. Structural commentary

The geometric parameters of (I)[link] agree well with those reported for related structures [Chakkaravarthi et al. 2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667-o1668.], 2009[Chakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464-o465.]]. The C1–C6 phenyl ring makes a dihedral angle of 79.76 (11)° with the carbazole ring system (C7–C18/N1). The di­chloro­phenyl ring (C21–C25) is twisted by 68.69 (11)° from the mean plane of the carbazole ring system and inclined at an angle of 32.22 (13)° to the phenyl ring.

Atom S1 has a distorted tetra­hedral configuration. The widening of angle O1—S1—O2 [120.49 (11)°] and narrowing of angle N1—S1—C1 [105.36 (10)°] from the ideal tetra­hedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). As a result of the electron–withdrawing character of the phenyl­sulfonyl group, the bond lengths N1—C7 [1.431 (3) Å] and N1—C18 [1.414 (3) Å] in the mol­ecule are longer than the mean value of 1.355 (14) Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1-19.]; Groom & Allen et al., 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]).

3. Supra­molecular features

The hy­droxy group is involved in an intra­molecular O—H⋯O hydrogen bond (Table 1[link]), which generates an S(6) graph-set motif. In the crystal, pairs of C—H⋯Cl hydrogen bonds link mol­ecules into inversion dimers with an R22(26) motif (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]), and weak C—H⋯O inter­actions further link these dimers into ribbons propagating in [100] (Table 1[link] and Fig. 2[link]) .

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O4 0.83 (1) 1.81 (2) 2.563 (3) 151 (3)
C2—H2⋯Cl1i 0.93 2.81 3.412 (2) 123
C5—H5⋯O2ii 0.93 2.49 3.184 (3) 131
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y, z.
[Figure 2]
Figure 2
A portion of the crystal packing of (I)[link] showing the hydrogen-bonded (dashed lines) ribbon [symmetry codes: (i) 1-x, 2-y, 1-z; (ii) 1 + x, y, z].

4. Synthesis and crystallization

Enamine 16 g (500 mg, 0.95 mmol) was reacted with CuBr2 (212 mg, 0.95 mmol) in dry DMF (20 ml) at reflux for 1 h under N2. The reaction mass was poured over crushed ice (50 ml) containing concentrated HCl (1 ml). The precipitated solid was filtered, washed with water and air-dried to obtain the crude compound, which was purified by flash column chromatography on silica gel (230–420 mesh, n-hexa­ne/ethyl acetate, 7:3) to afford 17 g as pale-yellow crystals suitable for X-ray analysis. Yield: 368 mg (78%); m.p.: 461–463 K.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The hy­droxy H atom was located in a difference Fourier map and refined isotropically with a distance restraint of O—H = 0.82 (1) Å. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The components of the anisotropic displacement parameters in the direction of the bond between O4 and C19 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Table 2
Experimental details

Crystal data
Chemical formula C25H15Cl2NO4S
Mr 496.34
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 295
a, b, c (Å) 8.0688 (4), 9.9086 (5), 14.4041 (8)
α, β, γ (°) 75.297 (3), 80.604 (2), 74.306 (3)
V3) 1066.83 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.44
Crystal size (mm) 0.28 × 0.24 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.887, 0.925
No. of measured, independent and observed [I > 2σ(I)] reflections 35959, 6221, 3582
Rint 0.044
(sin θ/λ)max−1) 0.735
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.02
No. of reflections 6221
No. of parameters 302
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.48
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

In continuation of our studies of carbazole derivatives, which are found to possess various biological activities, such as anti-oxidative (Tachibana et al., 2001), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999), anti­biotic, anti­fungal and cytotoxic (Chakraborty et al., 1965, 1978), we report herein the synthesis and crystal structure of the title compound (I) (Fig. 1).

Structural commentary top

The geometric parameters of (I) agree well with those reported for related structures [Chakkaravarthi et al. 2008, 2009]. The C1–C6 phenyl ring makes a dihedral angle of 79.76 (11)° with the carbazole ring system (C7–C18/N1). The di­chloro­phenyl ring (C21–C25) is twisted by 68.69 (11)° from the mean plane of the carbazole ring system and inclined at an angle of 32.22 (13)° to the phenyl ring.

