research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of the ternary silicide Gd2Re3Si5

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya st. 6, UA-79005 Lviv, Ukraine, and bLaboratory of Crystallography, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
*Correspondence e-mail: vitaliia.fedyna@gmail.com

Edited by L. Farrugia, University of Glasgow, Scotland (Received 20 October 2014; accepted 3 November 2014; online 8 November 2014)

A single crystal of the title compound, the ternary silicide digadolinium trirhenium penta­silicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its crystal structure belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has site symmetry m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubo­octa­hedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The crystal structure of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å.

1. Chemical context

Four structure types of composition R2T3Si5 are known for the systems RT–Si (R = rare-earth element, T = d-block element): U2Mn3Si5 (Yarmolyuk et al., 1977[Yarmolyuk, Y. P., Akselrud, L. G. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 358-359.]) (Pearson symbol tP40, space group P4/mnc), U2Co3Si5 (Akselrud et al., 1977[Akselrud, L. G., Yarmolyuk, Y. P. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 492-493.]) (oI40, Ibam), Nd2Os3Si5 (Rizzoli et al., 2004[Rizzoli, C., Salamakha, P. S., Sologub, O. L., Belletti, D., Goncalves, A. P. & Almeida, M. (2004). J. Alloys Compd, 363, 217-222.]) (tP48, P4/mnc) and Lu2Co3Si5 (Chabot & Parthé, 1985[Chabot, B. & Parthé, E. (1985). J. Less-Common Met. 106, 53-59.]) (mS40, C2/c). The structure type U2Mn3Si5 has representatives in the systems R–Mn–Si (R = Y, Gd–Lu), R–Re–Si (R = Y, La–Nd, Sm, Gd–Tm), R–Fe–Si (R = Sc, Y, Sm, Gd–Lu), R–Ru–Si (R = Sm, Er, Lu), whereas the structure type U2Co3Si5 has been found in the systems R–Ru–Si (R = Tb, Er), R–Co–Si (R = Sc, Y, Ce, Gd–Er), R–Rh–Si (R = Y, La, Ce, Nd, Sm, Gd–Er), R–Ir–Si (R = Y, Ce, Tb, Lu), R–Ni–Si (R = Y, Ce, Nd, Sm, Gd–Tm), R–Pt–Si (R = Ce, Sm), and R–Pd–Si (R = Ce, Sm), the structure type Nd2Os3Si5 in the systems R–Os–Si (R = Nd, Eu), and the structure type Lu2Co3Si5 in the systems R–Co–Si (R = Y, Tb, Dy, Lu), R–Rh–Si (R = Y, Tb, Dy) and R–Ni–Si (R = Lu) (Villars & Cenzual, 2013[Villars, P. & Cenzual, K. (2013). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds. Release 2013/14. Materials Park, Ohio: ASM International.]).

2. Structural commentary

The existence of the compound Gd2Re3Si5 has been reported earlier (Bodak et al., 1978[Bodak, O. I., Pecharskii, V. K. & Gladyshevskii, E. I. (1978). Izv. Akad. Nauk SSSR Neorg. Mater. 14, 251-255.]). The unit-cell parameters were determined and the structure type was assigned. A complete investigation of the crystal structure by X-ray single crystal diffraction has now been undertaken. The coordination polyhedra of the Gd atoms have 21 vertexes, whereas those of the Re atoms are cubo­octa­hedra or 13-vertex polyhedra, and the Si atoms tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The U2Mn3Si5-type structure is closely related to the structure type BaAl4 and its ordered derivative CaBe2Ge2. In particular, the U2Mn3Si5-type can be considered to be formed by one-dimensional structural fragments of the structure type CaBe2Ge2, running parallel to the direction [00l]. There also exists a relationship between the structure types U2Mn3Si5 and W5Si3. Fragments which can be viewed as deformed square anti­prisms are common to both structures. The crystal structure of Gd2Re3Si5 can also be represented as a stacking of Gd-centred polyhedra of composition [GdSi9], located at z = 0 and ½ (Fig. 1[link]) (Parthé et al., 1993[Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. & Gladyshevskii, R. (1993). TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Heidelberg: Springer-Verlag.]). The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å.

[Figure 1]
Figure 1
Stacking of Gd-centred polyhedra in the structure of the compound Gd2Re3Si5 with displacement ellipsoids drawn at the 99% probability level.

3. Synthesis and crystallization

An alloy of nominal atom percent composition Gd20Re30Si50 was synthesized from the high-purity elements by arc melting on a water-cooled copper plate under a purified argon atmos­phere, using titanium as a getter and a tungsten electrode. The weight loss during the sample preparation was less than 0.5% of the total mass (1 g). The alloy was placed into an Al2O3 crucible and inserted into a tantalum container, which was then sealed by welding, leaving the sample under an argon atmosphere. The sample, wrapped in tantalum foil, was heated to 1623 K in a muffle furnace at a rate of 200 K h−1, held at this temperature for 5 h and then cooled to room temperature at a rate of 50 K h−1.

4. Refinement details

A single crystal of well-defined shape was separated from the sample. The structure was solved by direct methods. The highest Fourier difference peak of 2.35 e Å−3 is at (0, [1\over2], [1\over4]), 0.00 Å away from atom Re2. The deepest hole (−2.44 e Å−3) is at (0.6045, 0.3985, 0), 1.52 Å away from the Gd atom. Details of the crystal parameters, data collection and the structure refinement details are summarized in Table 1[link].

Table 1
Experimental details

Crystal data
Chemical formula Gd2Re3Si5
Mr 1013.55
Crystal system, space group Tetragonal, P4/mnc
Temperature (K) 293
a, c (Å) 10.95564 (13), 5.56326 (11)
V3) 667.74 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 74.55
Crystal size (mm) 0.16 × 0.10 × 0.02
 
Data collection
Diffractometer Agilent Xcalibur Onyx
Absorption correction Analytical [CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995[Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.])]
Tmin, Tmax 0.015, 0.194
No. of measured, independent and observed [I > 2σ(I)] reflections 11378, 502, 481
Rint 0.062
(sin θ/λ)max−1) 0.692
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.17
No. of reflections 502
No. of parameters 31
Δρmax, Δρmin (e Å−3) 2.35, −2.44
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

Four structure types of composition R2T3Si5 are known for the systems RT–Si (R = rare-earth element, T = d-element): U2Mn3Si5 (Yarmolyuk et al., 1977) (Pearson symbol tP40, space group P4/mnc), U2Co3Si5 (Akselrud et al., 1977) (oI40, Ibam), Nd2Os3Si5 (Rizzoli et al., 2004) (tP48, P4/mnc), and Lu2Co3Si5 (Chabot & Parthé, 1985) (mS40, C2/c). The structure type U2Mn3Si5 has representatives in the systems R–Mn–Si (R = Y, Gd–Lu), R–Re–Si (R = Y, La–Nd, Sm, Gd–Tm), R–Fe–Si (R = Sc, Y, Sm, Gd–Lu), R–Ru–Si (R = Sm, Er, Lu), whereas the structure type U2Co3Si5 has been found in the systems R–Ru–Si (R = Tb, Er), R–Co–Si (R = Sc, Y, Ce, Gd–Er), R–Rh–Si (R = Y, La, Ce, Nd, Sm, Gd–Er), R–Ir–Si (R = Y, Ce, Tb, Lu), R–Ni–Si (R = Y, Ce, Nd, Sm, Gd–Tm), R–Pt–Si (R = Ce, Sm), and R–Pd–Si (R = Ce, Sm), the structure type Nd2Os3Si5 in the systems R–Os–Si (R = Nd, Eu), and the structure type Lu2Co3Si5 in the systems R–Co–Si (R = Y, Tb, Dy, Lu), R–Rh–Si (R = Y, Tb, Dy), and R–Ni–Si (R = Lu) (Villars & Cenzual, 2013).

Structural commentary top

The existence of the compound Gd2Re3Si5 has been reported earlier (Bodak et al., 1978). The unit-cell parameters were determined and the structure type was assigned. A complete investigation of the crystal structure by X-ray single crystal diffraction has now been undertaken. The coordination polyhedra of the Gd atoms have 21 vertexes, whereas those of the Re atoms are cuboo­cta­hedra or 13-vertex polyhedra, and the Si atoms tricapped trigonal prisms, bicapped square anti­prisms, or 11-vertex polyhedra. The U2Mn3Si5-type structure is closely related to the structure type BaAl4 and its ordered derivative CaBe2Ge2. In particular, the U2Mn3Si5-type can be considered to be formed by one-dimensional structural fragments of the structure type CaBe2Ge2, running parallel to the direction [00l]. There also exists a relationship between the structure types U2Mn3Si5 and W5Si3. Fragments which can be viewed as deformed square anti­prisms are common to both structures. The crystal structure of Gd2Re3Si5 can also be represented as a stacking of Gd-centred polyhedra of composition [GdSi9], located at z = 0 and ½ (Fig. 1) (Parthé et al., 1993). The Re atoms form infinite chains along [???] with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å.

Synthesis and crystallization top

An alloy of nominal atom percent composition Gd20Re30Si50 was synthesized from the high-purity elements by arc melting on a water-cooled copper plate under a purified argon atmosphere, using titanium as a getter and a tungsten electrode. The weight loss during the sample preparation was less than 0.5% of the total mass (1 g). The alloy was placed into an Al2O3 crucible and inserted into a tantalum container, which was then sealed by welding, leaving the sample under an argon atmosphere. The sample, wrapped in tantalum foil, was heated to 1623 K in a muffle furnace at a rate of 200 K h-1, held at this temperature for 5 h and then cooled to room temperature at a rate of 50 K h-1.

Refinement details top

A single crystal of well-defined shape was separated from the sample and investigated by X-ray crystal diffraction. The structure was solved by direct methods. A full-matrix least-squares refinement of the positional and anisotropic displacement parameters was performed on F2, using the SHELXL97 program (Sheldrick, 2008). Details of the crystal parameters, data collection and the structure refinement details are summarized in Table 1.

Related literature top

For related literature, see: Akselrud et al. (1977); Bodak et al. (1978); Chabot & Parthé (1985); Clark & Reid (1995); Parthé et al. (1993); Rizzoli et al. (2004); Sheldrick (2008); Villars & Cenzual (2013); Yarmolyuk et al. (1977).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Stacking of Gd-centred polyhedra in the structure of the compound Gd2Re3Si5 with displacement ellipsoids drawn at the 99% probability level.
Digadolinium trirhenium pentasilicide top
Crystal data top
Gd2Re3Si5Dx = 10.082 Mg m3
Mr = 1013.55Mo Kα radiation, λ = 0.71073 Å
Tetragonal, P4/mncCell parameters from 8564 reflections
Hall symbol: -P 4 2nθ = 1.9–29.4°
a = 10.95564 (13) ŵ = 74.55 mm1
c = 5.56326 (11) ÅT = 293 K
V = 667.74 (2) Å3Irregular, grey
Z = 40.16 × 0.10 × 0.02 mm
F(000) = 1692
Data collection top
Agilent Xcalibur Onyx
diffractometer
502 independent reflections
Radiation source: Enhance (Mo) X-ray Source481 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
CCD scansθmax = 29.5°, θmin = 2.6°
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
h = 1414
Tmin = 0.015, Tmax = 0.194k = 1514
11378 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + (0.0342P)2 + 8.350P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max < 0.001
S = 1.17Δρmax = 2.35 e Å3
502 reflectionsΔρmin = 2.44 e Å3
31 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00016 (8)
Crystal data top
Gd2Re3Si5Z = 4
Mr = 1013.55Mo Kα radiation
Tetragonal, P4/mncµ = 74.55 mm1
a = 10.95564 (13) ÅT = 293 K
c = 5.56326 (11) Å0.16 × 0.10 × 0.02 mm
V = 667.74 (2) Å3
Data collection top
Agilent Xcalibur Onyx
diffractometer
502 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
481 reflections with I > 2σ(I)
Tmin = 0.015, Tmax = 0.194Rint = 0.062
11378 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02531 parameters
wR(F2) = 0.0630 restraints
S = 1.17Δρmax = 2.35 e Å3
502 reflectionsΔρmin = 2.44 e Å3
Special details top

Experimental. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995).

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Gd0.26249 (5)0.42271 (5)0.00000.0187 (2)
Re10.14676 (4)0.12315 (4)0.00000.01716 (18)
Re20.00000.50000.25000.0173 (2)
Si10.0267 (3)0.3149 (3)0.00000.0192 (6)
Si20.17183 (18)0.67183 (18)0.25000.0145 (6)
Si30.00000.00000.2567 (9)0.0197 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Gd0.0183 (3)0.0199 (3)0.0179 (3)0.0004 (2)0.0000.000
Re10.0166 (3)0.0172 (3)0.0177 (3)0.00060 (16)0.0000.000
Re20.0169 (2)0.0169 (2)0.0180 (3)0.0003 (2)0.0000.000
Si10.0207 (15)0.0184 (15)0.0184 (14)0.0029 (12)0.0000.000
Si20.0130 (8)0.0130 (8)0.0174 (13)0.0005 (10)0.0025 (8)0.0025 (8)
Si30.0190 (13)0.0190 (13)0.021 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Gd—Si12.841 (4)Re2—Re2xiv2.7816 (1)
Gd—Si1i2.9604 (12)Re2—Re2viii2.7816 (1)
Gd—Si1ii2.9604 (12)Re2—Gdviii3.3047 (5)
Gd—Si3iii3.053 (2)Re2—Gdxii3.3047 (5)
Gd—Si3iv3.053 (2)Re2—Gdii3.3047 (5)
Gd—Re1ii3.1442 (3)Si1—Re1xi2.467 (4)
Gd—Re1i3.1442 (3)Si1—Re2viii2.476 (3)
Gd—Si2v3.163 (2)Si1—Si2viii2.585 (3)
Gd—Si2vi3.163 (2)Si1—Si2xiii2.585 (3)
Gd—Si2vii3.2202 (11)Si1—Gdi2.9604 (12)
Gd—Si23.2202 (11)Si1—Gdii2.9604 (12)
Gd—Re2viii3.3047 (5)Si2—Re1iii2.4837 (12)
Re1—Si1ix2.467 (4)Si2—Re1xv2.4837 (12)
Re1—Si12.479 (3)Si2—Si1viii2.585 (3)
Re1—Si2vi2.4838 (12)Si2—Si1ii2.585 (3)
Re1—Si2v2.4838 (12)Si2—Si2xvi2.7816 (1)
Re1—Si32.539 (3)Si2—Si2vii2.7816 (1)
Re1—Si3x2.539 (3)Si2—Gdiii3.163 (2)
Re1—Re1xi2.9683 (6)Si2—Gdxv3.163 (2)
Re1—Re1ix2.9684 (6)Si2—Gdxii3.2202 (11)
Re1—Gdii3.1442 (3)Si3—Re1x2.539 (3)
Re1—Gdi3.1442 (3)Si3—Re1ix2.539 (3)
Re2—Si1ii2.476 (3)Si3—Re1xi2.539 (3)
Re2—Si1xii2.476 (3)Si3—Si3xvii2.707 (9)
Re2—Si1viii2.476 (3)Si3—Gdii3.053 (2)
Re2—Si12.476 (3)Si3—Gdxviii3.053 (2)
Re2—Si2xiii2.662 (3)Si3—Gdxix3.053 (2)
Re2—Si22.662 (3)Si3—Gdxx3.053 (2)
Si1—Gd—Si1i79.48 (8)Si1ii—Re2—Gdxii94.36 (7)
Si1—Gd—Si1ii79.48 (8)Si1xii—Re2—Gdxii56.71 (8)
Si1i—Gd—Si1ii139.97 (12)Si1viii—Re2—Gdxii59.57 (4)
Si1—Gd—Si3iii152.94 (8)Si1—Re2—Gdxii168.30 (6)
Si1i—Gd—Si3iii127.50 (10)Si2xiii—Re2—Gdxii115.730 (10)
Si1ii—Gd—Si3iii77.03 (10)Si2—Re2—Gdxii64.270 (10)
Si1—Gd—Si3iv152.94 (8)Re2xiv—Re2—Gdxii65.111 (4)
Si1i—Gd—Si3iv77.03 (10)Re2viii—Re2—Gdxii114.889 (4)
Si1ii—Gd—Si3iv127.50 (10)Gdviii—Re2—Gdxii74.405 (16)
Si3iii—Gd—Si3iv52.64 (16)Si1ii—Re2—Gdii56.71 (8)
Si1—Gd—Re1ii105.17 (3)Si1xii—Re2—Gdii94.36 (7)
Si1i—Gd—Re1ii172.19 (7)Si1viii—Re2—Gdii168.29 (6)
Si1ii—Gd—Re1ii47.80 (6)Si1—Re2—Gdii59.57 (4)
Si3iii—Gd—Re1ii48.34 (7)Si2xiii—Re2—Gdii64.270 (10)
Si3iv—Gd—Re1ii96.88 (8)Si2—Re2—Gdii115.730 (10)
Si1—Gd—Re1i105.17 (3)Re2xiv—Re2—Gdii65.111 (4)
Si1i—Gd—Re1i47.80 (6)Re2viii—Re2—Gdii114.889 (4)
Si1ii—Gd—Re1i172.19 (7)Gdviii—Re2—Gdii128.540 (19)
Si3iii—Gd—Re1i96.88 (8)Gdxii—Re2—Gdii130.223 (8)
Si3iv—Gd—Re1i48.34 (7)Si1ii—Re2—Gd59.57 (4)
Re1ii—Gd—Re1i124.42 (2)Si1xii—Re2—Gd168.30 (6)
Si1—Gd—Si2v81.12 (7)Si1viii—Re2—Gd94.36 (7)
Si1i—Gd—Si2v79.33 (7)Si1—Re2—Gd56.71 (8)
Si1ii—Gd—Si2v129.87 (7)Si2xiii—Re2—Gd115.731 (10)
Si3iii—Gd—Si2v104.01 (5)Si2—Re2—Gd64.269 (10)
Si3iv—Gd—Si2v81.50 (4)Re2xiv—Re2—Gd114.888 (4)
Re1ii—Gd—Si2v95.05 (3)Re2viii—Re2—Gd65.112 (4)
Re1i—Gd—Si2v46.377 (11)Gdviii—Re2—Gd130.223 (8)
Si1—Gd—Si2vi81.12 (7)Gdxii—Re2—Gd128.540 (19)
Si1i—Gd—Si2vi129.87 (7)Gdii—Re2—Gd74.406 (16)
Si1ii—Gd—Si2vi79.33 (7)Re1xi—Si1—Re2122.21 (11)
Si3iii—Gd—Si2vi81.50 (4)Re1xi—Si1—Re2viii122.21 (11)
Si3iv—Gd—Si2vi104.01 (5)Re2—Si1—Re2viii68.34 (9)
Re1ii—Gd—Si2vi46.377 (11)Re1xi—Si1—Re173.76 (10)
Re1i—Gd—Si2vi95.05 (3)Re2—Si1—Re1139.17 (9)
Si2v—Gd—Si2vi52.16 (4)Re2viii—Si1—Re1139.17 (9)
Si1—Gd—Si2vii94.12 (8)Re1xi—Si1—Si2viii58.84 (9)
Si1i—Gd—Si2vii49.23 (7)Re2—Si1—Si2viii99.03 (11)
Si1ii—Gd—Si2vii99.13 (6)Re2viii—Si1—Si2viii63.42 (8)
Si3iii—Gd—Si2vii102.67 (6)Re1—Si1—Si2viii119.61 (12)
Si3iv—Gd—Si2vii80.58 (5)Re1xi—Si1—Si2xiii58.84 (9)
Re1ii—Gd—Si2vii135.25 (3)Re2—Si1—Si2xiii63.42 (8)
Re1i—Gd—Si2vii86.902 (11)Re2viii—Si1—Si2xiii99.03 (11)
Si2v—Gd—Si2vii128.074 (8)Re1—Si1—Si2xiii119.61 (12)
Si2vi—Gd—Si2vii175.18 (3)Si2viii—Si1—Si2xiii65.09 (9)
Si1—Gd—Si294.12 (8)Re1xi—Si1—Gd156.27 (14)
Si1i—Gd—Si299.13 (6)Re2—Si1—Gd76.51 (9)
Si1ii—Gd—Si249.23 (7)Re2viii—Si1—Gd76.51 (9)
Si3iii—Gd—Si280.58 (5)Re1—Si1—Gd82.50 (10)
Si3iv—Gd—Si2102.67 (6)Si2viii—Si1—Gd137.86 (11)
Re1ii—Gd—Si286.902 (11)Si2xiii—Si1—Gd137.86 (11)
Re1i—Gd—Si2135.25 (3)Re1xi—Si1—Gdi84.88 (7)
Si2v—Gd—Si2175.18 (3)Re2—Si1—Gdi141.66 (11)
Si2vi—Gd—Si2128.075 (8)Re2viii—Si1—Gdi74.27 (2)
Si2vii—Gd—Si251.18 (2)Re1—Si1—Gdi69.99 (6)
Si1—Gd—Re2viii46.77 (6)Si2viii—Si1—Gdi70.63 (3)
Si1i—Gd—Re2viii46.16 (6)Si2xiii—Si1—Gdi132.78 (12)
Si1ii—Gd—Re2viii95.63 (6)Gd—Si1—Gdi87.06 (7)
Si3iii—Gd—Re2viii149.01 (2)Re1xi—Si1—Gdii84.88 (7)
Si3iv—Gd—Re2viii118.95 (7)Re2—Si1—Gdii74.27 (2)
Re1ii—Gd—Re2viii141.358 (16)Re2viii—Si1—Gdii141.66 (11)
Re1i—Gd—Re2viii92.088 (9)Re1—Si1—Gdii69.99 (6)
Si2v—Gd—Re2viii103.62 (3)Si2viii—Si1—Gdii132.78 (12)
Si2vi—Gd—Re2viii127.27 (3)Si2xiii—Si1—Gdii70.63 (3)
Si2vii—Gd—Re2viii48.14 (5)Gd—Si1—Gdii87.06 (7)
Si2—Gd—Re2viii72.31 (3)Gdi—Si1—Gdii139.97 (12)
Si1ix—Re1—Si1163.76 (10)Re1iii—Si2—Re1xv131.08 (12)
Si1ix—Re1—Si2vi62.95 (8)Re1iii—Si2—Si1viii170.53 (14)
Si1—Re1—Si2vi104.06 (9)Re1xv—Si2—Si1viii58.21 (7)
Si1ix—Re1—Si2v62.95 (8)Re1iii—Si2—Si1ii58.21 (7)
Si1—Re1—Si2v104.06 (9)Re1xv—Si2—Si1ii170.53 (14)
Si2vi—Re1—Si2v68.11 (4)Si1viii—Si2—Si1ii112.58 (18)
Si1ix—Re1—Si396.85 (6)Re1iii—Si2—Re2114.46 (6)
Si1—Re1—Si396.56 (7)Re1xv—Si2—Re2114.46 (6)
Si2vi—Re1—Si3107.81 (8)Si1viii—Si2—Re256.29 (9)
Si2v—Re1—Si3159.37 (6)Si1ii—Si2—Re256.29 (9)
Si1ix—Re1—Si3x96.85 (6)Re1iii—Si2—Si2xvi55.947 (19)
Si1—Re1—Si3x96.56 (7)Re1xv—Si2—Si2xvi124.054 (19)
Si2vi—Re1—Si3x159.37 (6)Si1viii—Si2—Si2xvi122.55 (5)
Si2v—Re1—Si3x107.81 (8)Si1ii—Si2—Si2xvi57.45 (5)
Si3—Re1—Si3x68.46 (18)Re2—Si2—Si2xvi90.0
Si1ix—Re1—Re1xi143.30 (8)Re1iii—Si2—Si2vii124.054 (19)
Si1—Re1—Re1xi52.94 (8)Re1xv—Si2—Si2vii55.947 (19)
Si2vi—Re1—Re1xi141.12 (5)Si1viii—Si2—Si2vii57.45 (5)
Si2v—Re1—Re1xi141.12 (5)Si1ii—Si2—Si2vii122.55 (5)
Si3—Re1—Re1xi54.22 (4)Re2—Si2—Si2vii90.0
Si3x—Re1—Re1xi54.22 (4)Si2xvi—Si2—Si2vii180.0
Si1ix—Re1—Re1ix53.30 (8)Re1iii—Si2—Gdiii76.01 (6)
Si1—Re1—Re1ix142.94 (8)Re1xv—Si2—Gdiii66.41 (5)
Si2vi—Re1—Re1ix106.47 (5)Si1viii—Si2—Gdiii112.27 (8)
Si2v—Re1—Re1ix106.47 (5)Si1ii—Si2—Gdiii118.78 (6)
Si3—Re1—Re1ix54.22 (4)Re2—Si2—Gdiii140.83 (3)
Si3x—Re1—Re1ix54.22 (4)Si2xvi—Si2—Gdiii63.919 (19)
Re1xi—Re1—Re1ix90.0Si2vii—Si2—Gdiii116.083 (19)
Si1ix—Re1—Gdii116.473 (18)Re1iii—Si2—Gdxv66.41 (5)
Si1—Re1—Gdii62.214 (12)Re1xv—Si2—Gdxv76.01 (6)
Si2vi—Re1—Gdii67.22 (4)Si1viii—Si2—Gdxv118.78 (6)
Si2v—Re1—Gdii127.12 (2)Si1ii—Si2—Gdxv112.27 (8)
Si3—Re1—Gdii63.95 (8)Re2—Si2—Gdxv140.83 (3)
Si3x—Re1—Gdii123.79 (8)Si2xvi—Si2—Gdxv116.083 (19)
Re1xi—Re1—Gdii73.988 (16)Si2vii—Si2—Gdxv63.919 (19)
Re1ix—Re1—Gdii112.077 (11)Gdiii—Si2—Gdxv78.35 (7)
Si1ix—Re1—Gdi116.473 (18)Re1iii—Si2—Gd79.226 (13)
Si1—Re1—Gdi62.214 (12)Re1xv—Si2—Gd120.171 (7)
Si2vi—Re1—Gdi127.12 (2)Si1viii—Si2—Gd94.29 (9)
Si2v—Re1—Gdi67.22 (4)Si1ii—Si2—Gd60.14 (5)
Si3—Re1—Gdi123.79 (8)Re2—Si2—Gd67.59 (5)
Si3x—Re1—Gdi63.95 (8)Si2xvi—Si2—Gd115.588 (10)
Re1xi—Re1—Gdi73.988 (16)Si2vii—Si2—Gd64.411 (10)
Re1ix—Re1—Gdi112.077 (11)Gdiii—Si2—Gd148.88 (7)
Gdii—Re1—Gdi124.42 (2)Gdxv—Si2—Gd74.63 (2)
Si1ix—Re1—Gd110.57 (8)Re1iii—Si2—Gdxii120.171 (7)
Si1—Re1—Gd53.19 (8)Re1xv—Si2—Gdxii79.226 (13)
Si2vi—Re1—Gd60.75 (5)Si1viii—Si2—Gdxii60.14 (5)
Si2v—Re1—Gd60.75 (5)Si1ii—Si2—Gdxii94.29 (9)
Si3—Re1—Gd136.39 (6)Re2—Si2—Gdxii67.59 (5)
Si3x—Re1—Gd136.39 (6)Si2xvi—Si2—Gdxii64.411 (10)
Re1xi—Re1—Gd106.13 (2)Si2vii—Si2—Gdxii115.588 (10)
Re1ix—Re1—Gd163.87 (2)Gdiii—Si2—Gdxii74.63 (2)
Gdii—Re1—Gd73.474 (15)Gdxv—Si2—Gdxii148.88 (7)
Gdi—Re1—Gd73.474 (15)Gd—Si2—Gdxii135.19 (9)
Si1ii—Re2—Si1xii111.66 (9)Re1—Si3—Re1x111.54 (18)
Si1ii—Re2—Si1viii120.57 (15)Re1—Si3—Re1ix71.55 (9)
Si1xii—Re2—Si1viii97.03 (13)Re1x—Si3—Re1ix71.55 (9)
Si1ii—Re2—Si197.03 (13)Re1—Si3—Re1xi71.55 (9)
Si1xii—Re2—Si1120.57 (15)Re1x—Si3—Re1xi71.55 (9)
Si1viii—Re2—Si1111.66 (9)Re1ix—Si3—Re1xi111.54 (18)
Si1ii—Re2—Si2xiii119.72 (8)Re1—Si3—Si3xvii124.23 (9)
Si1xii—Re2—Si2xiii60.28 (8)Re1x—Si3—Si3xvii124.23 (9)
Si1viii—Re2—Si2xiii119.72 (8)Re1ix—Si3—Si3xvii124.23 (9)
Si1—Re2—Si2xiii60.28 (8)Re1xi—Si3—Si3xvii124.23 (9)
Si1ii—Re2—Si260.28 (8)Re1—Si3—Gdii67.712 (11)
Si1xii—Re2—Si2119.72 (8)Re1x—Si3—Gdii151.41 (5)
Si1viii—Re2—Si260.28 (8)Re1ix—Si3—Gdii129.93 (3)
Si1—Re2—Si2119.72 (8)Re1xi—Si3—Gdii81.779 (12)
Si2xiii—Re2—Si2180.0Si3xvii—Si3—Gdii63.68 (8)
Si1ii—Re2—Re2xiv55.83 (4)Re1—Si3—Gdxviii81.779 (12)
Si1xii—Re2—Re2xiv55.83 (4)Re1x—Si3—Gdxviii129.93 (3)
Si1viii—Re2—Re2xiv124.17 (4)Re1ix—Si3—Gdxviii67.712 (11)
Si1—Re2—Re2xiv124.17 (4)Re1xi—Si3—Gdxviii151.41 (5)
Si2xiii—Re2—Re2xiv90.0Si3xvii—Si3—Gdxviii63.68 (8)
Si2—Re2—Re2xiv90.0Gdii—Si3—Gdxviii78.66 (6)
Si1ii—Re2—Re2viii124.17 (4)Re1—Si3—Gdxix151.41 (5)
Si1xii—Re2—Re2viii124.17 (4)Re1x—Si3—Gdxix67.712 (11)
Si1viii—Re2—Re2viii55.83 (4)Re1ix—Si3—Gdxix81.779 (12)
Si1—Re2—Re2viii55.83 (4)Re1xi—Si3—Gdxix129.93 (3)
Si2xiii—Re2—Re2viii90.0Si3xvii—Si3—Gdxix63.68 (8)
Si2—Re2—Re2viii90.0Gdii—Si3—Gdxix127.36 (16)
Re2xiv—Re2—Re2viii180.0Gdxviii—Si3—Gdxix78.66 (6)
Si1ii—Re2—Gdviii168.29 (6)Re1—Si3—Gdxx129.93 (3)
Si1xii—Re2—Gdviii59.57 (4)Re1x—Si3—Gdxx81.779 (12)
Si1viii—Re2—Gdviii56.71 (8)Re1ix—Si3—Gdxx151.41 (5)
Si1—Re2—Gdviii94.36 (7)Re1xi—Si3—Gdxx67.712 (11)
Si2xiii—Re2—Gdviii64.270 (10)Si3xvii—Si3—Gdxx63.68 (8)
Si2—Re2—Gdviii115.730 (10)Gdii—Si3—Gdxx78.66 (6)
Re2xiv—Re2—Gdviii114.889 (4)Gdxviii—Si3—Gdxx127.36 (16)
Re2viii—Re2—Gdviii65.111 (4)Gdxix—Si3—Gdxx78.66 (6)
Symmetry codes: (i) y+1/2, x+1/2, z1/2; (ii) y+1/2, x+1/2, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1/2, y+1/2, z1/2; (v) y+1, x, z; (vi) y+1, x, z; (vii) x, y, z; (viii) x, y+1, z; (ix) y, x, z; (x) x, y, z; (xi) y, x, z; (xii) y1/2, x+1/2, z+1/2; (xiii) x, y+1, z; (xiv) x, y+1, z+1; (xv) y, x+1, z; (xvi) x, y, z+1; (xvii) x, y, z+1; (xviii) x+1/2, y1/2, z+1/2; (xix) y1/2, x1/2, z+1/2; (xx) x1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaGd2Re3Si5
Mr1013.55
Crystal system, space groupTetragonal, P4/mnc
Temperature (K)293
a, c (Å)10.95564 (13), 5.56326 (11)
V3)667.74 (2)
Z4
Radiation typeMo Kα
µ (mm1)74.55
Crystal size (mm)0.16 × 0.10 × 0.02
Data collection
DiffractometerAgilent Xcalibur Onyx
diffractometer
Absorption correctionAnalytical
[CrysAlis PRO (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)]
Tmin, Tmax0.015, 0.194
No. of measured, independent and
observed [I > 2σ(I)] reflections
11378, 502, 481
Rint0.062
(sin θ/λ)max1)0.692
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.063, 1.17
No. of reflections502
No. of parameters31
Δρmax, Δρmin (e Å3)2.35, 2.44

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine under grant No 0112U001279.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAkselrud, L. G., Yarmolyuk, Y. P. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 492–493.  Google Scholar
First citationBodak, O. I., Pecharskii, V. K. & Gladyshevskii, E. I. (1978). Izv. Akad. Nauk SSSR Neorg. Mater. 14, 251–255.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChabot, B. & Parthé, E. (1985). J. Less-Common Met. 106, 53–59.  CrossRef CAS Web of Science Google Scholar
First citationClark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. & Gladyshevskii, R. (1993). TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Heidelberg: Springer-Verlag.  Google Scholar
First citationRizzoli, C., Salamakha, P. S., Sologub, O. L., Belletti, D., Goncalves, A. P. & Almeida, M. (2004). J. Alloys Compd, 363, 217–222.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillars, P. & Cenzual, K. (2013). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds. Release 2013/14. Materials Park, Ohio: ASM International.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYarmolyuk, Y. P., Akselrud, L. G. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 358–359.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds