research communications
2Re3Si5
of the ternary silicide GdaDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya st. 6, UA-79005 Lviv, Ukraine, and bLaboratory of Crystallography, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
*Correspondence e-mail: vitaliia.fedyna@gmail.com
A single crystal of the title compound, the ternary silicide digadolinium trirhenium pentasilicide, Gd2Re3Si5, was isolated from an alloy of nominal composition Gd20Re30Si50 synthesized by arc melting and investigated by X-ray single-crystal diffraction. Its belongs to the U2Mn3Si5 structure type. All atoms in the asymmetric lie on special positions. The Gd site has m..; the two Mn atoms have site symmetries m.. and 2.22; the three Si atoms have site symmetries m.., ..2 and 4.. . The coordination polyhedra of the Gd atoms have 21 vertices, while those of the Re atoms are cubooctahedra and 13-vertex polyhedra. The Si atoms are arranged as tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The of the title compound is also related to the structure types CaBe2Ge2 and W5Si3. It can be represented as a stacking of Gd-centred polyhedra of composition [GdSi9]. The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å.
Keywords: crystal structure; gadolinium; rhenium; silicon; intermetallic compound; ternary silicide.
CCDC reference: 1032373
1. Chemical context
Four structure types of composition R2T3Si5 are known for the systems R–T–Si (R = rare-earth element, T = d-block element): U2Mn3Si5 (Yarmolyuk et al., 1977) (Pearson symbol tP40, P4/mnc), U2Co3Si5 (Akselrud et al., 1977) (oI40, Ibam), Nd2Os3Si5 (Rizzoli et al., 2004) (tP48, P4/mnc) and Lu2Co3Si5 (Chabot & Parthé, 1985) (mS40, C2/c). The structure type U2Mn3Si5 has representatives in the systems R–Mn–Si (R = Y, Gd–Lu), R–Re–Si (R = Y, La–Nd, Sm, Gd–Tm), R–Fe–Si (R = Sc, Y, Sm, Gd–Lu), R–Ru–Si (R = Sm, Er, Lu), whereas the structure type U2Co3Si5 has been found in the systems R–Ru–Si (R = Tb, Er), R–Co–Si (R = Sc, Y, Ce, Gd–Er), R–Rh–Si (R = Y, La, Ce, Nd, Sm, Gd–Er), R–Ir–Si (R = Y, Ce, Tb, Lu), R–Ni–Si (R = Y, Ce, Nd, Sm, Gd–Tm), R–Pt–Si (R = Ce, Sm), and R–Pd–Si (R = Ce, Sm), the structure type Nd2Os3Si5 in the systems R–Os–Si (R = Nd, Eu), and the structure type Lu2Co3Si5 in the systems R–Co–Si (R = Y, Tb, Dy, Lu), R–Rh–Si (R = Y, Tb, Dy) and R–Ni–Si (R = Lu) (Villars & Cenzual, 2013).
2. Structural commentary
The existence of the compound Gd2Re3Si5 has been reported earlier (Bodak et al., 1978). The unit-cell parameters were determined and the structure type was assigned. A complete investigation of the by X-ray single crystal diffraction has now been undertaken. The coordination polyhedra of the Gd atoms have 21 vertexes, whereas those of the Re atoms are cubooctahedra or 13-vertex polyhedra, and the Si atoms tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The U2Mn3Si5-type structure is closely related to the structure type BaAl4 and its ordered derivative CaBe2Ge2. In particular, the U2Mn3Si5-type can be considered to be formed by one-dimensional structural fragments of the structure type CaBe2Ge2, running parallel to the direction [00l]. There also exists a relationship between the structure types U2Mn3Si5 and W5Si3. Fragments which can be viewed as deformed square antiprisms are common to both structures. The of Gd2Re3Si5 can also be represented as a stacking of Gd-centred polyhedra of composition [GdSi9], located at z = 0 and ½ (Fig. 1) (Parthé et al., 1993). The Re atoms form infinite chains with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å.
3. Synthesis and crystallization
An alloy of nominal atom percent composition Gd20Re30Si50 was synthesized from the high-purity elements by arc melting on a water-cooled copper plate under a purified argon atmosphere, using titanium as a getter and a tungsten electrode. The weight loss during the sample preparation was less than 0.5% of the total mass (1 g). The alloy was placed into an Al2O3 crucible and inserted into a tantalum container, which was then sealed by welding, leaving the sample under an argon atmosphere. The sample, wrapped in tantalum foil, was heated to 1623 K in a muffle furnace at a rate of 200 K h−1, held at this temperature for 5 h and then cooled to room temperature at a rate of 50 K h−1.