Atom S1 has a distorted tetra­hedral configuration. The widening of angle O1—S1—O2 [120.49 (11)°] and narrowing of angle N1—S1—C1 [105.36 (10)°] from the ideal tetra­hedral values are attributed to the Thorpe–Ingold effect (Bassindale, 1984). As a result of the electron–withdrawing character of the phenyl­sulfonyl group, the bond lengths N1—C7 [1.431 (3) Å] and N1—C18 [1.414 (3) Å] in the molecule are longer than the mean value of 1.355 (14) Å (Allen et al., 1987; Groom & Allen, 2014).

Supra­molecular features top

The hy­droxy group is involved in an intra­molecular O—H···O hydrogen bond (Table 1), which generates an S(6) graph-set motif. In the crystal, pairs of C—H···Cl hydrogen bonds link molecules into centrosymmetric dimers with an R22(26) motif (Bernstein et al., 1995), and weak C—H···O inter­actions further link these dimers into ribbons propagating in [100] (Table 1 and Fig. 2 ).

Synthesis and crystallization top

The reaction of enamine 16 g (500 mg, 0.95 mmol) with CuBr2 (212 mg, 0.95 mmol) in dry DMF (20 ml) at reflux for 1 h under N2. The reaction mass was poured over crushed ice (50 ml) containing concentrated HCl (1 ml). The precipitated solid was filtered, washed with water and air-dried to obtain the crude compound, which was purified by flash column chromatography on silica gel (230–420 mesh, n-hexane/ethyl acetate, 7:3) to afford 17 g as pale-yellow solid crystals suitable for X-ray analysis. Yield: 368 mg (78%); m.p.: 461–463 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The hy­droxy H atom was located in a Fourier map and refined isotropically with a distance restraint of O—H = 0.82 (1) Å. All other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The components of the anisotropic displacement parameters in the direction of the bond between O4 and C19 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL97 (Sheldrick, 2008).

Related literature top

For related literature, see: Allen et al. (1987); Bassindale (1984); Bernstein et al. (1995); Chakkaravarthi et al. (2008, 2009); Chakraborty et al. (1965, 1978); Ramsewak et al. (1999); Sheldrick (2008); Tachibana et al. (2001).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I) showing the atomic labelling scheme and 50% probability displacement ellipsoids.

Fig. 2. A portion of the crystal packing of (I) showing the hydrogen-bonded (dashed lines) ribbon [symmetry codes: (i) 1-x, 2-y, 1-z; (ii) 1+x, y, z].
2-(2,4-Dichlorophenyl)-4-hydroxy-9-phenylsulfonyl-9H-carbazole-3-carbaldehyde top
Crystal data top
C25H15Cl2NO4SZ = 2
Mr = 496.34F(000) = 508
Triclinic, P1Dx = 1.545 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0688 (4) ÅCell parameters from 9493 reflections
b = 9.9086 (5) Åθ = 2.2–31.5°
c = 14.4041 (8) ŵ = 0.44 mm1
α = 75.297 (3)°T = 295 K
β = 80.604 (2)°Block, pale yellow
γ = 74.306 (3)°0.28 × 0.24 × 0.18 mm
V = 1066.83 (10) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6221 independent reflections
Radiation source: fine-focus sealed tube3582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω and ϕ scanθmax = 31.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.887, Tmax = 0.925k = 1413
35959 measured reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.6935P]
where P = (Fo2 + 2Fc2)/3
6221 reflections(Δ/σ)max < 0.001
302 parametersΔρmax = 0.44 e Å3
2 restraintsΔρmin = 0.48 e Å3
Crystal data top
C25H15Cl2NO4Sγ = 74.306 (3)°
Mr = 496.34V = 1066.83 (10) Å3
Triclinic, P1Z = 2
a = 8.0688 (4) ÅMo Kα radiation
b = 9.9086 (5) ŵ = 0.44 mm1
c = 14.4041 (8) ÅT = 295 K
α = 75.297 (3)°0.28 × 0.24 × 0.18 mm
β = 80.604 (2)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6221 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3582 reflections with I > 2σ(I)
Tmin = 0.887, Tmax = 0.925Rint = 0.044
35959 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0482 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.44 e Å3
6221 reflectionsΔρmin = 0.48 e Å3
302 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.0997 (3)0.3850 (2)0.70308 (15)0.0345 (5)
C21.0940 (3)0.4840 (3)0.61674 (17)0.0471 (6)
H20.99390.51590.58540.057*
C31.2388 (4)0.5356 (3)0.5769 (2)0.0582 (7)
H31.23710.60180.51810.070*
C41.3848 (3)0.4886 (3)0.6244 (2)0.0551 (7)
H41.48210.52340.59740.066*
C51.3893 (3)0.3910 (3)0.71103 (19)0.0524 (6)
H51.48890.36070.74280.063*
C61.2472 (3)0.3379 (3)0.75090 (17)0.0445 (5)
H61.24990.27100.80940.053*
C70.8949 (3)0.3246 (2)0.94145 (16)0.0384 (5)
C81.0086 (3)0.1961 (2)0.97765 (19)0.0483 (6)
H81.06040.13000.93950.058*
C91.0419 (3)0.1703 (3)1.07175 (19)0.0530 (6)
H91.11870.08531.09750.064*
C100.9647 (3)0.2669 (3)1.12916 (19)0.0557 (7)
H100.99150.24681.19240.067*
C110.8483 (3)0.3927 (3)1.09402 (17)0.0487 (6)
H110.79380.45651.13340.058*
C120.8138 (3)0.4224 (2)0.99882 (16)0.0376 (5)
C130.7085 (3)0.5439 (2)0.93908 (15)0.0349 (5)
C140.5999 (3)0.6708 (2)0.95850 (16)0.0387 (5)
C150.5169 (3)0.7739 (2)0.88353 (17)0.0404 (5)
C160.5471 (3)0.7497 (2)0.78918 (17)0.0391 (5)
C170.6519 (3)0.6224 (2)0.76991 (16)0.0392 (5)
H170.67040.60540.70800.047*
C180.7289 (3)0.5206 (2)0.84630 (16)0.0350 (5)
C190.3929 (3)0.9054 (3)0.9062 (2)0.0491 (6)
H190.33620.97300.85670.059*
C200.4596 (3)0.8596 (2)0.70952 (17)0.0415 (5)
C210.3271 (3)0.8330 (3)0.67214 (19)0.0500 (6)
H210.29880.74470.69540.060*
C220.2357 (4)0.9332 (3)0.6016 (2)0.0578 (7)
H220.14670.91320.57770.069*
C230.2786 (4)1.0625 (3)0.56730 (18)0.0529 (6)
C240.4114 (4)1.0926 (2)0.60002 (19)0.0534 (6)
H240.44071.18030.57520.064*
C250.5009 (3)0.9905 (2)0.67056 (18)0.0478 (6)
N10.8388 (2)0.38241 (18)0.84706 (13)0.0383 (4)
O10.9772 (2)0.16411 (16)0.78521 (13)0.0539 (5)
O20.7943 (2)0.37100 (18)0.68385 (12)0.0480 (4)
O30.5763 (2)0.6893 (2)1.04911 (13)0.0545 (5)
O40.3634 (3)0.9274 (2)0.98621 (16)0.0726 (6)
S10.92029 (7)0.31431 (6)0.75094 (4)0.03877 (15)
Cl10.16251 (12)1.19156 (9)0.48058 (6)0.0826 (3)
Cl20.66928 (11)1.03092 (8)0.71005 (7)0.0781 (3)
H3A0.512 (4)0.7704 (18)1.047 (2)0.084 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0343 (11)0.0338 (10)0.0355 (12)0.0022 (9)0.0034 (9)0.0143 (9)
C20.0419 (13)0.0501 (14)0.0455 (14)0.0059 (11)0.0096 (11)0.0059 (11)
C30.0609 (17)0.0609 (16)0.0473 (15)0.0190 (14)0.0006 (13)0.0007 (12)
C40.0466 (15)0.0690 (17)0.0585 (17)0.0252 (13)0.0080 (12)0.0257 (14)
C50.0367 (13)0.0736 (18)0.0516 (16)0.0115 (12)0.0065 (11)0.0229 (13)
C60.0376 (12)0.0531 (14)0.0401 (13)0.0060 (11)0.0060 (10)0.0093 (11)
C70.0346 (11)0.0329 (11)0.0424 (13)0.0066 (9)0.0005 (9)0.0035 (9)
C80.0454 (14)0.0340 (12)0.0541 (15)0.0009 (10)0.0008 (11)0.0024 (11)
C90.0464 (14)0.0433 (13)0.0551 (16)0.0019 (11)0.0061 (12)0.0055 (12)
C100.0512 (15)0.0641 (17)0.0435 (14)0.0102 (13)0.0095 (12)0.0017 (13)
C110.0479 (14)0.0527 (14)0.0409 (14)0.0082 (11)0.0015 (11)0.0082 (11)
C120.0344 (11)0.0346 (11)0.0404 (12)0.0089 (9)0.0014 (9)0.0047 (9)
C130.0333 (11)0.0311 (10)0.0380 (12)0.0068 (8)0.0012 (9)0.0058 (9)
C140.0378 (12)0.0394 (12)0.0401 (12)0.0083 (9)0.0018 (10)0.0134 (10)
C150.0358 (12)0.0334 (11)0.0503 (14)0.0030 (9)0.0047 (10)0.0119 (10)
C160.0381 (12)0.0313 (11)0.0454 (13)0.0041 (9)0.0075 (10)0.0066 (9)
C170.0416 (12)0.0350 (11)0.0392 (12)0.0055 (9)0.0039 (10)0.0091 (9)
C180.0320 (11)0.0286 (10)0.0418 (12)0.0059 (8)0.0001 (9)0.0070 (9)
C190.0362 (12)0.0467 (13)0.0581 (13)0.0058 (10)0.0078 (11)0.0156 (11)
C200.0405 (12)0.0339 (11)0.0467 (13)0.0007 (9)0.0088 (10)0.0090 (10)
C210.0489 (14)0.0408 (13)0.0574 (16)0.0077 (11)0.0114 (12)0.0052 (11)
C220.0556 (16)0.0552 (16)0.0614 (17)0.0051 (13)0.0195 (13)0.0109 (13)
C230.0593 (16)0.0433 (14)0.0470 (15)0.0084 (12)0.0148 (12)0.0099 (11)
C240.0685 (18)0.0326 (12)0.0525 (15)0.0043 (12)0.0093 (13)0.0040 (11)
C250.0506 (14)0.0362 (12)0.0555 (15)0.0057 (11)0.0125 (12)0.0085 (11)
N10.0386 (10)0.0305 (9)0.0398 (10)0.0009 (8)0.0004 (8)0.0074 (8)
O10.0599 (11)0.0312 (8)0.0680 (12)0.0069 (8)0.0004 (9)0.0150 (8)
O20.0350 (8)0.0574 (10)0.0583 (11)0.0074 (7)0.0119 (8)0.0239 (8)
O30.0574 (11)0.0555 (11)0.0474 (10)0.0035 (9)0.0069 (8)0.0232 (9)
O40.0674 (13)0.0700 (13)0.0780 (12)0.0113 (10)0.0090 (11)0.0405 (11)
S10.0357 (3)0.0335 (3)0.0481 (3)0.0054 (2)0.0026 (2)0.0150 (2)
Cl10.0999 (6)0.0621 (5)0.0691 (5)0.0133 (4)0.0379 (5)0.0014 (4)
Cl20.0858 (6)0.0561 (4)0.1016 (6)0.0308 (4)0.0391 (5)0.0005 (4)
Geometric parameters (Å, º) top
C1—C21.373 (3)C14—O31.340 (3)
C1—C61.383 (3)C14—C151.401 (3)
C1—S11.744 (2)C15—C161.411 (3)
C2—C31.382 (3)C15—C191.487 (3)
C2—H20.9300C16—C171.380 (3)
C3—C41.370 (4)C16—C201.488 (3)
C3—H30.9300C17—C181.391 (3)
C4—C51.370 (4)C17—H170.9300
C4—H40.9300C18—N11.414 (3)
C5—C61.371 (3)C19—O41.201 (3)
C5—H50.9300C19—H190.9300
C6—H60.9300C20—C251.383 (3)
C7—C81.386 (3)C20—C211.383 (3)
C7—C121.392 (3)C21—C221.378 (3)
C7—N11.431 (3)C21—H210.9300
C8—C91.371 (4)C22—C231.367 (4)
C8—H80.9300C22—H220.9300
C9—C101.378 (4)C23—C241.367 (4)
C9—H90.9300C23—Cl11.731 (2)
C10—C111.376 (3)C24—C251.379 (3)
C10—H100.9300C24—H240.9300
C11—C121.386 (3)C25—Cl21.730 (3)
C11—H110.9300N1—S11.6557 (19)
C12—C131.439 (3)O1—S11.4145 (16)
C13—C181.389 (3)O2—S11.4211 (17)
C13—C141.390 (3)O3—H3A0.826 (10)
C2—C1—C6120.9 (2)C14—C15—C19118.8 (2)
C2—C1—S1119.29 (17)C16—C15—C19121.1 (2)
C6—C1—S1119.76 (17)C17—C16—C15120.9 (2)
C1—C2—C3119.3 (2)C17—C16—C20119.0 (2)
C1—C2—H2120.4C15—C16—C20119.98 (19)
C3—C2—H2120.4C16—C17—C18117.7 (2)
C4—C3—C2119.7 (2)C16—C17—H17121.2
C4—C3—H3120.2C18—C17—H17121.2
C2—C3—H3120.2C13—C18—C17122.80 (19)
C5—C4—C3120.9 (2)C13—C18—N1107.83 (18)
C5—C4—H4119.6C17—C18—N1129.4 (2)
C3—C4—H4119.6O4—C19—C15122.3 (2)
C4—C5—C6120.0 (2)O4—C19—H19118.9
C4—C5—H5120.0C15—C19—H19118.9
C6—C5—H5120.0C25—C20—C21116.9 (2)
C5—C6—C1119.2 (2)C25—C20—C16123.7 (2)
C5—C6—H6120.4C21—C20—C16119.4 (2)
C1—C6—H6120.4C22—C21—C20122.2 (2)
C8—C7—C12121.5 (2)C22—C21—H21118.9
C8—C7—N1130.3 (2)C20—C21—H21118.9
C12—C7—N1108.20 (18)C23—C22—C21118.6 (3)
C9—C8—C7117.5 (2)C23—C22—H22120.7
C9—C8—H8121.2C21—C22—H22120.7
C7—C8—H8121.2C22—C23—C24121.5 (2)
C8—C9—C10121.8 (2)C22—C23—Cl1119.5 (2)
C8—C9—H9119.1C24—C23—Cl1119.0 (2)
C10—C9—H9119.1C23—C24—C25118.7 (2)
C11—C10—C9120.8 (2)C23—C24—H24120.7
C11—C10—H10119.6C25—C24—H24120.7
C9—C10—H10119.6C24—C25—C20122.1 (2)
C10—C11—C12118.7 (2)C24—C25—Cl2117.76 (19)
C10—C11—H11120.7C20—C25—Cl2120.19 (19)
C12—C11—H11120.7C18—N1—C7107.83 (17)
C11—C12—C7119.8 (2)C18—N1—S1125.70 (15)
C11—C12—C13132.9 (2)C7—N1—S1125.35 (14)
C7—C12—C13107.26 (19)C14—O3—H3A106 (2)
C18—C13—C14119.19 (19)O1—S1—O2120.49 (11)
C18—C13—C12108.76 (18)O1—S1—N1106.41 (10)
C14—C13—C12132.1 (2)O2—S1—N1106.55 (10)
O3—C14—C13118.5 (2)O1—S1—C1108.93 (10)
O3—C14—C15122.2 (2)O2—S1—C1108.09 (10)
C13—C14—C15119.2 (2)N1—S1—C1105.36 (10)
C14—C15—C16120.03 (19)
C6—C1—C2—C30.8 (4)C16—C17—C18—C132.0 (3)
S1—C1—C2—C3177.4 (2)C16—C17—C18—N1179.1 (2)
C1—C2—C3—C40.7 (4)C14—C15—C19—O41.2 (4)
C2—C3—C4—C50.0 (4)C16—C15—C19—O4179.0 (2)
C3—C4—C5—C60.6 (4)C17—C16—C20—C25111.3 (3)
C4—C5—C6—C10.6 (4)C15—C16—C20—C2571.2 (3)
C2—C1—C6—C50.1 (3)C17—C16—C20—C2169.8 (3)
S1—C1—C6—C5177.99 (18)C15—C16—C20—C21107.7 (3)
C12—C7—C8—C91.6 (3)C25—C20—C21—C222.0 (4)
N1—C7—C8—C9178.3 (2)C16—C20—C21—C22176.9 (2)
C7—C8—C9—C100.6 (4)C20—C21—C22—C230.4 (4)
C8—C9—C10—C111.1 (4)C21—C22—C23—C241.4 (4)
C9—C10—C11—C121.8 (4)C21—C22—C23—Cl1178.6 (2)
C10—C11—C12—C70.9 (3)C22—C23—C24—C251.3 (4)
C10—C11—C12—C13176.5 (2)Cl1—C23—C24—C25178.6 (2)
C8—C7—C12—C110.8 (3)C23—C24—C25—C200.5 (4)
N1—C7—C12—C11179.09 (19)C23—C24—C25—Cl2179.5 (2)
C8—C7—C12—C13178.8 (2)C21—C20—C25—C242.1 (4)
N1—C7—C12—C131.1 (2)C16—C20—C25—C24176.8 (2)
C11—C12—C13—C18176.4 (2)C21—C20—C25—Cl2177.94 (19)
C7—C12—C13—C181.2 (2)C16—C20—C25—Cl23.2 (3)
C11—C12—C13—C143.0 (4)C13—C18—N1—C73.7 (2)
C7—C12—C13—C14179.4 (2)C17—C18—N1—C7175.4 (2)
C18—C13—C14—O3177.4 (2)C13—C18—N1—S1172.07 (15)
C12—C13—C14—O33.2 (4)C17—C18—N1—S17.0 (3)
C18—C13—C14—C151.6 (3)C8—C7—N1—C18176.9 (2)
C12—C13—C14—C15177.8 (2)C12—C7—N1—C183.0 (2)
O3—C14—C15—C16179.6 (2)C8—C7—N1—S18.5 (3)
C13—C14—C15—C161.4 (3)C12—C7—N1—S1171.39 (15)
O3—C14—C15—C192.6 (3)C18—N1—S1—O1162.99 (18)
C13—C14—C15—C19176.4 (2)C7—N1—S1—O130.6 (2)
C14—C15—C16—C172.9 (3)C18—N1—S1—O233.2 (2)
C19—C15—C16—C17174.9 (2)C7—N1—S1—O2160.35 (17)
C14—C15—C16—C20179.7 (2)C18—N1—S1—C181.44 (19)
C19—C15—C16—C202.5 (3)C7—N1—S1—C184.97 (19)
C15—C16—C17—C181.2 (3)C2—C1—S1—O1135.88 (19)
C20—C16—C17—C18178.66 (19)C6—C1—S1—O142.3 (2)
C14—C13—C18—C173.4 (3)C2—C1—S1—O23.3 (2)
C12—C13—C18—C17176.1 (2)C6—C1—S1—O2174.85 (17)
C14—C13—C18—N1177.47 (19)C2—C1—S1—N1110.30 (19)
C12—C13—C18—N13.0 (2)C6—C1—S1—N171.55 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.83 (1)1.81 (2)2.563 (3)151 (3)
C2—H2···Cl1i0.932.813.412 (2)123
C5—H5···O2ii0.932.493.184 (3)131
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O40.826 (10)1.810 (18)2.563 (3)151 (3)
C2—H2···Cl1i0.932.813.412 (2)123
C5—H5···O2ii0.932.493.184 (3)131
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC25H15Cl2NO4S
Mr496.34
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)8.0688 (4), 9.9086 (5), 14.4041 (8)
α, β, γ (°)75.297 (3), 80.604 (2), 74.306 (3)
V3)1066.83 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.44
Crystal size (mm)0.28 × 0.24 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.887, 0.925
No. of measured, independent and
observed [I > 2σ(I)] reflections
35959, 6221, 3582
Rint0.044
(sin θ/λ)max1)0.735
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.126, 1.02
No. of reflections6221
No. of parameters302
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.48

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors acknowledge the SAIF, IIT, Madras for the data collection.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin. Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1667–o1668.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationChakkaravarthi, G., Marx, A., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2009). Acta Cryst. E65, o464–o465.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.  CrossRef CAS Web of Science Google Scholar
First citationChakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834–835.  CrossRef CAS Web of Science Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationRamsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds