research communications
Z)-1-(ferrocenylethynyl)-10-(phenylimino)anthracen-9(10H)-one from synchrotron X-ray powder diffraction
of (aDivision of Physics, Faculty of Pure and Applied Sciences, Center for Integrated Research in Fundamental Science and Engineering, Tsukuba Research Center for Interdisciplinary Materials Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571, Japan, bDepartment of Information and Biological Sciences, Nagoya City University, Nagoya 467-8501, Japan, cJapan Synchrotron Radiation Research Institute, SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan, and dDepartment of Chemistry, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
*Correspondence e-mail: nishibori.eiji.ga@u.tsukuba.ac.jp
In the title compound, [Fe(C5H5)(C27H16NO)], designed and synthesized to explore a new electron-donor (D) and -acceptor (A) conjugated complex, the two cyclopentadienyl rings adopt an eclipsed conformation. The anthracene tricycle is distorted towards a butterfly conformation and the mean planes of the outer benzene rings are inclined each to other at 22.7 (3)°. In the crystal, molecules are paired into inversion dimers via π–π interactions. Weak intermolecular C—H⋯π interactions link further these dimers into one-dimensional columns along the b axis, with the ferrocenylethynyl arms arranged between the stacks to fill the voids.
Keywords: structure determination; powder diffraction; synchrotron radiation; D–A conjugated complex; ferrocenyl–anthracen-9(10H)-one; π–π interactions; C—H⋯π interactions.
CCDC reference: 1034683
1. Chemical context
Compounds containing a mixture of electron-donor (D) and -acceptor (A) molecules have attracted much attention owing to their unique structures and various characteristic properties (Alberola et al., 2003; Ferraris et al., 1973). D–A-conjugated complexes of ferrocenylethynylanthraquinones (FcAq) demonstrate guest-molecule absorption and etc. We have synthesized the title compound 1-(ferrocenylethynyl)-10-(phenylimino)anthracen-9(10H)-one [1-(Fc)AqPHI] and herein we report its determined by synchrotron radiation (SR) X-ray powder diffraction.
2. Structural commentary
Fig. 1 shows the molecular structure of 1-(Fc)AqPHI, which contains two five-membered and four six-membered carbon rings. The two cyclopentadienyl rings adopt an eclipsed conformation. The anthracene tricycle is distorted towards a butterfly conformation, and the mean planes of the outer benzene rings are inclined each to other at 22.7 (3)°.
3. Supramolecular features
In the crystal (Fig. 2), π–π interactions (Table 1) between the Aq parts of the molecules pair them into inversion dimers, and weak intermolecular C—H⋯π interactions (Table 2) link further these dimers into one-dimensional columns along the b axis, with the ferrocenylethynyl arms arranged between the stacks to fill the voids.
|
4. Database survey
In the reported examples compiled in the Cambridge Structural Database (Groom & Allen, 2014) of Fc-Aq compounds, 1,4-Fc2Aq (Kondo et al., 2006), 1,5-Fc2Aq (Murata et al., 2001) and 1,4-(FcPh)2Aq (Sachiko et al., 2013), the cyclopentadienyl (CP) rings have an eclipsed conformation except for only in one low-temperature phase of 1,4-(FcPh)2Aq. Similar π–π stacking interactions were observed in the other FcAq compounds, viz. 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq. Distances between the ring centroids cover the range from 4.09 Å in 1,4 Fc2Aq down to 3.68 Å in 1,2-(FcPh)2Aq. The smallest perpendicular distance for all the materials was close to 3.45 Å [3.45, 3.43 and 3.42 Å for 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq, respectively]. C—H⋯π interactions are also found in 1,4-Fc2Aq, 1,5-Fc2Aq and 1,2-(FcPh)2Aq. Two kinds of C—H⋯π interactions in 1,4-Fc2Aq connect the CP rings and the rings of the Aq groups of neighbouring molecules. A C—H⋯π interaction in 1,5-Fc2Aq links a CH– group from the Aq unit and a CP ring of Fc fragment. There are three C—H⋯π interactions in 1,2-(FcPh)2Aq.
5. Synthesis and crystallization
Under a nitrogen atmosphere, 1-bromo-10-(phenylimino)anthracen-9(10H)-one (89 mg, 0.24 mmol), ethynylferrocene (47 mg, 0.22 mmol), Pd(PPh3)2Cl2 (3.1 mg), and CuI (5 mg) were suspended in Et3N (15 ml). After refluxing for 5 h, Et3N was removed in vacuo, and the resultant residue was dissolved in CH2Cl2. The solution was washed with water (150 ml), and dried over Na2SO4. After evaporation of the solvent, the crude product was purified with alumina (activity II–III) with a mixture of dichloromethane and hexane (1:2 v/v) as The third fraction was collected, and produced a red–brown solid of the title compound (yield: 30 mg, 33%). Very small single crystals unsuitable for conventional X-ray structure analysis were obtained by recrystallization from dichloromethane–hexane. 1H NMR (400 MHz, CDCl3): δ 8.1–8.5 (m, 2H), 7.0–7.9 (m, 8H), 6.80 (d, 2H), 4.1–4.8 (m, 9H). IR (KBr pellet): 2208 (ν C=C/ cm−1), 1668 (ν C=O/ cm−1), 1483 (ν C=N/ cm−1). MALDI–TOF–MS: m/z = 490.1.
6. details
The size of 1-(Fc)AqPHI crystals was small, less than 1 µm. SR powder-diffraction techniques were employed for the et al., 2001). The CeO2 (NIST SRM674a) standard powder sample was used for wavelength calibration. The calibrated wavelength was 0.80200 (1) Å. The powder profile was measured at 100 K with 120 min X-ray exposure time.
The powder crystallites were installed in a 0.4 mm glass capillary. The X-ray powder diffraction data were measured using a large Debye–Scherrer camera with an imaging-plate (IP) as a detector installed at SPring-8 BL02B2 (NishiboriIndexing was carried out using the program DICVOL04 (Boultif & Louer, 2004). The first 21 peaks of the powder pattern were completely indexed on the basis of a monoclinic cell. The figure of merit F(21) was 63.2. The P21/n was assigned on the basis of systematic extinctions.
The lattice constants were refined by the Le Bail method using the program SP (Nishibori et al., 2007). The was determined from powder diffraction data using a direct-space method with a (Harris et al., 1998; Nishibori et al., 2008). The molecular structure model for GA was constructed using similar structures, 1,4-Fc2Aq, 1,5-Fc2Aq, and 1,8-Fc2Aq (Kondo et al., 2006, Murata et al., 2001). The chemically equivalent distances were equal in the model. GA analysis using the P21/n was performed. A solution was obtained. The rigid-body was initially carried out using the program SP. Restraint Rietveld analysis was employed for the final with chemically equivalent distances being equal. Displacement parameters were refined as isotropic. Four common Uiso parameters were refined for several groups of C atoms in the Aq fragment: C1–C14, phenyl ring C19–C24, and CP rings C25–C29 and C30–C34. One common Uiso parameter was also refined for carbon atoms at the D–A junction (C17 and C18). Uiso for H atoms connected to the Aq and Ph parts were fixed at 0.05 Å2. Uiso for H atoms connected to the C25–C29 and C30–C34 CP rings were fixed at 0.09 Å2 and 0.04 Å2, respectively. A split-type pseudo-Voigt profile function (Toraya, 1990) was used with strain broadening (Stephens, 1999). Results of the Rietveld refinements are shown in Fig. 3. Crystal data, data collection and structure details are summarized in Table 3.
Supporting information
CCDC reference: 1034683
10.1107/S1600536814025252/cv5475sup1.cif
contains datablocks global, I, 1FcAqPHI-100K_powder_data. DOI:Rietveld powder data: contains datablock I. DOI: 10.1107/S1600536814025252/cv5475Isup2.rtv
Supporting information file. DOI: 10.1107/S1600536814025252/cv5475Isup3.mol
Compounds containing a mixture of electron-donor (D) and -acceptor (A) molecules have attracted much attention owing to their unique structures and various characteristic properties (Alberola et al., 2003; Ferraris et al., 1973). D–A-conjugated complexes of ferrocenylethynylanthraquinones (FcAq) demonstrate guest-molecule absorption and
etc. We synthesized the title compound 1-(ferrocenylethynyl)-10-(phenylimino)anthracen-9(10H)-one [1-(Fc)AqPHI] and herein we report its determined by synchrotron radiation (SR) X-ray powder diffraction.Fig. 1 shows the molecular structure of 1-(Fc)AqPHI, which contains two five-membered and four six-membered carbon rings. The two cyclopentadienyl rings adopt an eclipsed conformation. The anthracene tricycle is distorted towards a butterfly conformation, and the mean planes of the outer benzene rings are inclined each to other at 22.7 (3)°.
In the crystal (Fig. 2), π–π interactions (Table 1) between Aq parts of the molecules pair them into inversion dimers, and weak intermolecular C—H···π interactions (Table 2) link further these dimers into one-dimensional columns along the b axis with the ferrocenylethynyl arms arranged between the stacks to fill the voids.
In the reported examples (Groom & Allen, 2014) of Fc—Aq compounds, 1,4-Fc2Aq (Kondo et al., 2006), 1,5-Fc2Aq (Murata et al., 2001) and 1,4-(FcPh)2Aq (Maki et al., 2013), the cyclopentadienyl (CP) rings have an eclipsed conformation except for only one low-temperature phase of 1,4-(FcPh)2Aq. Similar π stacking was observed in the other FcAq compounds, viz. 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq. Distances between the ring centroids cover the range from 4.09 Å in 1,4 Fc2Aq down to 3.68 Å in 1,2-(FcPh)2Aq. The smallest perpendicular distance for all the materials was close to 3.45 Å [3.45, 3.43 and 3.42 Å for 1,4-Fc2Aq, 1,5-Fc2Aq and 1,4-(FcPh)2Aq, respectively]. C—H···π interactions were also found in 1,4-Fc2Aq, 1,5-Fc2Aq and 1,2-(FcPh)2Aq. Two kinds of C—H···π interactions in 1,4-Fc2Aq connect the CP rings and the rings of the Aq groups of neighbouring molecules. A C—H···π interaction in 1,5-Fc2Aq links a CH– group from the Aq unit and a CP ring of Fc fragment. There are three C—H···π interactions in 1,2-(FcPh)2Aq.
Under a nitrogen atmosphere, 1-bromo-10-(phenylimino)anthracen-9(10H)-one (89 mg, 0.24 mmol), ethynylferrocene (47 mg, 0.22 mmol), Pd(PPh3)2Cl2 (3.1 mg), and CuI (5 mg) were suspended in Et3N (15 ml). After refluxing for 5 h, Et3N was removed in vacuo, and the resultant residue was dissolved in CH2Cl2. The solution was washed with water (150 ml), and dried over Na2SO4. After evaporation of the solvent, the crude product was purified with aluminum δ 8.1–8.5 (m, 2H), 7.0–7.9 (m, 8H), 6.80 (d, 2H), 4.1–4.8 (m, 9H). IR (KBr pellet): 2208 (ν C═C/ cm-1), 1668 (ν C═O/ cm-1), 1483 (ν C═N/ cm-1). MALDI–TOF–MS: m/z = 490.1.