4. details
A single crystal of well-defined shape was separated from the sample. The structure was solved by −3 is at (0, , ), 0.00 Å away from atom Re2. The deepest hole (−2.44 e Å−3) is at (0.6045, 0.3985, 0), 1.52 Å away from the Gd atom. Details of the crystal parameters, data collection and the structure details are summarized in Table 1.
The highest Fourier difference peak of 2.35 e ÅSupporting information
CCDC reference: 1032373
10.1107/S1600536814024234/fj2683sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814024234/fj2683Isup2.hkl
Four structure types of composition R2T3Si5 are known for the systems R–T–Si (R = rare-earth element, T = d-element): U2Mn3Si5 (Yarmolyuk et al., 1977) (Pearson symbol tP40,
P4/mnc), U2Co3Si5 (Akselrud et al., 1977) (oI40, Ibam), Nd2Os3Si5 (Rizzoli et al., 2004) (tP48, P4/mnc), and Lu2Co3Si5 (Chabot & Parthé, 1985) (mS40, C2/c). The structure type U2Mn3Si5 has representatives in the systems R–Mn–Si (R = Y, Gd–Lu), R–Re–Si (R = Y, La–Nd, Sm, Gd–Tm), R–Fe–Si (R = Sc, Y, Sm, Gd–Lu), R–Ru–Si (R = Sm, Er, Lu), whereas the structure type U2Co3Si5 has been found in the systems R–Ru–Si (R = Tb, Er), R–Co–Si (R = Sc, Y, Ce, Gd–Er), R–Rh–Si (R = Y, La, Ce, Nd, Sm, Gd–Er), R–Ir–Si (R = Y, Ce, Tb, Lu), R–Ni–Si (R = Y, Ce, Nd, Sm, Gd–Tm), R–Pt–Si (R = Ce, Sm), and R–Pd–Si (R = Ce, Sm), the structure type Nd2Os3Si5 in the systems R–Os–Si (R = Nd, Eu), and the structure type Lu2Co3Si5 in the systems R–Co–Si (R = Y, Tb, Dy, Lu), R–Rh–Si (R = Y, Tb, Dy), and R–Ni–Si (R = Lu) (Villars & Cenzual, 2013).The existence of the compound Gd2Re3Si5 has been reported earlier (Bodak et al., 1978). The unit-cell parameters were determined and the structure type was assigned. A complete investigation of the
by X-ray single crystal diffraction has now been undertaken. The coordination polyhedra of the Gd atoms have 21 vertexes, whereas those of the Re atoms are cubooctahedra or 13-vertex polyhedra, and the Si atoms tricapped trigonal prisms, bicapped square antiprisms, or 11-vertex polyhedra. The U2Mn3Si5-type structure is closely related to the structure type BaAl4 and its ordered derivative CaBe2Ge2. In particular, the U2Mn3Si5-type can be considered to be formed by one-dimensional structural fragments of the structure type CaBe2Ge2, running parallel to the direction [00l]. There also exists a relationship between the structure types U2Mn3Si5 and W5Si3. Fragments which can be viewed as deformed square antiprisms are common to both structures. The of Gd2Re3Si5 can also be represented as a stacking of Gd-centred polyhedra of composition [GdSi9], located at z = 0 and ½ (Fig. 1) (Parthé et al., 1993). The Re atoms form infinite chains along [???] with an Re—Re distance of 2.78163 (5) Å and isolated squares with an Re—Re distance of 2.9683 (6) Å.An alloy of nominal atom percent composition Gd20Re30Si50 was synthesized from the high-purity elements by arc melting on a water-cooled copper plate under a purified argon atmosphere, using titanium as a getter and a tungsten electrode. The weight loss during the sample preparation was less than 0.5% of the total mass (1 g). The alloy was placed into an Al2O3 crucible and inserted into a tantalum container, which was then sealed by welding, leaving the sample under an argon atmosphere. The sample, wrapped in tantalum foil, was heated to 1623 K in a muffle furnace at a rate of 200 K h-1, held at this temperature for 5 h and then cooled to room temperature at a rate of 50 K h-1.
A single crystal of well-defined shape was separated from the sample and investigated by X-ray crystal diffraction. The structure was solved by
A full-matrix least-squares of the positional and anisotropic displacement parameters was performed on F2, using the SHELXL97 program (Sheldrick, 2008). Details of the crystal parameters, data collection and the structure details are summarized in Table 1.Data collection: CrysAlis PRO (Agilent, 2012); cell
CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).Stacking of Gd-centred polyhedra in the structure of the compound Gd2Re3Si5 with displacement ellipsoids drawn at the 99% probability level. |
Gd2Re3Si5 | Dx = 10.082 Mg m−3 |
Mr = 1013.55 | Mo Kα radiation, λ = 0.71073 Å |
Tetragonal, P4/mnc | Cell parameters from 8564 reflections |
Hall symbol: -P 4 2n | θ = 1.9–29.4° |
a = 10.95564 (13) Å | µ = 74.55 mm−1 |
c = 5.56326 (11) Å | T = 293 K |
V = 667.74 (2) Å3 | Irregular, grey |
Z = 4 | 0.16 × 0.10 × 0.02 mm |
F(000) = 1692 |
Agilent Xcalibur Onyx diffractometer | 502 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 481 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.062 |
CCD scans | θmax = 29.5°, θmin = 2.6° |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] | h = −14→14 |
Tmin = 0.015, Tmax = 0.194 | k = −15→14 |
11378 measured reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | w = 1/[σ2(Fo2) + (0.0342P)2 + 8.350P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.063 | (Δ/σ)max < 0.001 |
S = 1.17 | Δρmax = 2.35 e Å−3 |
502 reflections | Δρmin = −2.44 e Å−3 |
31 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.00016 (8) |
Gd2Re3Si5 | Z = 4 |
Mr = 1013.55 | Mo Kα radiation |
Tetragonal, P4/mnc | µ = 74.55 mm−1 |
a = 10.95564 (13) Å | T = 293 K |
c = 5.56326 (11) Å | 0.16 × 0.10 × 0.02 mm |
V = 667.74 (2) Å3 |
Agilent Xcalibur Onyx diffractometer | 502 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] | 481 reflections with I > 2σ(I) |
Tmin = 0.015, Tmax = 0.194 | Rint = 0.062 |
11378 measured reflections |
R[F2 > 2σ(F2)] = 0.025 | 31 parameters |
wR(F2) = 0.063 | 0 restraints |
S = 1.17 | Δρmax = 2.35 e Å−3 |
502 reflections | Δρmin = −2.44 e Å−3 |
Experimental. Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by Clark & Reid (1995). |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Gd | 0.26249 (5) | 0.42271 (5) | 0.0000 | 0.0187 (2) | |
Re1 | 0.14676 (4) | 0.12315 (4) | 0.0000 | 0.01716 (18) | |
Re2 | 0.0000 | 0.5000 | 0.2500 | 0.0173 (2) | |
Si1 | 0.0267 (3) | 0.3149 (3) | 0.0000 | 0.0192 (6) | |
Si2 | 0.17183 (18) | 0.67183 (18) | 0.2500 | 0.0145 (6) | |
Si3 | 0.0000 | 0.0000 | 0.2567 (9) | 0.0197 (9) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Gd | 0.0183 (3) | 0.0199 (3) | 0.0179 (3) | 0.0004 (2) | 0.000 | 0.000 |
Re1 | 0.0166 (3) | 0.0172 (3) | 0.0177 (3) | −0.00060 (16) | 0.000 | 0.000 |
Re2 | 0.0169 (2) | 0.0169 (2) | 0.0180 (3) | 0.0003 (2) | 0.000 | 0.000 |
Si1 | 0.0207 (15) | 0.0184 (15) | 0.0184 (14) | 0.0029 (12) | 0.000 | 0.000 |
Si2 | 0.0130 (8) | 0.0130 (8) | 0.0174 (13) | 0.0005 (10) | −0.0025 (8) | 0.0025 (8) |
Si3 | 0.0190 (13) | 0.0190 (13) | 0.021 (2) | 0.000 | 0.000 | 0.000 |
Gd—Si1 | 2.841 (4) | Re2—Re2xiv | 2.7816 (1) |
Gd—Si1i | 2.9604 (12) | Re2—Re2viii | 2.7816 (1) |
Gd—Si1ii | 2.9604 (12) | Re2—Gdviii | 3.3047 (5) |
Gd—Si3iii | 3.053 (2) | Re2—Gdxii | 3.3047 (5) |
Gd—Si3iv | 3.053 (2) | Re2—Gdii | 3.3047 (5) |
Gd—Re1ii | 3.1442 (3) | Si1—Re1xi | 2.467 (4) |
Gd—Re1i | 3.1442 (3) | Si1—Re2viii | 2.476 (3) |
Gd—Si2v | 3.163 (2) | Si1—Si2viii | 2.585 (3) |
Gd—Si2vi | 3.163 (2) | Si1—Si2xiii | 2.585 (3) |
Gd—Si2vii | 3.2202 (11) | Si1—Gdi | 2.9604 (12) |
Gd—Si2 | 3.2202 (11) | Si1—Gdii | 2.9604 (12) |
Gd—Re2viii | 3.3047 (5) | Si2—Re1iii | 2.4837 (12) |
Re1—Si1ix | 2.467 (4) | Si2—Re1xv | 2.4837 (12) |
Re1—Si1 | 2.479 (3) | Si2—Si1viii | 2.585 (3) |
Re1—Si2vi | 2.4838 (12) | Si2—Si1ii | 2.585 (3) |
Re1—Si2v | 2.4838 (12) | Si2—Si2xvi | 2.7816 (1) |
Re1—Si3 | 2.539 (3) | Si2—Si2vii | 2.7816 (1) |
Re1—Si3x | 2.539 (3) | Si2—Gdiii | 3.163 (2) |
Re1—Re1xi | 2.9683 (6) | Si2—Gdxv | 3.163 (2) |
Re1—Re1ix | 2.9684 (6) | Si2—Gdxii | 3.2202 (11) |
Re1—Gdii | 3.1442 (3) | Si3—Re1x | 2.539 (3) |
Re1—Gdi | 3.1442 (3) | Si3—Re1ix | 2.539 (3) |
Re2—Si1ii | 2.476 (3) | Si3—Re1xi | 2.539 (3) |
Re2—Si1xii | 2.476 (3) | Si3—Si3xvii | 2.707 (9) |
Re2—Si1viii | 2.476 (3) | Si3—Gdii | 3.053 (2) |
Re2—Si1 | 2.476 (3) | Si3—Gdxviii | 3.053 (2) |
Re2—Si2xiii | 2.662 (3) | Si3—Gdxix | 3.053 (2) |
Re2—Si2 | 2.662 (3) | Si3—Gdxx | 3.053 (2) |
Si1—Gd—Si1i | 79.48 (8) | Si1ii—Re2—Gdxii | 94.36 (7) |
Si1—Gd—Si1ii | 79.48 (8) | Si1xii—Re2—Gdxii | 56.71 (8) |
Si1i—Gd—Si1ii | 139.97 (12) | Si1viii—Re2—Gdxii | 59.57 (4) |
Si1—Gd—Si3iii | 152.94 (8) | Si1—Re2—Gdxii | 168.30 (6) |
Si1i—Gd—Si3iii | 127.50 (10) | Si2xiii—Re2—Gdxii | 115.730 (10) |
Si1ii—Gd—Si3iii | 77.03 (10) | Si2—Re2—Gdxii | 64.270 (10) |
Si1—Gd—Si3iv | 152.94 (8) | Re2xiv—Re2—Gdxii | 65.111 (4) |
Si1i—Gd—Si3iv | 77.03 (10) | Re2viii—Re2—Gdxii | 114.889 (4) |
Si1ii—Gd—Si3iv | 127.50 (10) | Gdviii—Re2—Gdxii | 74.405 (16) |
Si3iii—Gd—Si3iv | 52.64 (16) | Si1ii—Re2—Gdii | 56.71 (8) |
Si1—Gd—Re1ii | 105.17 (3) | Si1xii—Re2—Gdii | 94.36 (7) |
Si1i—Gd—Re1ii | 172.19 (7) | Si1viii—Re2—Gdii | 168.29 (6) |
Si1ii—Gd—Re1ii | 47.80 (6) | Si1—Re2—Gdii | 59.57 (4) |
Si3iii—Gd—Re1ii | 48.34 (7) | Si2xiii—Re2—Gdii | 64.270 (10) |
Si3iv—Gd—Re1ii | 96.88 (8) | Si2—Re2—Gdii | 115.730 (10) |
Si1—Gd—Re1i | 105.17 (3) | Re2xiv—Re2—Gdii | 65.111 (4) |
Si1i—Gd—Re1i | 47.80 (6) | Re2viii—Re2—Gdii | 114.889 (4) |
Si1ii—Gd—Re1i | 172.19 (7) | Gdviii—Re2—Gdii | 128.540 (19) |
Si3iii—Gd—Re1i | 96.88 (8) | Gdxii—Re2—Gdii | 130.223 (8) |
Si3iv—Gd—Re1i | 48.34 (7) | Si1ii—Re2—Gd | 59.57 (4) |
Re1ii—Gd—Re1i | 124.42 (2) | Si1xii—Re2—Gd | 168.30 (6) |
Si1—Gd—Si2v | 81.12 (7) | Si1viii—Re2—Gd | 94.36 (7) |
Si1i—Gd—Si2v | 79.33 (7) | Si1—Re2—Gd | 56.71 (8) |
Si1ii—Gd—Si2v | 129.87 (7) | Si2xiii—Re2—Gd | 115.731 (10) |
Si3iii—Gd—Si2v | 104.01 (5) | Si2—Re2—Gd | 64.269 (10) |
Si3iv—Gd—Si2v | 81.50 (4) | Re2xiv—Re2—Gd | 114.888 (4) |
Re1ii—Gd—Si2v | 95.05 (3) | Re2viii—Re2—Gd | 65.112 (4) |
Re1i—Gd—Si2v | 46.377 (11) | Gdviii—Re2—Gd | 130.223 (8) |
Si1—Gd—Si2vi | 81.12 (7) | Gdxii—Re2—Gd | 128.540 (19) |
Si1i—Gd—Si2vi | 129.87 (7) | Gdii—Re2—Gd | 74.406 (16) |
Si1ii—Gd—Si2vi | 79.33 (7) | Re1xi—Si1—Re2 | 122.21 (11) |
Si3iii—Gd—Si2vi | 81.50 (4) | Re1xi—Si1—Re2viii | 122.21 (11) |
Si3iv—Gd—Si2vi | 104.01 (5) | Re2—Si1—Re2viii | 68.34 (9) |
Re1ii—Gd—Si2vi | 46.377 (11) | Re1xi—Si1—Re1 | 73.76 (10) |
Re1i—Gd—Si2vi | 95.05 (3) | Re2—Si1—Re1 | 139.17 (9) |
Si2v—Gd—Si2vi | 52.16 (4) | Re2viii—Si1—Re1 | 139.17 (9) |
Si1—Gd—Si2vii | 94.12 (8) | Re1xi—Si1—Si2viii | 58.84 (9) |
Si1i—Gd—Si2vii | 49.23 (7) | Re2—Si1—Si2viii | 99.03 (11) |
Si1ii—Gd—Si2vii | 99.13 (6) | Re2viii—Si1—Si2viii | 63.42 (8) |
Si3iii—Gd—Si2vii | 102.67 (6) | Re1—Si1—Si2viii | 119.61 (12) |
Si3iv—Gd—Si2vii | 80.58 (5) | Re1xi—Si1—Si2xiii | 58.84 (9) |
Re1ii—Gd—Si2vii | 135.25 (3) | Re2—Si1—Si2xiii | 63.42 (8) |
Re1i—Gd—Si2vii | 86.902 (11) | Re2viii—Si1—Si2xiii | 99.03 (11) |
Si2v—Gd—Si2vii | 128.074 (8) | Re1—Si1—Si2xiii | 119.61 (12) |
Si2vi—Gd—Si2vii | 175.18 (3) | Si2viii—Si1—Si2xiii | 65.09 (9) |
Si1—Gd—Si2 | 94.12 (8) | Re1xi—Si1—Gd | 156.27 (14) |
Si1i—Gd—Si2 | 99.13 (6) | Re2—Si1—Gd | 76.51 (9) |
Si1ii—Gd—Si2 | 49.23 (7) | Re2viii—Si1—Gd | 76.51 (9) |
Si3iii—Gd—Si2 | 80.58 (5) | Re1—Si1—Gd | 82.50 (10) |
Si3iv—Gd—Si2 | 102.67 (6) | Si2viii—Si1—Gd | 137.86 (11) |
Re1ii—Gd—Si2 | 86.902 (11) | Si2xiii—Si1—Gd | 137.86 (11) |
Re1i—Gd—Si2 | 135.25 (3) | Re1xi—Si1—Gdi | 84.88 (7) |
Si2v—Gd—Si2 | 175.18 (3) | Re2—Si1—Gdi | 141.66 (11) |
Si2vi—Gd—Si2 | 128.075 (8) | Re2viii—Si1—Gdi | 74.27 (2) |
Si2vii—Gd—Si2 | 51.18 (2) | Re1—Si1—Gdi | 69.99 (6) |
Si1—Gd—Re2viii | 46.77 (6) | Si2viii—Si1—Gdi | 70.63 (3) |
Si1i—Gd—Re2viii | 46.16 (6) | Si2xiii—Si1—Gdi | 132.78 (12) |
Si1ii—Gd—Re2viii | 95.63 (6) | Gd—Si1—Gdi | 87.06 (7) |
Si3iii—Gd—Re2viii | 149.01 (2) | Re1xi—Si1—Gdii | 84.88 (7) |
Si3iv—Gd—Re2viii | 118.95 (7) | Re2—Si1—Gdii | 74.27 (2) |
Re1ii—Gd—Re2viii | 141.358 (16) | Re2viii—Si1—Gdii | 141.66 (11) |
Re1i—Gd—Re2viii | 92.088 (9) | Re1—Si1—Gdii | 69.99 (6) |
Si2v—Gd—Re2viii | 103.62 (3) | Si2viii—Si1—Gdii | 132.78 (12) |
Si2vi—Gd—Re2viii | 127.27 (3) | Si2xiii—Si1—Gdii | 70.63 (3) |
Si2vii—Gd—Re2viii | 48.14 (5) | Gd—Si1—Gdii | 87.06 (7) |
Si2—Gd—Re2viii | 72.31 (3) | Gdi—Si1—Gdii | 139.97 (12) |
Si1ix—Re1—Si1 | 163.76 (10) | Re1iii—Si2—Re1xv | 131.08 (12) |
Si1ix—Re1—Si2vi | 62.95 (8) | Re1iii—Si2—Si1viii | 170.53 (14) |
Si1—Re1—Si2vi | 104.06 (9) | Re1xv—Si2—Si1viii | 58.21 (7) |
Si1ix—Re1—Si2v | 62.95 (8) | Re1iii—Si2—Si1ii | 58.21 (7) |
Si1—Re1—Si2v | 104.06 (9) | Re1xv—Si2—Si1ii | 170.53 (14) |
Si2vi—Re1—Si2v | 68.11 (4) | Si1viii—Si2—Si1ii | 112.58 (18) |
Si1ix—Re1—Si3 | 96.85 (6) | Re1iii—Si2—Re2 | 114.46 (6) |
Si1—Re1—Si3 | 96.56 (7) | Re1xv—Si2—Re2 | 114.46 (6) |
Si2vi—Re1—Si3 | 107.81 (8) | Si1viii—Si2—Re2 | 56.29 (9) |
Si2v—Re1—Si3 | 159.37 (6) | Si1ii—Si2—Re2 | 56.29 (9) |
Si1ix—Re1—Si3x | 96.85 (6) | Re1iii—Si2—Si2xvi | 55.947 (19) |
Si1—Re1—Si3x | 96.56 (7) | Re1xv—Si2—Si2xvi | 124.054 (19) |
Si2vi—Re1—Si3x | 159.37 (6) | Si1viii—Si2—Si2xvi | 122.55 (5) |
Si2v—Re1—Si3x | 107.81 (8) | Si1ii—Si2—Si2xvi | 57.45 (5) |
Si3—Re1—Si3x | 68.46 (18) | Re2—Si2—Si2xvi | 90.0 |
Si1ix—Re1—Re1xi | 143.30 (8) | Re1iii—Si2—Si2vii | 124.054 (19) |
Si1—Re1—Re1xi | 52.94 (8) | Re1xv—Si2—Si2vii | 55.947 (19) |
Si2vi—Re1—Re1xi | 141.12 (5) | Si1viii—Si2—Si2vii | 57.45 (5) |
Si2v—Re1—Re1xi | 141.12 (5) | Si1ii—Si2—Si2vii | 122.55 (5) |
Si3—Re1—Re1xi | 54.22 (4) | Re2—Si2—Si2vii | 90.0 |
Si3x—Re1—Re1xi | 54.22 (4) | Si2xvi—Si2—Si2vii | 180.0 |
Si1ix—Re1—Re1ix | 53.30 (8) | Re1iii—Si2—Gdiii | 76.01 (6) |
Si1—Re1—Re1ix | 142.94 (8) | Re1xv—Si2—Gdiii | 66.41 (5) |
Si2vi—Re1—Re1ix | 106.47 (5) | Si1viii—Si2—Gdiii | 112.27 (8) |
Si2v—Re1—Re1ix | 106.47 (5) | Si1ii—Si2—Gdiii | 118.78 (6) |
Si3—Re1—Re1ix | 54.22 (4) | Re2—Si2—Gdiii | 140.83 (3) |
Si3x—Re1—Re1ix | 54.22 (4) | Si2xvi—Si2—Gdiii | 63.919 (19) |
Re1xi—Re1—Re1ix | 90.0 | Si2vii—Si2—Gdiii | 116.083 (19) |
Si1ix—Re1—Gdii | 116.473 (18) | Re1iii—Si2—Gdxv | 66.41 (5) |
Si1—Re1—Gdii | 62.214 (12) | Re1xv—Si2—Gdxv | 76.01 (6) |
Si2vi—Re1—Gdii | 67.22 (4) | Si1viii—Si2—Gdxv | 118.78 (6) |
Si2v—Re1—Gdii | 127.12 (2) | Si1ii—Si2—Gdxv | 112.27 (8) |
Si3—Re1—Gdii | 63.95 (8) | Re2—Si2—Gdxv | 140.83 (3) |
Si3x—Re1—Gdii | 123.79 (8) | Si2xvi—Si2—Gdxv | 116.083 (19) |
Re1xi—Re1—Gdii | 73.988 (16) | Si2vii—Si2—Gdxv | 63.919 (19) |
Re1ix—Re1—Gdii | 112.077 (11) | Gdiii—Si2—Gdxv | 78.35 (7) |
Si1ix—Re1—Gdi | 116.473 (18) | Re1iii—Si2—Gd | 79.226 (13) |
Si1—Re1—Gdi | 62.214 (12) | Re1xv—Si2—Gd | 120.171 (7) |
Si2vi—Re1—Gdi | 127.12 (2) | Si1viii—Si2—Gd | 94.29 (9) |
Si2v—Re1—Gdi | 67.22 (4) | Si1ii—Si2—Gd | 60.14 (5) |
Si3—Re1—Gdi | 123.79 (8) | Re2—Si2—Gd | 67.59 (5) |
Si3x—Re1—Gdi | 63.95 (8) | Si2xvi—Si2—Gd | 115.588 (10) |
Re1xi—Re1—Gdi | 73.988 (16) | Si2vii—Si2—Gd | 64.411 (10) |
Re1ix—Re1—Gdi | 112.077 (11) | Gdiii—Si2—Gd | 148.88 (7) |
Gdii—Re1—Gdi | 124.42 (2) | Gdxv—Si2—Gd | 74.63 (2) |
Si1ix—Re1—Gd | 110.57 (8) | Re1iii—Si2—Gdxii | 120.171 (7) |
Si1—Re1—Gd | 53.19 (8) | Re1xv—Si2—Gdxii | 79.226 (13) |
Si2vi—Re1—Gd | 60.75 (5) | Si1viii—Si2—Gdxii | 60.14 (5) |
Si2v—Re1—Gd | 60.75 (5) | Si1ii—Si2—Gdxii | 94.29 (9) |
Si3—Re1—Gd | 136.39 (6) | Re2—Si2—Gdxii | 67.59 (5) |
Si3x—Re1—Gd | 136.39 (6) | Si2xvi—Si2—Gdxii | 64.411 (10) |
Re1xi—Re1—Gd | 106.13 (2) | Si2vii—Si2—Gdxii | 115.588 (10) |
Re1ix—Re1—Gd | 163.87 (2) | Gdiii—Si2—Gdxii | 74.63 (2) |
Gdii—Re1—Gd | 73.474 (15) | Gdxv—Si2—Gdxii | 148.88 (7) |
Gdi—Re1—Gd | 73.474 (15) | Gd—Si2—Gdxii | 135.19 (9) |
Si1ii—Re2—Si1xii | 111.66 (9) | Re1—Si3—Re1x | 111.54 (18) |
Si1ii—Re2—Si1viii | 120.57 (15) | Re1—Si3—Re1ix | 71.55 (9) |
Si1xii—Re2—Si1viii | 97.03 (13) | Re1x—Si3—Re1ix | 71.55 (9) |
Si1ii—Re2—Si1 | 97.03 (13) | Re1—Si3—Re1xi | 71.55 (9) |
Si1xii—Re2—Si1 | 120.57 (15) | Re1x—Si3—Re1xi | 71.55 (9) |
Si1viii—Re2—Si1 | 111.66 (9) | Re1ix—Si3—Re1xi | 111.54 (18) |
Si1ii—Re2—Si2xiii | 119.72 (8) | Re1—Si3—Si3xvii | 124.23 (9) |
Si1xii—Re2—Si2xiii | 60.28 (8) | Re1x—Si3—Si3xvii | 124.23 (9) |
Si1viii—Re2—Si2xiii | 119.72 (8) | Re1ix—Si3—Si3xvii | 124.23 (9) |
Si1—Re2—Si2xiii | 60.28 (8) | Re1xi—Si3—Si3xvii | 124.23 (9) |
Si1ii—Re2—Si2 | 60.28 (8) | Re1—Si3—Gdii | 67.712 (11) |
Si1xii—Re2—Si2 | 119.72 (8) | Re1x—Si3—Gdii | 151.41 (5) |
Si1viii—Re2—Si2 | 60.28 (8) | Re1ix—Si3—Gdii | 129.93 (3) |
Si1—Re2—Si2 | 119.72 (8) | Re1xi—Si3—Gdii | 81.779 (12) |
Si2xiii—Re2—Si2 | 180.0 | Si3xvii—Si3—Gdii | 63.68 (8) |
Si1ii—Re2—Re2xiv | 55.83 (4) | Re1—Si3—Gdxviii | 81.779 (12) |
Si1xii—Re2—Re2xiv | 55.83 (4) | Re1x—Si3—Gdxviii | 129.93 (3) |
Si1viii—Re2—Re2xiv | 124.17 (4) | Re1ix—Si3—Gdxviii | 67.712 (11) |
Si1—Re2—Re2xiv | 124.17 (4) | Re1xi—Si3—Gdxviii | 151.41 (5) |
Si2xiii—Re2—Re2xiv | 90.0 | Si3xvii—Si3—Gdxviii | 63.68 (8) |
Si2—Re2—Re2xiv | 90.0 | Gdii—Si3—Gdxviii | 78.66 (6) |
Si1ii—Re2—Re2viii | 124.17 (4) | Re1—Si3—Gdxix | 151.41 (5) |
Si1xii—Re2—Re2viii | 124.17 (4) | Re1x—Si3—Gdxix | 67.712 (11) |
Si1viii—Re2—Re2viii | 55.83 (4) | Re1ix—Si3—Gdxix | 81.779 (12) |
Si1—Re2—Re2viii | 55.83 (4) | Re1xi—Si3—Gdxix | 129.93 (3) |
Si2xiii—Re2—Re2viii | 90.0 | Si3xvii—Si3—Gdxix | 63.68 (8) |
Si2—Re2—Re2viii | 90.0 | Gdii—Si3—Gdxix | 127.36 (16) |
Re2xiv—Re2—Re2viii | 180.0 | Gdxviii—Si3—Gdxix | 78.66 (6) |
Si1ii—Re2—Gdviii | 168.29 (6) | Re1—Si3—Gdxx | 129.93 (3) |
Si1xii—Re2—Gdviii | 59.57 (4) | Re1x—Si3—Gdxx | 81.779 (12) |
Si1viii—Re2—Gdviii | 56.71 (8) | Re1ix—Si3—Gdxx | 151.41 (5) |
Si1—Re2—Gdviii | 94.36 (7) | Re1xi—Si3—Gdxx | 67.712 (11) |
Si2xiii—Re2—Gdviii | 64.270 (10) | Si3xvii—Si3—Gdxx | 63.68 (8) |
Si2—Re2—Gdviii | 115.730 (10) | Gdii—Si3—Gdxx | 78.66 (6) |
Re2xiv—Re2—Gdviii | 114.889 (4) | Gdxviii—Si3—Gdxx | 127.36 (16) |
Re2viii—Re2—Gdviii | 65.111 (4) | Gdxix—Si3—Gdxx | 78.66 (6) |
Symmetry codes: (i) −y+1/2, −x+1/2, z−1/2; (ii) −y+1/2, −x+1/2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2; (iv) x+1/2, −y+1/2, z−1/2; (v) −y+1, x, −z; (vi) −y+1, x, z; (vii) x, y, −z; (viii) −x, −y+1, −z; (ix) y, −x, −z; (x) −x, −y, −z; (xi) −y, x, z; (xii) y−1/2, x+1/2, −z+1/2; (xiii) −x, −y+1, z; (xiv) −x, −y+1, −z+1; (xv) y, −x+1, −z; (xvi) x, y, −z+1; (xvii) −x, −y, −z+1; (xviii) −x+1/2, y−1/2, −z+1/2; (xix) y−1/2, x−1/2, −z+1/2; (xx) x−1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | Gd2Re3Si5 |
Mr | 1013.55 |
Crystal system, space group | Tetragonal, P4/mnc |
Temperature (K) | 293 |
a, c (Å) | 10.95564 (13), 5.56326 (11) |
V (Å3) | 667.74 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 74.55 |
Crystal size (mm) | 0.16 × 0.10 × 0.02 |
Data collection | |
Diffractometer | Agilent Xcalibur Onyx diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2012; analytical numeric absorption correction using a multi-faceted crystal model (Clark & Reid, 1995)] |
Tmin, Tmax | 0.015, 0.194 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11378, 502, 481 |
Rint | 0.062 |
(sin θ/λ)max (Å−1) | 0.692 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.063, 1.17 |
No. of reflections | 502 |
No. of parameters | 31 |
Δρmax, Δρmin (e Å−3) | 2.35, −2.44 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 2012), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).
Acknowledgements
This work was supported by the Ministry of Education and Science of Ukraine under grant No 0112U001279.
References
Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England. Google Scholar
Akselrud, L. G., Yarmolyuk, Y. P. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 492–493. Google Scholar
Bodak, O. I., Pecharskii, V. K. & Gladyshevskii, E. I. (1978). Izv. Akad. Nauk SSSR Neorg. Mater. 14, 251–255. Google Scholar
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Chabot, B. & Parthé, E. (1985). J. Less-Common Met. 106, 53–59. CrossRef CAS Web of Science Google Scholar
Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. & Gladyshevskii, R. (1993). TYPIX. Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Heidelberg: Springer-Verlag. Google Scholar
Rizzoli, C., Salamakha, P. S., Sologub, O. L., Belletti, D., Goncalves, A. P. & Almeida, M. (2004). J. Alloys Compd, 363, 217–222. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Villars, P. & Cenzual, K. (2013). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds. Release 2013/14. Materials Park, Ohio: ASM International. Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
Yarmolyuk, Y. P., Akselrud, L. G. & Gladyshevskii, E. I. (1977). Sov. Phys. Crystallogr. 22, 358–359. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.