(activity II–III) with a mixture of dichloromethane and hexane (1:2 v/v) as The third fraction was collected, and produced a red–brown solid of the title compound (yield: 30 mg, 33%). Single crystals suitable for X-ray structure analysis were obtained by recrystallization from dichloromethane–hexane. 1H NMR (400 MHz, CDCl3):The size of 1-(Fc)AqPHI crystals was small, less than 1 µm. SR powder-diffraction technique was employed for the
The powder crystallites were installed in a 0.4 mm glass capillary. The X-ray powder diffraction data were measured using a large Debye–Scherrer camera with an imaging-plate (IP) as a detector installed at SPring-8 BL02B2 (Nishibori et al., 2001). The CeO2 (NIST SRM674a) standard powder sample was used for wavelength calibration. The calibrated wavelength was 0.80200 (1) Å. We measured the powder profile at 100K with 120 minutes X-ray exposure time.Indexing was carried out using the program DICVOL04 (Boultif & Louer, 2004). The first 21 peaks of the powder pattern were completely indexed on the basis of a monoclinic cell. The figure of merit F(21) was 63.2. The
P21/n was assigned on the basis of systematic extinctions.The lattice constants were refined by the Le Bail method using the program SP (Nishibori et al., 2007). The
was determined from powder diffraction data using a direct-space method with a (Harris et al., 1998; Nishibori et al., 2008). The molecular structure model for GA was constructed using similar structures, 1,4-Fc2Aq, 1,5-Fc2Aq, and 1,8-Fc2Aq (Kondo et al., 2006, Murata et al., 2001). The chemically equivalent distances were equal in the model. GA analysis using the P21/n was performed. A solution was obtained. The rigid-body was initially carried out using the program SP. Restraint Rietveld analysis was employed for the final In the analysis, chemically equivalent distances restrained to be equal. Thermal displacement parameters were refined as isotoric. Four common Uiso parameters were refined for several groups of carbon atoms in the Aq fragment: (C1–C14), phenyl ring (C19–C24), and CP rings (C25–C29 and C30–C34). One common Uiso parameter was also refined for carbon atoms at the D–A junction (C17 and C18). Uiso for H atoms connected to the Aq and Ph parts were fixed at 0.05 Å2. Uiso for H atoms connected to the C25–C29 and C30–C34 CP rings were fixed at 0.09 Å2 and 0.04 Å2, respectively. The split-type pseudo-Voigt profile function (Toraya, 1990) was used with strain broadening (Stephens, 1999). Results of the Rietveld refinements are shown in Fig. 3. Crystal data, data collection and structure details are summarized in Table 3.Data collection: local software (Nishibori et al., 2001); cell
SP (Nishibori et al., 2007); program(s) used to solve structure: GAIA (Nishibori et al., 2008); program(s) used to refine structure: SP (Nishibori et al., 2007); molecular graphics: pyMOL (DeLano, 2002); software used to prepare material for publication: publCIF (Westrip, 2010).The molecular structure of 1-FcAqPHI, showing the atomic numbering and 50% probability displacement spheres. The crystal packing of 1-FcAqPHI. The π–π and C—H···π contacts are shown as dotted and dashed lines, respectively. The fitting results of the final The experimental profile is indicated by red crosses. The calculated profile is shown as a solid blue line, and the cyan line indicates the calculated background. The difference profile is shown as the bottom solid green line. The vertical black bars correspond to the calculated positions of the Bragg peaks. |
[Fe(C5H5)(C27H16NO)] | Z = 4 |
Mr = 491.35 | F(000) = 1016.0 |
Monoclinic, P21/n | Dx = 1.456 Mg m−3 |
Hall symbol: -P 2yn | Synchrotron radiation, λ = 0.80200 Å |
a = 15.9542 (3) Å | µ = 0.96 mm−1 |
b = 8.5087 (2) Å | T = 100 K |
c = 16.7212 (4) Å | orange |
β = 99.070 (2)° | cylinder, 3 × 0.4 mm |
V = 2241.51 (9) Å3 |
Large Debye-Scherrer camera diffractometer | Data collection mode: transmission |
Radiation source: synchrotron, SPring-8 BL02B2 | Scan method: Stationary detector |
Si(111) monochromator | 2θfixed = 0.01-78.68 |
Specimen mounting: capillary |
Refinement on Inet | Excluded region(s): none |
Least-squares matrix: full | Profile function: split-Pseudo-Voigt |
Rp = 0.010 | 180 parameters |
Rwp = 0.020 | 241 restraints |
Rexp = 0.01 | 0 constraints |
RBragg = 0.061 | All H-atom parameters refined |
R(F) = 0.040 | Weighting scheme based on measured s.u.'s |
R(F2) = 0.061 | (Δ/σ)max = 0.02 |
χ2 = 6.554 | Background function: split-Pearson7 and polynomial function |
7868 data points | Preferred orientation correction: none |
[Fe(C5H5)(C27H16NO)] | V = 2241.51 (9) Å3 |
Mr = 491.35 | Z = 4 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.80200 Å |
a = 15.9542 (3) Å | µ = 0.96 mm−1 |
b = 8.5087 (2) Å | T = 100 K |
c = 16.7212 (4) Å | cylinder, 3 × 0.4 mm |
β = 99.070 (2)° |
Large Debye-Scherrer camera diffractometer | Scan method: Stationary detector |
Specimen mounting: capillary | 2θfixed = 0.01-78.68 |
Data collection mode: transmission |
Rp = 0.010 | χ2 = 6.554 |
Rwp = 0.020 | 7868 data points |
Rexp = 0.01 | 180 parameters |
RBragg = 0.061 | 241 restraints |
R(F) = 0.040 | All H-atom parameters refined |
R(F2) = 0.061 |
x | y | z | Uiso*/Ueq | ||
C1 | 0.1031 (3) | −0.0140 (6) | 0.7090 (2) | 0.062 (6)* | |
C2 | 0.0713 (4) | 0.1155 (7) | 0.7483 (2) | 0.062 (6)* | |
C3 | 0.0924 (2) | 0.1347 (4) | 0.8333 (2) | 0.062 (6)* | |
C4 | 0.1447 (2) | 0.0262 (4) | 0.8777 (2) | 0.062 (6)* | |
C5 | 0.1856 (2) | −0.0903 (4) | 0.8380 (2) | 0.062 (6)* | |
C6 | 0.1675 (4) | −0.1075 (6) | 0.7529 (3) | 0.062 (6)* | |
C7 | 0.1611 (2) | 0.0357 (5) | 0.9640 (2) | 0.062 (6)* | |
C8 | 0.0473 (2) | 0.2547 (3) | 0.8772 (2) | 0.062 (6)* | |
C9 | −0.0113 (4) | 0.2770 (7) | 1.0844 (2) | 0.062 (6)* | |
C10 | −0.0154 (3) | 0.2981 (7) | 1.0026 (3) | 0.062 (6)* | |
C11 | 0.0441 (3) | 0.2287 (4) | 0.9646 (2) | 0.062 (6)* | |
C12 | 0.0980 (2) | 0.1093 (5) | 1.0053 (2) | 0.062 (6)* | |
C13 | 0.1014 (4) | 0.0866 (7) | 1.0862 (2) | 0.062 (6)* | |
C14 | 0.0459 (5) | 0.165 (1) | 1.1260 (2) | 0.062 (6)* | |
O15 | 0.2135 (3) | −0.0534 (6) | 1.0027 (2) | 0.125 (6)* | |
N16 | −0.0023 (3) | 0.3603 (5) | 0.8385 (3) | 0.009 (5)* | |
C17 | 0.2217 (3) | −0.2172 (6) | 0.8904 (3) | 0.20 (1)* | |
C18 | 0.2734 (2) | −0.3221 (5) | 0.9182 (2) | 0.23 (1)* | |
C19 | 0.0064 (2) | 0.4110 (3) | 0.7568 (2) | 0.025 (6)* | |
C20 | 0.0868 (2) | 0.4571 (8) | 0.7408 (3) | 0.025 (6)* | |
C21 | 0.0943 (3) | 0.5259 (9) | 0.6656 (4) | 0.025 (6)* | |
C22 | 0.0209 (4) | 0.562 (1) | 0.6101 (3) | 0.025 (6)* | |
C23 | −0.0599 (3) | 0.530 (1) | 0.6298 (3) | 0.025 (6)* | |
C24 | −0.0669 (2) | 0.4640 (8) | 0.7053 (3) | 0.025 (6)* | |
C25 | 0.3354 (2) | −0.7069 (3) | 1.0118 (2) | 0.062 (8)* | |
C26 | 0.4075 (1) | −0.6142 (3) | 1.0390 (2) | 0.062 (8)* | |
C27 | 0.3895 (1) | −0.4585 (4) | 1.0129 (2) | 0.062 (8)* | |
C28 | 0.3061 (1) | −0.4548 (4) | 0.9695 (2) | 0.062 (8)* | |
C29 | 0.2727 (2) | −0.6084 (4) | 0.9689 (1) | 0.062 (8)* | |
C30 | 0.2582 (2) | −0.6324 (4) | 1.1771 (2) | 0.060 (9)* | |
C31 | 0.3326 (2) | −0.5478 (5) | 1.2063 (1) | 0.060 (9)* | |
C32 | 0.3193 (2) | −0.3895 (4) | 1.1825 (2) | 0.060 (9)* | |
C33 | 0.2366 (2) | −0.3765 (4) | 1.1386 (2) | 0.060 (9)* | |
C34 | 0.1988 (1) | −0.5266 (4) | 1.1354 (2) | 0.060 (9)* | |
FE35 | 0.3053 (1) | −0.5312 (2) | 1.0845 (1) | 0.0324 (5)* | |
H36 | 0.0822 (5) | −0.0379 (8) | 0.6558 (2) | 0.05* | |
H37 | 0.0391 (6) | 0.1912 (9) | 0.7173 (2) | 0.05* | |
H38 | 0.1931 (8) | −0.186 (1) | 0.7267 (3) | 0.05* | |
H39 | −0.045 (1) | 0.339 (2) | 1.1130 (5) | 0.05* | |
H40 | −0.0511 (6) | 0.375 (1) | 0.9759 (4) | 0.05* | |
H41 | 0.1469 (7) | 0.032 (2) | 1.1154 (3) | 0.05* | |
H42 | 0.045 (3) | 0.144 (5) | 1.180 (1) | 0.05* | |
H43 | 0.1333 (3) | 0.456 (2) | 0.7821 (4) | 0.05* | |
H44 | 0.1475 (3) | 0.554 (2) | 0.6542 (7) | 0.05* | |
H45 | 0.0260 (5) | 0.596 (3) | 0.5582 (5) | 0.05* | |
H46 | −0.1083 (4) | 0.563 (3) | 0.5956 (6) | 0.05* | |
H47 | −0.1190 (2) | 0.463 (2) | 0.7233 (5) | 0.05* | |
H48 | 0.3304 (3) | −0.8071 (3) | 1.0202 (3) | 0.09* | |
H49 | 0.4548 (2) | −0.6471 (4) | 1.0672 (2) | 0.09* | |
H50 | 0.4237 (1) | −0.3786 (4) | 1.0220 (3) | 0.09* | |
H51 | 0.2223 (2) | −0.6373 (5) | 0.9461 (2) | 0.09* | |
H52 | 0.2505 (2) | −0.7326 (4) | 1.1834 (2) | 0.04* | |
H53 | 0.3788 (2) | −0.5865 (6) | 1.2337 (1) | 0.04* | |
H54 | 0.3555 (3) | −0.3131 (4) | 1.1935 (2) | 0.04* | |
H55 | 0.2131 (2) | −0.2910 (4) | 1.1170 (2) | 0.04* | |
H56 | 0.1479 (1) | −0.5501 (5) | 1.1113 (2) | 0.04* |
Fe35—C25 | 2.032 (3) | C21—C22 | 1.409 (8) |
Fe35—C26 | 2.032 (3) | C22—C23 | 1.407 (8) |
Fe35—C27 | 2.032 (3) | C23—C24 | 1.402 (8) |
Fe35—C28 | 2.032 (4) | C25—C26 | 1.410 (4) |
Fe35—C29 | 2.030 (3) | C25—C29 | 1.411 (4) |
Fe35—C30 | 2.018 (4) | C26—C27 | 1.410 (4) |
Fe35—C31 | 2.019 (2) | C27—C28 | 1.412 (3) |
Fe35—C32 | 2.018 (4) | C28—C29 | 1.411 (5) |
Fe35—C33 | 2.016 (4) | C30—C31 | 1.408 (5) |
Fe35—C34 | 2.017 (3) | C30—C34 | 1.409 (4) |
O15—C7 | 1.234 (6) | C31—C32 | 1.411 (5) |
N16—C8 | 1.300 (5) | C32—C33 | 1.410 (5) |
N16—C19 | 1.460 (6) | C33—C34 | 1.410 (5) |
C1—C2 | 1.417 (7) | C1—H36 | 0.922 (5) |
C1—C6 | 1.411 (7) | C2—H37 | 0.929 (9) |
C2—C3 | 1.418 (5) | C6—H38 | 0.928 (11) |
C3—C4 | 1.380 (5) | C9—H39 | 0.937 (16) |
C3—C8 | 1.505 (4) | C10—H40 | 0.934 (10) |
C4—C5 | 1.409 (5) | C13—H41 | 0.932 (13) |
C4—C7 | 1.428 (5) | C14—H42 | 0.923 (19) |
C5—C6 | 1.414 (6) | C20—H43 | 0.931 (7) |
C5—C17 | 1.451 (6) | C21—H44 | 0.930 (9) |
C7—C12 | 1.450 (5) | C22—H45 | 0.930 (13) |
C8—C11 | 1.487 (5) | C23—H46 | 0.929 (12) |
C9—C10 | 1.371 (6) | C24—H47 | 0.928 (5) |
C9—C14 | 1.423 (9) | C25—H48 | 0.870 (4) |
C10—C11 | 1.358 (7) | C26—H49 | 0.871 (4) |
C11—C12 | 1.432 (5) | C27—H50 | 0.870 (4) |
C12—C13 | 1.359 (5) | C29—H51 | 0.869 (4) |
C13—C14 | 1.363 (9) | C30—H52 | 0.870 (5) |
C17—C18 | 1.254 (6) | C31—H53 | 0.869 (4) |
C18—C28 | 1.464 (5) | C32—H54 | 0.870 (5) |
C19—C20 | 1.407 (5) | C33—H55 | 0.870 (5) |
C19—C24 | 1.413 (5) | C34—H56 | 0.871 (3) |
C20—C21 | 1.409 (9) | ||
C25—Fe35—C26 | 40.60 (12) | Fe35—C25—C26 | 69.70 (16) |
C25—Fe35—C27 | 68.34 (14) | Fe35—C25—C29 | 69.61 (16) |
C25—Fe35—C28 | 68.40 (14) | C26—C25—C29 | 108.0 (2) |
C25—Fe35—C29 | 40.66 (13) | Fe35—C26—C25 | 69.70 (15) |
C25—Fe35—C30 | 107.27 (15) | Fe35—C26—C27 | 69.70 (13) |
C25—Fe35—C31 | 121.22 (17) | C25—C26—C27 | 108.1 (2) |
C25—Fe35—C32 | 156.79 (16) | Fe35—C27—C26 | 69.69 (16) |
C25—Fe35—C33 | 160.98 (16) | Fe35—C27—C28 | 69.67 (15) |
C25—Fe35—C34 | 124.13 (15) | C26—C27—C28 | 108.0 (3) |
C26—Fe35—C27 | 40.61 (12) | Fe35—C28—C18 | 138.3 (2) |
C26—Fe35—C28 | 68.39 (12) | Fe35—C28—C27 | 69.66 (19) |
C26—Fe35—C29 | 68.36 (13) | Fe35—C28—C29 | 69.61 (16) |
C26—Fe35—C30 | 123.85 (15) | C18—C28—C27 | 122.6 (3) |
C26—Fe35—C31 | 107.17 (15) | C18—C28—C29 | 127.7 (3) |
C26—Fe35—C32 | 121.27 (15) | C27—C28—C29 | 107.9 (3) |
C26—Fe35—C33 | 156.95 (15) | Fe35—C29—C25 | 69.73 (15) |
C26—Fe35—C34 | 160.72 (15) | Fe35—C29—C28 | 69.74 (18) |
C27—Fe35—C28 | 40.67 (10) | C25—C29—C28 | 108.1 (2) |
C27—Fe35—C29 | 68.37 (14) | Fe35—C30—C31 | 69.66 (17) |
C27—Fe35—C30 | 160.57 (15) | Fe35—C30—C34 | 69.54 (18) |
C27—Fe35—C31 | 123.92 (15) | C31—C30—C34 | 108.0 (3) |
C27—Fe35—C32 | 107.32 (15) | Fe35—C31—C30 | 69.52 (16) |
C27—Fe35—C33 | 121.49 (16) | Fe35—C31—C32 | 69.50 (17) |
C27—Fe35—C34 | 157.21 (16) | C30—C31—C32 | 108.0 (3) |
C28—Fe35—C29 | 40.65 (13) | Fe35—C32—C31 | 69.59 (17) |
C28—Fe35—C30 | 157.16 (14) | Fe35—C32—C33 | 69.5 (2) |
C28—Fe35—C31 | 160.80 (16) | C31—C32—C33 | 108.0 (3) |
C28—Fe35—C32 | 124.12 (16) | Fe35—C33—C32 | 69.6 (2) |
C28—Fe35—C33 | 107.50 (15) | Fe35—C33—C34 | 69.58 (17) |
C28—Fe35—C34 | 121.64 (13) | C32—C33—C34 | 108.0 (3) |
C29—Fe35—C30 | 121.48 (15) | Fe35—C34—C30 | 69.57 (16) |
C29—Fe35—C31 | 156.90 (18) | Fe35—C34—C33 | 69.50 (17) |
C29—Fe35—C32 | 160.96 (16) | C30—C34—C33 | 108.0 (2) |
C29—Fe35—C33 | 124.24 (15) | C2—C1—H36 | 121.2 (6) |
C29—Fe35—C34 | 107.56 (15) | C6—C1—H36 | 120.0 (7) |
C30—Fe35—C31 | 40.83 (14) | C1—C2—H37 | 119.2 (5) |
C30—Fe35—C32 | 68.83 (14) | C3—C2—H37 | 120.2 (6) |
C30—Fe35—C33 | 68.88 (14) | C1—C6—H38 | 119.9 (7) |
C30—Fe35—C34 | 40.89 (14) | C5—C6—H38 | 120.9 (7) |
C31—Fe35—C32 | 40.91 (16) | C10—C9—H39 | 119.7 (9) |
C31—Fe35—C33 | 68.85 (15) | C14—C9—H39 | 120.2 (8) |
C31—Fe35—C34 | 68.77 (14) | C9—C10—H40 | 119.9 (7) |
C32—Fe35—C33 | 40.90 (14) | C11—C10—H40 | 120.0 (7) |
C32—Fe35—C34 | 68.81 (14) | C12—C13—H41 | 119.8 (7) |
C33—Fe35—C34 | 40.92 (14) | C14—C13—H41 | 120.0 (6) |
C8—N16—C19 | 122.0 (4) | C9—C14—H42 | 120 (3) |
C2—C1—C6 | 118.8 (4) | C13—C14—H42 | 120 (3) |
C1—C2—C3 | 120.6 (4) | C19—C20—H43 | 120.0 (7) |
C2—C3—C4 | 119.4 (4) | C21—C20—H43 | 119.8 (7) |
C2—C3—C8 | 120.7 (4) | C20—C21—H44 | 119.9 (9) |
C4—C3—C8 | 119.1 (3) | C22—C21—H44 | 120.0 (10) |
C3—C4—C5 | 120.2 (3) | C21—C22—H45 | 119.8 (8) |
C3—C4—C7 | 120.3 (3) | C23—C22—H45 | 119.8 (8) |
C5—C4—C7 | 119.4 (3) | C22—C23—H46 | 120.1 (10) |
C4—C5—C6 | 120.7 (4) | C24—C23—H46 | 119.9 (8) |
C4—C5—C17 | 114.1 (3) | C19—C24—H47 | 119.8 (8) |
C6—C5—C17 | 122.0 (4) | C23—C24—H47 | 119.9 (8) |
C1—C6—C5 | 118.8 (4) | Fe35—C25—H48 | 126.0 (4) |
O15—C7—C4 | 119.8 (4) | C26—C25—H48 | 126.0 (5) |
O15—C7—C12 | 118.7 (3) | C29—C25—H48 | 126.1 (5) |
C4—C7—C12 | 118.4 (3) | Fe35—C26—H49 | 126.0 (4) |
N16—C8—C3 | 121.8 (3) | C25—C26—H49 | 126.0 (4) |
N16—C8—C11 | 118.7 (3) | C27—C26—H49 | 125.9 (3) |
C3—C8—C11 | 118.1 (3) | Fe35—C27—H50 | 126.1 (4) |
C10—C9—C14 | 120.1 (5) | C26—C27—H50 | 126.1 (3) |
C9—C10—C11 | 118.9 (5) | C28—C27—H50 | 125.9 (4) |
C8—C11—C10 | 122.0 (4) | Fe35—C29—H51 | 126.1 (3) |
C8—C11—C12 | 117.5 (3) | C25—C29—H51 | 126.0 (4) |
C10—C11—C12 | 119.9 (4) | C28—C29—H51 | 126.0 (4) |
C7—C12—C11 | 119.4 (3) | Fe35—C30—H52 | 126.0 (4) |
C7—C12—C13 | 119.4 (4) | C31—C30—H52 | 125.9 (4) |
C11—C12—C13 | 120.0 (4) | C34—C30—H52 | 126.1 (4) |
C12—C13—C14 | 119.3 (5) | Fe35—C31—H53 | 126.0 (3) |
C9—C14—C13 | 120.3 (4) | C30—C31—H53 | 126.0 (5) |
C5—C17—C18 | 158.2 (5) | C32—C31—H53 | 126.0 (5) |
C17—C18—C28 | 156.8 (4) | Fe35—C32—H54 | 127.1 (4) |
N16—C19—C20 | 119.0 (4) | C31—C32—H54 | 126.1 (4) |
N16—C19—C24 | 118.2 (3) | C33—C32—H54 | 126.0 (4) |
C20—C19—C24 | 119.2 (4) | Fe35—C33—H55 | 126.1 (4) |
C19—C20—C21 | 119.6 (4) | C32—C33—H55 | 126.0 (4) |
C20—C21—C22 | 120.0 (5) | C34—C33—H55 | 126.0 (4) |
C21—C22—C23 | 120.1 (5) | Fe35—C34—H56 | 125.9 (3) |
C22—C23—C24 | 119.6 (4) | C30—C34—H56 | 126.0 (4) |
C19—C24—C23 | 120.1 (3) | C33—C34—H56 | 126.0 (4) |
C32—Fe35—C28—C27 | 76.3 (2) | C33—Fe35—C28—C18 | 1.7 (4) |
C33—Fe35—C28—C27 | 118.3 (2) | C31—Fe35—C33—C32 | 37.7 (2) |
C34—Fe35—C28—C27 | 160.8 (2) | C34—Fe35—C33—C32 | 119.3 (3) |
C25—Fe35—C28—C29 | 37.70 (18) | C26—Fe35—C28—C27 | −37.65 (18) |
C26—Fe35—C28—C29 | 81.52 (18) | C29—Fe35—C28—C27 | −119.2 (3) |
C27—Fe35—C28—C29 | 119.2 (3) | C28—Fe35—C33—C34 | 118.4 (2) |
C30—Fe35—C28—C29 | −45.6 (4) | C34—Fe35—C31—C32 | −81.7 (2) |
C32—Fe35—C28—C29 | −164.5 (2) | C34—Fe35—C32—C33 | −37.8 (2) |
C33—Fe35—C28—C29 | −122.6 (2) | C30—Fe35—C33—C32 | 81.6 (2) |
C34—Fe35—C28—C29 | −80.0 (2) | C25—Fe35—C32—C31 | −46.9 (5) |
C25—Fe35—C32—C33 | −166.3 (4) | C26—Fe35—C32—C31 | −80.0 (2) |
C26—Fe35—C32—C33 | 160.6 (2) | C27—Fe35—C32—C31 | −122.2 (2) |
C27—Fe35—C32—C33 | 118.4 (2) | C28—Fe35—C32—C31 | −163.74 (19) |
C28—Fe35—C32—C33 | 76.9 (2) | C30—Fe35—C32—C31 | 37.62 (19) |
C30—Fe35—C32—C33 | −81.8 (2) | C33—Fe35—C32—C31 | 119.4 (3) |
C26—Fe35—C29—C25 | 37.65 (17) | C29—Fe35—C33—C32 | −163.9 (2) |
C27—Fe35—C29—C25 | 81.50 (19) | C28—Fe35—C34—C30 | 160.4 (2) |
C28—Fe35—C29—C25 | 119.2 (2) | C29—Fe35—C31—C32 | −166.8 (4) |
C30—Fe35—C29—C25 | −79.7 (2) | C26—Fe35—C33—C34 | −165.8 (4) |
C31—Fe35—C29—C25 | −45.4 (5) | C27—Fe35—C33—C34 | 160.7 (2) |
C33—Fe35—C29—C25 | −164.3 (2) | C27—Fe35—C34—C30 | −166.1 (4) |
C34—Fe35—C29—C25 | −122.3 (2) | C33—Fe35—C31—C32 | −37.70 (19) |
C25—Fe35—C29—C28 | −119.2 (2) | C30—Fe35—C31—C32 | −119.5 (3) |
C26—Fe35—C29—C28 | −81.59 (16) | C26—Fe35—C33—C32 | −46.5 (5) |
C27—Fe35—C29—C28 | −37.74 (15) | C27—Fe35—C33—C32 | −80.0 (2) |
C30—Fe35—C29—C28 | 161.04 (18) | C28—Fe35—C33—C32 | −122.3 (2) |
C31—Fe35—C29—C28 | −164.7 (4) | C25—Fe35—C34—C30 | 76.4 (2) |
C33—Fe35—C29—C28 | 76.5 (2) | C19—N16—C8—C3 | −24.2 (6) |
C34—Fe35—C29—C28 | 118.43 (18) | C19—N16—C8—C11 | 169.9 (3) |
C25—Fe35—C30—C31 | 118.1 (2) | C8—N16—C19—C20 | −50.6 (6) |
C26—Fe35—C30—C31 | 76.5 (3) | C8—N16—C19—C24 | 151.0 (5) |
C28—Fe35—C30—C31 | −166.7 (4) | C6—C1—C2—C3 | −11.1 (8) |
C29—Fe35—C30—C31 | 160.2 (2) | C2—C1—C6—C5 | 13.1 (8) |
C32—Fe35—C30—C31 | −37.7 (2) | C1—C2—C3—C4 | 0.3 (7) |
C33—Fe35—C30—C31 | −81.7 (2) | C1—C2—C3—C8 | −169.3 (4) |
C34—Fe35—C30—C31 | −119.4 (3) | C2—C3—C4—C5 | 8.3 (5) |
C25—Fe35—C30—C34 | −122.6 (2) | C8—C3—C4—C7 | −5.0 (5) |
C26—Fe35—C30—C34 | −164.1 (2) | C2—C3—C8—N16 | −10.8 (6) |
C28—Fe35—C30—C34 | −47.4 (5) | C4—C3—C8—N16 | 179.6 (4) |
C29—Fe35—C30—C34 | −80.4 (2) | C4—C3—C8—C11 | −14.5 (5) |
C31—Fe35—C30—C34 | 119.4 (3) | C2—C3—C8—C11 | 155.2 (4) |
C32—Fe35—C30—C34 | 81.7 (2) | C8—C3—C4—C5 | 178.1 (3) |
C33—Fe35—C30—C34 | 37.68 (19) | C2—C3—C4—C7 | −174.8 (4) |
C31—Fe35—C27—C28 | −164.5 (2) | C3—C4—C7—C12 | 26.6 (5) |
C32—Fe35—C27—C28 | −122.6 (2) | C5—C4—C7—O15 | 3.1 (6) |
C33—Fe35—C27—C28 | −80.1 (2) | C3—C4—C7—O15 | −173.8 (4) |
C34—Fe35—C27—C28 | −46.2 (5) | C7—C4—C5—C17 | 16.9 (5) |
C29—Fe35—C34—C33 | −122.4 (2) | C5—C4—C7—C12 | −156.5 (3) |
C30—Fe35—C34—C33 | 119.5 (3) | C3—C4—C5—C17 | −166.1 (3) |
C25—Fe35—C31—C30 | −80.2 (2) | C3—C4—C5—C6 | −6.2 (5) |
C26—Fe35—C31—C30 | −122.3 (2) | C7—C4—C5—C6 | 176.9 (4) |
C27—Fe35—C31—C30 | −163.7 (2) | C6—C5—C17—C18 | 56.4 (14) |
C29—Fe35—C31—C30 | −47.3 (5) | C4—C5—C17—C18 | −143.9 (12) |
C32—Fe35—C31—C30 | 119.5 (3) | C4—C5—C6—C1 | −4.8 (7) |
C33—Fe35—C31—C30 | 81.8 (2) | C17—C5—C6—C1 | 153.6 (4) |
C34—Fe35—C31—C30 | 37.7 (2) | O15—C7—C12—C13 | 4.2 (7) |
C25—Fe35—C31—C32 | 160.3 (2) | C4—C7—C12—C11 | −28.5 (5) |
C26—Fe35—C31—C32 | 118.2 (2) | O15—C7—C12—C11 | 171.7 (4) |
C27—Fe35—C31—C32 | 76.8 (2) | C4—C7—C12—C13 | 164.0 (4) |
C27—Fe35—C25—C26 | 37.66 (17) | C3—C8—C11—C10 | −158.7 (4) |
C28—Fe35—C25—C26 | 81.56 (18) | C3—C8—C11—C12 | 12.2 (5) |
C29—Fe35—C25—C26 | 119.3 (3) | N16—C8—C11—C10 | 7.8 (6) |
C30—Fe35—C25—C26 | −122.3 (2) | N16—C8—C11—C12 | 178.6 (4) |
C31—Fe35—C25—C26 | −79.8 (2) | C14—C9—C10—C11 | −9.8 (9) |
C32—Fe35—C25—C26 | −45.8 (4) | C10—C9—C14—C13 | 5.0 (10) |
C34—Fe35—C25—C26 | −164.0 (2) | C9—C10—C11—C8 | −175.8 (4) |
C26—Fe35—C25—C29 | −119.3 (3) | C9—C10—C11—C12 | 13.5 (7) |
C27—Fe35—C25—C29 | −81.59 (19) | C8—C11—C12—C7 | 8.7 (5) |
C28—Fe35—C25—C29 | −37.69 (17) | C10—C11—C12—C13 | −12.8 (7) |
C30—Fe35—C25—C29 | 118.5 (2) | C8—C11—C12—C13 | 176.2 (4) |
C31—Fe35—C25—C29 | 160.9 (2) | C10—C11—C12—C7 | 179.8 (4) |
C32—Fe35—C25—C29 | −165.1 (4) | C7—C12—C13—C14 | 175.2 (6) |
C34—Fe35—C25—C29 | 76.7 (2) | C11—C12—C13—C14 | 7.8 (8) |
C34—Fe35—C32—C31 | 81.6 (2) | C12—C13—C14—C9 | −4.0 (10) |
C29—Fe35—C27—C28 | 37.7 (2) | C5—C17—C18—C28 | −173.5 (8) |
C32—Fe35—C34—C30 | −81.7 (2) | C17—C18—C28—C29 | 65.2 (11) |
C33—Fe35—C34—C30 | −119.5 (3) | C17—C18—C28—Fe35 | −36.7 (12) |
C25—Fe35—C34—C33 | −164.1 (2) | C17—C18—C28—C27 | −132.3 (9) |
C31—Fe35—C32—C33 | −119.4 (3) | N16—C19—C20—C21 | −171.6 (5) |
C27—Fe35—C26—C25 | −119.3 (3) | N16—C19—C24—C23 | 172.9 (5) |
C28—Fe35—C26—C25 | −81.6 (2) | C24—C19—C20—C21 | −13.4 (8) |
C29—Fe35—C26—C25 | −37.71 (18) | C20—C19—C24—C23 | 14.6 (8) |
C30—Fe35—C26—C25 | 76.5 (2) | C19—C20—C21—C22 | 6.1 (10) |
C31—Fe35—C26—C25 | 118.2 (2) | C20—C21—C22—C23 | 0.3 (11) |
C32—Fe35—C26—C25 | 160.7 (2) | C21—C22—C23—C24 | 0.8 (12) |
C33—Fe35—C26—C25 | −165.6 (4) | C22—C23—C24—C19 | −8.3 (10) |
C25—Fe35—C26—C27 | 119.3 (3) | C26—C25—C29—Fe35 | −59.4 (2) |
C28—Fe35—C26—C27 | 37.69 (18) | Fe35—C25—C29—C28 | 59.43 (19) |
C29—Fe35—C26—C27 | 81.6 (2) | C29—C25—C26—C27 | −0.1 (3) |
C30—Fe35—C26—C27 | −164.2 (2) | C26—C25—C29—C28 | 0.1 (3) |
C31—Fe35—C26—C27 | −122.5 (2) | C29—C25—C26—Fe35 | 59.3 (2) |
C32—Fe35—C26—C27 | −80.0 (2) | Fe35—C25—C26—C27 | −59.4 (2) |
C33—Fe35—C26—C27 | −46.3 (5) | C25—C26—C27—C28 | 0.0 (3) |
C29—Fe35—C33—C34 | 76.8 (2) | C25—C26—C27—Fe35 | 59.4 (2) |
C30—Fe35—C33—C34 | −37.66 (19) | Fe35—C26—C27—C28 | −59.3 (2) |
C31—Fe35—C33—C34 | −81.6 (2) | C26—C27—C28—C29 | 0.0 (3) |
C25—Fe35—C27—C26 | −37.65 (18) | Fe35—C27—C28—C29 | −59.3 (2) |
C28—Fe35—C27—C26 | −119.3 (3) | Fe35—C27—C28—C18 | 135.1 (3) |
C29—Fe35—C27—C26 | −81.6 (2) | C26—C27—C28—Fe35 | 59.4 (2) |
C31—Fe35—C27—C26 | 76.2 (2) | C26—C27—C28—C18 | −165.6 (3) |
C32—Fe35—C27—C26 | 118.1 (2) | C27—C28—C29—Fe35 | 59.4 (2) |
C33—Fe35—C27—C26 | 160.6 (2) | C27—C28—C29—C25 | −0.1 (3) |
C34—Fe35—C27—C26 | −165.5 (4) | C18—C28—C29—C25 | 164.6 (3) |
C25—Fe35—C27—C28 | 81.6 (2) | Fe35—C28—C29—C25 | −59.42 (18) |
C26—Fe35—C27—C28 | 119.3 (3) | C18—C28—C29—Fe35 | −136.0 (3) |
C29—Fe35—C34—C30 | 118.1 (2) | Fe35—C30—C31—C32 | 59.0 (2) |
C31—Fe35—C34—C30 | −37.7 (2) | C31—C30—C34—C33 | 0.2 (3) |
C34—Fe35—C28—C18 | 44.3 (4) | Fe35—C30—C34—C33 | −59.1 (2) |
C25—Fe35—C28—C27 | −81.5 (2) | C31—C30—C34—Fe35 | 59.2 (2) |
C27—Fe35—C34—C33 | −46.6 (5) | C34—C30—C31—Fe35 | −59.2 (2) |
C28—Fe35—C34—C33 | −80.1 (2) | C34—C30—C31—C32 | −0.1 (3) |
C30—Fe35—C28—C27 | −164.7 (4) | C30—C31—C32—C33 | 0.0 (3) |
C31—Fe35—C34—C33 | 81.8 (2) | Fe35—C31—C32—C33 | 59.1 (2) |
C32—Fe35—C34—C33 | 37.76 (19) | C30—C31—C32—Fe35 | −59.1 (2) |
C32—Fe35—C33—C34 | −119.3 (3) | C31—C32—C33—C34 | 0.1 (4) |
C25—Fe35—C28—C18 | 162.0 (3) | C31—C32—C33—Fe35 | −59.1 (2) |
C26—Fe35—C28—C18 | −154.2 (3) | Fe35—C32—C33—C34 | 59.2 (2) |
C27—Fe35—C28—C18 | −116.6 (4) | C32—C33—C34—C30 | −0.2 (4) |
C29—Fe35—C28—C18 | 124.3 (3) | Fe35—C33—C34—C30 | 59.1 (2) |
C30—Fe35—C28—C18 | 78.7 (6) | C32—C33—C34—Fe35 | −59.3 (2) |
C32—Fe35—C28—C18 | −40.3 (4) |
Cg1 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C34—H56···Cg1i | 0.87 (1) | 2.86 (1) | 3.588 (4) | 143 (1) |
Symmetry code: (i) x, y−1, z. |
Cg1 is the centroid of the C9–C14 ring and Cg1_Perp is the perpendicular distance from Cg1i to the C9–C14 ring. |
Cg1···Cg1i | Cg1_Perpi |
3.802 (3) | 3.486 (2) |
Symmetry code: (i) -x, -y + 1, -z + 2. |
Cg1 is the centroid of the C9–C14 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
C34—H56···Cg1i | 0.871 (3) | 2.855 (4) | 3.588 (4) | 142.9 (5) |
Symmetry code: (i) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Fe(C5H5)(C27H16NO)] |
Mr | 491.35 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 100 |
a, b, c (Å) | 15.9542 (3), 8.5087 (2), 16.7212 (4) |
β (°) | 99.070 (2) |
V (Å3) | 2241.51 (9) |
Z | 4 |
Radiation type | Synchrotron, λ = 0.80200 Å |
µ (mm−1) | 0.96 |
Specimen shape, size (mm) | Cylinder, 3 × 0.4 |
Data collection | |
Diffractometer | Large Debye-Scherrer camera diffractometer |
Specimen mounting | Capillary |
Data collection mode | Transmission |
Scan method | Stationary detector |
2θ values (°) | 2θfixed = 0.01-78.68 |
Refinement | |
R factors and goodness of fit | Rp = 0.010, Rwp = 0.020, Rexp = 0.01, RBragg = 0.061, R(F) = 0.040, R(F2) = 0.061, χ2 = 6.554 |
No. of data points | 7868 |
No. of parameters | 180 |
No. of restraints | 241 |
H-atom treatment | All H-atom parameters refined |
Computer programs: local software (Nishibori et al., 2001), SP (Nishibori et al., 2007), GAIA (Nishibori et al., 2008), pyMOL (DeLano, 2002), publCIF (Westrip, 2010).
Acknowledgements
This work was supported by a Grant-in-Aid for Young Scientists (A) (No. 17686003), Scientific Research (B) (No. 20360006) and Challenging Exploratory Research (No. 25600148) of MEXT, Japan, for the partial support of the present study. We thank Mr Ryota Sato for experimental and analytical help. We also thank Dr J. E. Kim for experimental help. The synchrotron radiation experiments were performed at SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI).
References
Alberola, A., Coronado, E., Galán-Mascarós, J. R., Giménez-Saiz, C. & Gómez-García, C. J. (2003). J. Am. Chem. Soc. 125, 10774–10775. Web of Science CSD CrossRef PubMed CAS Google Scholar
Boultif, A. & Louër, D. (2004). J. Appl. Cryst. 37, 724–731. Web of Science CrossRef CAS IUCr Journals Google Scholar
DeLano, W. L. (2002). The pyMOL Molecular Graphics System. http://www.pyMOL.org. Google Scholar
Ferraris, J., Cowan, D. O., Walatka, V. Jr & Perlstein, J. H. (1973). J. Am. Chem. Soc. 95, 948–949. CrossRef CAS Web of Science Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CrossRef CAS Google Scholar
Harris, K. D. M., Johnston, R. L. & Kariuki, B. M. (1998). Acta Cryst. A54, 632–645. Web of Science CrossRef CAS IUCr Journals Google Scholar
Kondo, M., Murata, M., Nishihara, H., Nishibori, E., Aoyagi, S., Yoshida, M., Kinoshita, Y. & Sakata, M. (2006). Angew. Chem. Int. Ed. 45, 5461–5464. Web of Science CSD CrossRef CAS Google Scholar
Murata, M., Yamada, M., Fujita, T., Kojima, K., Kurihara, M., Kubo, K., Kobayashi, Y. & Nishihara, H. (2001). J. Am. Chem. Soc. 123, 12903–12904. Web of Science CSD CrossRef PubMed CAS Google Scholar
Nishibori, E., Ogura, T., Aoyagi, S. & Sakata, M. (2008). J. Appl. Cryst. 41, 292–301. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Nishibori, E., Sunaoshi, E., Yoshida, A., Aoyagi, S., Kato, K., Takata, M. & Sakata, M. (2007). Acta Cryst. A63, 43–52. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nishibori, E., Takata, M., Kato, K., Sakata, M., Kubota, Y., Aoyagi, S., Kuroiwa, Y., Yamakata, M. & Ikeda, N. (2001). Nucl. Instrum. Methods Phys. Res. A, 467, 1045–1048. Web of Science CrossRef Google Scholar
Sachiko, M., Nishibori, E., Aoyagi, S., Sakata, M., Takata, M., Kondo, M., Murata, M., Sakamoto, R. & Nishihara, H. (2013). Acta Cryst. C69, 696–703. Web of Science CSD CrossRef IUCr Journals Google Scholar
Stephens, P. W. (1999). J. Appl. Cryst. 32, 281–289. Web of Science CrossRef CAS IUCr Journals Google Scholar
Toraya, H. (1990). J. Appl. Cryst. 23, 485–491. CrossRef CAS Web of Science IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.