research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a CuII complex with a bridging ligand: poly[[penta­kis­[μ2-1,1′-(butane-1,4-di­yl)bis­­(1H-imidazole)-κ2N3:N3′]dicopper(II)] tetranitrate tetra­hydrate]

aHeilongjiang Agricultural Vocational and Technical College, JiaMuSi 154007 Heilongjiang, People's Republic of China
*Correspondence e-mail: njndwfy@126.com

Edited by U. Flörke, University of Paderborn, Germany (Received 11 October 2014; accepted 7 November 2014; online 15 November 2014)

A novel two-dimensional→three-dimensional CuII coordination polymer, {[Cu2(C10H14N4)5](NO3)4·4H2O}n, based on the 1,1′-(butane-1,4-di­yl)bis­(1H-imidazole) (biim) ligand and containing one crystallographically unique CuII atom, has been synthesized under hydro­thermal conditions. The CuII atom is coordinated by five N atoms from biim ligands, one of which has crystallographically imposed inversion symmetry, giving rise to a slightly distorted CuN5 square-pyramidal geometry. The CuII cations are linked by biim ligands to give a 44 layer; the layers are further bridged by biim ligands, generating a double sheet with a thickness of 14.61 Å. The sheet features rhombic Cu4(biim)4 windows built up from four CuII centers and four biim ligands with dimensions of 14.11 × 14.07 Å2. Each window of a layer is penetrated directly by the biim ligand of the adjacent net, giving a two-dimensional→three-dimensional entangled framework.

1. Chemical context

In the past decade, entangled systems of metal–organic frameworks (MOFs) have attracted great attention because of their undisputed aesthetic topological structures, fascinating properties and applications, such as mol­ecular machines and sensor devices, and potential biological applications (Carlucci et al., 2003a[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003a). Coord. Chem. Rev. 246, 247-289.]; Bu et al., 2004[Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192-195.]; Batten & Robson, 1998[Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460-1494.]; Perry et al., 2007[Perry, J. J., Kravtsov, V. Ch., McManus, G. J. & Zaworotko, M. J. (2007). J. Am. Chem. Soc. 129, 10076-10077.]; Yang et al., 2012[Yang, J., Ma, J.-F. & Batten, S. R. (2012). Chem. Commun. 48, 7899-7912.]; Baburin et al., 2005[Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). J. Solid State Chem. 178, 2452-2474.]; Blatov et al., 2004[Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377-395.]). Currently, many chemists are making great contrib­utions to this field, and a number of compounds with entangled framework structures have been synthesized and characterized, which are based on N-donor ligands due to their diversity in coord­ination modes and their versatile conformations (Murphy et al., 2005[Murphy, D. L., Malachowski, M. R., Campana, C. F. & Cohen, S. M. (2005). Chem. Commun. pp. 5506-5508.]; Wu et al., 2011a[Wu, H., Liu, H.-Y., Liu, Y.-Y., Yang, J., Liu, B. & Ma, J.-F. (2011a). Chem. Commun. 47, 1818-1820.]; Yang et al., 2008[Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233-2235.]; Zhang et al., 2013[Zhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009-2018.]). However, the controlled synthesis of crystals with entangled framework structures is still a significant challenge, although many entangled coordination compounds of this sort have already been obtained (Carlucci et al., 2003b[Carlucci, L., Ciani, G. & Proserpio, D. M. (2003b). CrystEngComm, 5, 269-279.]; Batten, 2001[Batten, S. R. (2001). CrystEngComm, 3, 67-73.]; Wu et al., 2011b[Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. (2011b). J. Am. Chem. Soc. 133, 11406-11409.]). According to previous literature, the construction of MOFs mainly depends on the nature of the organic ligands, metal ions, the temperature, the pH value, and so on (James, 2003[James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.]; Chen et al., 2010[Chen, L., Xu, G.-J., Shao, K.-Z., Zhao, Y.-H., Yang, G.-S., Lan, Y.-Q., Wang, X.-L., Xu, H.-B. & Su, Z.-M. (2010). CrystEngComm, 12, 2157-2165.]; Ma et al., 2004[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L., Zhang, Y.-M., Li, F.-F. & Liu, J.-F. (2004). Polyhedron, 23, 553-559.]).

Recently, 1,1′-(1,4-butanedi­yl)bis­(imidazole) and carboxyl­ate ligands have frequently been employed in the construction of coordination compounds due to their flexible character, and coordination compounds displaying different structural motifs have been reported (Wen et al., 2005[Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161-7170.]; Chen et al., 2009[Chen, P., Batten, S. R., Qi, Y. & Zheng, J.-M. (2009). Cryst. Growth Des. 9, 2456-2761.]; Dong et al., 2007[Dong, B., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H. & Hu, N. (2007). Inorg. Chem. 46, 5933-5941.]). However, the syntheses of complexes based on inorganic ions have been scarcely been reported.

It is inter­esting to note that the CuII complexes based on inorganic counter-ions and the biim ligand, [Cu(biim)2(H2O)]Cl2·5H2O (II), [Cu(biim)2(H2O)](NO3)2·H2O (III) and [Cu(biim)2]SO4·8H2O (IV), were synthesized at room temperature (Ma et al., 2004[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L., Zhang, Y.-M., Li, F.-F. & Liu, J.-F. (2004). Polyhedron, 23, 553-559.]). In (II), (III) and (IV), the CuII cations are bridged by biim ligands, forming infinite 44 networks that contain 44-membered rings. It is worth mentioning that no inter­penetration occurs in (II) and (III), while in (IV), two 44 networks are inter­penetrated in a parallel fashion, forming a two-dimensional →two-dimensional sheet. In the present work, we describe the synthesis and structure of one such entangled CuII complex, the title compound (I)[link], [Cu2(C10H14N4)5](NO3)4·4H2O, which exhibits a novel two-dimensional→three-dimensional polymeric structure, and which was prepared under hydro­thermal conditions instead of at room temperature.

[Scheme 1]

2. Structural commentary

The structure of compound, (I)[link] (Fig. 1[link]), contains one CuII, two and one half biim ligands, two nitrate ions and two water mol­ecules per asymmetric unit. The CuII cation is five-coordinated and exhibits a distorted CuN5 square-pyramidal coordination geometry from the biim ligands (Table 1[link]). The cis basal N—Cu—N bond angles range from 88.42 (15) to 90.72 (15)°, and the apical bond angles from 92.02 (14) to 101.23 (15)°.

Table 1
Selected geometric parameters (Å, °)

Cu1—N1i 2.012 (4) Cu1—N4 2.043 (4)
Cu1—N8ii 2.013 (4) Cu1—N9 2.220 (4)
Cu1—N5 2.019 (4)    
       
N1i—Cu1—N8ii 161.25 (15) N5—Cu1—N4 170.05 (15)
N1i—Cu1—N5 90.72 (15) N1i—Cu1—N9 97.52 (15)
N8ii—Cu1—N5 88.42 (15) N8ii—Cu1—N9 101.23 (15)
N1i—Cu1—N4 88.91 (15) N5—Cu1—N9 92.02 (14)
N8ii—Cu1—N4 88.74 (15) N4—Cu1—N9 97.89 (15)
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].
[Figure 1]
Figure 1
The molecular entities in the structure of the title compound, with anisotropic displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) x, −y + [{3\over 2}], z − [{1\over 2}]; (ii) x, −y + [{1\over 2}], z + [{1\over 2}]; (iii) −x + 1, −y + 1, −z + 1.]

3. Topological features

The CuII cations are linked by biim ligands, giving a 44 layer; the layers are further bridged by biim ligands at nearly vertical directions, generating a double sheet with a thickness of 14.61 Å (Fig. 2[link]). The sheet exhibits Cu4(biim)4 windows built up from four CuII atoms and four biim ligands with dimensions of 14.11 × 14.07 Å2. From a topological viewpoint, the sheet reveals a 5-connected topology, in which the Cu atom acts as a 5-connected node and the biim ligand is regarded as a linker. Considering the composition, the Schläfli symbol of the two-dimensional network can be defined as 48.62 (Fig. 3[link]).

[Figure 2]
Figure 2
The two-dimensional double layer with large windows in (I)[link].
[Figure 3]
Figure 3
The topology of the two-dimensional layer in (I)[link].

It is noteworthy that every Cu4(biim)4 unit of each layer is threaded through simultaneously by the biim ligand from an adjacent layer in a parallel fashion, forming a two-dimen­sional→three-dimensional entangled framework, as highlighted in Fig. 4[link]. All sheets are identical, and all the Cu4(biim)4 windows are equivalent. As far as we know, so far only a few examples of two-dimensional→three-dimensional entangled structures have been observed: the networks in these are mainly focused on 44 and 63 topologies. Two-dimensional→three-dimensional entangled frameworks with 48.62 topology have scarcely been reported.

[Figure 4]
Figure 4
The two-dimensional→three-dimensional framework in (I)[link].

It should be pointed out that although the starting materials used for syntheses of (I)[link] and the related compound (III) are the same, their complex structures are entirely different (Ma et al., 2004[Ma, J.-F., Yang, J., Zheng, G.-L., Li, L., Zhang, Y.-M., Li, F.-F. & Liu, J.-F. (2004). Polyhedron, 23, 553-559.]). The structure of (III) can be symbolized as a 44 net, and has no inter­penetration. Although it is hard to propose definitive reasons as to why compounds (I)[link] and (III) adopt different configurations, it can be speculated that pH values and temperature may exert an important influence on the resulting architectures.

4. Synthesis and crystallization

A mixture of biim (0.057 g, 0.3 mmol), Cu(NO3)2·3H2O (0.048 g, 0.2 mmol) and water (15 ml) was mixed and stirred at room temperature for 10 min. The mixture was adjusted with 1 M HNO3 to pH ≃ 5 and then sealed in a 25 ml Teflon-lined autoclave and heated at 443 K for three days. Then the mixture was cooled to room temperature, and black–blue crystals of (I)[link] were obtained in 56% yield based on CuII. Elemental analysis, found: C 42.85, N 24.14, H 5.56%; calculated for C25H39CuN12O8 (Mr = 699.22): C 42.94, N 24.04, H 5.62%.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms,with C—H distances of 0.93 (aromatic) or 0.96 Å (CH2) with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located from difference maps, refined with O—H = 0.84 (1) and H⋯H = 1.40 (1) Å and with Uiso(H) = 1.5Ueq(O). One NO3 group was highly disordered and could not be modelled successfully (geometries, adp's). After using the SQUEEZE (Spek, 2014[Spek, A. L. (2014). Acta Cryst. C70. Submitted [LN3172].]) routine of PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), refinement converged smoothly.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2(C10H14N4)5](NO3)4·4H2O
Mr 1398.44
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 293
a, b, c (Å) 20.034 (4), 13.057 (3), 24.979 (5)
V3) 6534 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.73
Crystal size (mm) 0.21 × 0.17 × 0.14
 
Data collection
Diffractometer Oxford Diffraction Gemini R Ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.])
Tmin, Tmax 0.859, 0.911
No. of measured, independent and observed [I > 2σ(I)] reflections 48000, 5763, 3398
Rint 0.111
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.172, 1.03
No. of reflections 5763
No. of parameters 391
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.34, −0.39
Computer programs: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

In the past decade, entangled systems of metal–organic frameworks (MOFs) have attracted great attention because of their undisputed aesthetic topological structures, fascinating properties such as molecular machines and sensor devices, and potential biological applications (Carlucci et al., 2003a; Bu et al., 2004; Batten & Robson, 1998; Perry et al., 2007; Yang et al., 2012; Baburin et al., 2005; Blatov et al., 2004). Currently, many chemists are making great contributions to this field, and a number of entangled metal–organic frameworks have been synthesized and characterized based on N-donor ligands due to their diversities in coordination modes and versatile conformations (Murphy et al., 2005; Wu et al., 2011a; Yang et al., 2008; Zhang et al., 2013). However, the controlled synthesis of entangled crystals is still a significant challenge, although many entangled coordination compounds of this sort have been obtained so far (Carlucci et al., 2003b; Batten, 2001; Wu et al., 2011b). According to previous literature, the construction of MOFs mainly depends on the nature of the organic ligands, metal ions, the temperature, the pH value, and so on (James, 2003; Chen et al., 2010; Ma et al., 2004).

Recently, 1,1'-(1,4-butane­diyl)bis­(imidazole) and carboxyl­ate ligands have frequently been employed to construct coordination compounds due to their flexible character, and some coordination compounds displaying different structural motifs have been reported (Wen et al., 2005; Chen et al., 2009; Dong et al., 2007). However, the synthesis of complexes based on inorganic ions have been scarcely been reported. It is inter­esting to note that CuII complexes based on inorganic ions and the biim ligand, [Cu(biim)2(H2O)]Cl2·5H2O (II), [Cu(biim)2(H2O)](NO3)2·H2O (III) and [Cu(biim)2]SO4·8H2O (IV), have been synthesized at room temperature (Ma et al., 2004). In (II), (III) and (IV), the CuII cations are bridged by biim ligands, forming infinite 44 networks that contain 44-membered rings. It is worth mentioning that no inter­penetration occurs in (II) and (III), while in (IV), two 44 networks are inter­penetrated in a parallel fashion, forming a two-dimensional two-dimensional sheet. In the present work, we describe the synthesis and structure of one such CuII entangled complex, the title compound (I), which exhibits a novel two-dimensional three-dimensional polymeric structure, and which was prepared under hydro­thermal conditions instead of at room temperature.

Structural commentary top

The structure of the title compound, (I) (Fig. 1), contains one CuII, two and one half biim ligands, two nitrate ions and two water molecules per asymmetric unit. The CuII cation is five-coordinated and exhibits a distorted CuN5 square-pyramidal coordination geometry from the biim ligands (Table 1). The cis basal N—Cu—N bond angles range from 88.42 (15) to 90.72 (15)°, and the apical bond angles from 92.02 (14) to 101.23 (15)°. The CuII cations are linked by biim ligands to give a 44 layer parallel to (???); the layers are further bridged by biim ligands at nearly vertical directions, generating a double sheet with a thickness of 14.61 Å (Fig. 2). The sheet exhibits Cu4(biim)4 windows built up from four Cu centers and four biim ligands with dimensions of 14.11 × 14.07 Å2. From a topological viewpoint, the sheet reveals a 5-connected topology, in which the Cu atom acts as a 5-connected node and the biim ligand is regarded as a linker. Considering the stoichiometry, the Schläfli symbol of the two-dimensional network can be defined as 48.62 (Fig. 3).

It is noteworthy that every Cu4(biim)4 unit of each layer is threaded through simultaneously by the biim ligand from an adjacent layer in a parallel fashion, forming a fascinating two-dimensional three-dimensional entangled framework as highlighted in Fig. 4. All sheets are identical, and all the Cu4(biim)4 windows are equivalent. As far as we know, so far only a few examples of two-dimensional three-dimensional entangled structures have been observed, in which the networks are mainly focused on 44 and 63 networks. Two-dimensional three-dimensional entangled frameworks with 48.62 topology have scarcely been reported .

It should be pointed out that although the starting materials used for syntheses of (I) and the related compound (III) are the same, their complex structures are entirely different (Ma et al., 2004). The structure of (III) can be symbolized as a 44 net, and has no inter­penetration. Although it is hard to propose definitive reasons as to why compounds (I) and (III) adopt different configurations, it can be speculated that pH values and temperature may exert an important influence on the resulting architectures.

Synthesis and crystallization top

A mixture of biim (0.057 g, 0.3 mmol), Cu(NO3)2·3H2O (0.048 g, 0.2 mmol) and water (15 ml) was mixed and stirred at room temperature for 10 min. The mixture was adjusted with 1 M HNO3 to pH 5 and then sealed in a 25 ml Teflon-lined autoclave and heated at 443 K for three days. Then the mixture was cooled to room temperature, and black–blue crystals of (I) were obtained in 56% yield based on CuII. Elemental analysis, found: C 42.85, N 24.14, H 5.56%; calculated for C25H39CuN12O8 (Mr = 699.22): C 42.94, N 24.04, H 5.62%.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms,with C—H distances of 0.93 (aromatic) or 0.96 Å (CH2) with Uiso(H) = 1.2Ueq(C). H atoms bonded to O atoms were located from difference maps, refined with O—H = 0.84 (1) and H···H = 1.40 (1) Å and with Uiso(H) = 1.5Ueq(O). One NO3 group was highly disordered and could not be modelled successfully (geometries, adp's). After using the SQUEEZE (Spek, 2014) routine of PLATON (Spek, 2009), refinement converged smoothly.

Related literature top

For related structures, see: Ma et al. (2004); Murphy et al. (2005); Yang et al.. (2008); Zhang et al. (2013).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at the 30% probability level. [Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) x, -y+1/2, z+1/2; (iii) -x+1, -y+1, -z+1.]

The two-dimensional double layer with large windows in (I).

The topology of the two-dimensional layer in (I).

The two-dimensional three-dimensional framework in (I).
Poly[[pentakis[µ2-1,1'-(butane-1,4-diyl)bis(1H-imidazole)-κ2N3:N3']dicopper(II)] tetranitrate tetrahydrate] top
Crystal data top
[Cu2(C10H14N4)5](NO3)4·4H2OF(000) = 2928
Mr = 1398.44Dx = 1.422 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 3.0–25°
a = 20.034 (4) ŵ = 0.73 mm1
b = 13.057 (3) ÅT = 293 K
c = 24.979 (5) ÅBlock, blue
V = 6534 (2) Å30.21 × 0.17 × 0.14 mm
Z = 4
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
5763 independent reflections
Radiation source: fine-focus sealed tube3398 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
Detector resolution: 10.0 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scanh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 1515
Tmin = 0.859, Tmax = 0.911l = 2929
48000 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0868P)2]
where P = (Fo2 + 2Fc2)/3
5763 reflections(Δ/σ)max = 0.001
391 parametersΔρmax = 0.34 e Å3
4 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Cu2(C10H14N4)5](NO3)4·4H2OV = 6534 (2) Å3
Mr = 1398.44Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 20.034 (4) ŵ = 0.73 mm1
b = 13.057 (3) ÅT = 293 K
c = 24.979 (5) Å0.21 × 0.17 × 0.14 mm
Data collection top
Oxford Diffraction Gemini R Ultra
diffractometer
5763 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
3398 reflections with I > 2σ(I)
Tmin = 0.859, Tmax = 0.911Rint = 0.111
48000 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0604 restraints
wR(F2) = 0.172H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.34 e Å3
5763 reflectionsΔρmin = 0.39 e Å3
391 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.85764 (3)0.50167 (4)0.55687 (2)0.03364 (19)
C10.9175 (3)0.1747 (4)0.1200 (2)0.0512 (14)
H10.94870.18900.09340.061*
C20.9112 (3)0.2278 (4)0.1654 (2)0.0526 (14)
H20.93680.28340.17630.063*
C30.8368 (2)0.1055 (3)0.16238 (18)0.0409 (12)
H30.80120.06330.17170.049*
C40.8320 (3)0.2147 (4)0.2448 (2)0.0496 (13)
H4A0.79580.16890.25430.060*
H4B0.81400.28350.24220.060*
C50.8852 (3)0.2117 (4)0.28812 (19)0.0447 (12)
H5A0.92160.25710.27850.054*
H5B0.90290.14280.29110.054*
C60.8558 (3)0.2446 (4)0.34183 (19)0.0478 (13)
H6A0.83600.31200.33820.057*
H6B0.82080.19710.35210.057*
C70.9083 (3)0.2472 (4)0.3846 (2)0.0516 (14)
H7A0.92730.17920.38840.062*
H7B0.94370.29300.37350.062*
C80.8921 (2)0.3729 (3)0.45896 (19)0.0380 (11)
H80.91780.42480.44390.046*
C90.8414 (3)0.2265 (4)0.4708 (2)0.0478 (13)
H90.82560.16020.46590.057*
C100.8286 (2)0.2885 (4)0.5121 (2)0.0452 (12)
H100.80210.27150.54140.054*
C110.9033 (2)0.6239 (3)0.65298 (18)0.0375 (11)
H110.92630.56870.66770.045*
C120.8446 (3)0.7176 (4)0.6003 (2)0.0508 (14)
H120.81890.73880.57130.061*
C130.8606 (3)0.7759 (4)0.6433 (2)0.0522 (14)
H130.84870.84390.64900.063*
C140.9217 (3)0.7440 (4)0.7300 (2)0.0511 (13)
H14A0.94750.80670.72730.061*
H14B0.95100.69070.74330.061*
C150.8656 (3)0.7597 (4)0.76881 (19)0.0476 (13)
H15A0.83720.69950.76910.057*
H15B0.83880.81770.75760.057*
C160.8926 (3)0.7786 (4)0.82474 (19)0.0475 (13)
H16A0.91770.71920.83650.057*
H16B0.92270.83680.82410.057*
C170.8365 (3)0.7994 (4)0.86372 (19)0.0472 (13)
H25A0.80950.85580.85060.057*
H25B0.80810.73940.86630.057*
C180.8399 (2)0.8982 (3)0.95009 (17)0.0382 (11)
H170.80330.93950.94250.046*
C190.9223 (3)0.8289 (4)0.99014 (19)0.0454 (12)
H180.95420.81321.01600.054*
C200.9157 (3)0.7798 (4)0.9423 (2)0.0468 (13)
H190.94170.72630.92940.056*
C210.7128 (2)0.5565 (4)0.6069 (2)0.0452 (12)
H210.73210.59190.63530.054*
C220.6471 (3)0.5383 (4)0.6015 (2)0.0475 (12)
H220.61330.55820.62490.057*
C230.7012 (2)0.4723 (4)0.5336 (2)0.0436 (12)
H200.71000.43840.50160.052*
C240.5780 (3)0.4428 (4)0.5328 (2)0.0567 (15)
H23A0.55480.40570.56080.068*
H23B0.58890.39430.50470.068*
C250.5322 (2)0.5232 (4)0.5104 (2)0.0510 (14)
H24A0.55460.55910.48160.061*
H24B0.52180.57270.53820.061*
N10.87215 (18)0.0969 (3)0.11766 (14)0.0363 (9)
N20.8596 (2)0.1840 (3)0.19254 (15)0.0426 (10)
N30.8827 (2)0.2808 (3)0.43685 (15)0.0400 (10)
N40.86013 (19)0.3808 (3)0.50499 (14)0.0386 (9)
N50.87252 (18)0.6217 (3)0.60642 (14)0.0368 (9)
N60.8974 (2)0.7152 (3)0.67632 (16)0.0430 (10)
N70.86318 (19)0.8252 (3)0.91747 (15)0.0406 (9)
N80.8757 (2)0.9042 (3)0.99470 (15)0.0402 (9)
N90.74755 (19)0.5150 (3)0.56425 (15)0.0408 (10)
N100.63959 (19)0.4843 (3)0.55460 (17)0.0460 (10)
N110.9485 (4)0.4798 (4)0.2707 (3)0.0834 (19)
O10.9319 (4)0.4666 (4)0.3186 (3)0.139 (3)
O21.0051 (3)0.5040 (5)0.2616 (3)0.121 (2)
O1W0.7338 (3)0.0160 (5)0.2453 (2)0.1075 (18)
O30.9069 (3)0.4732 (5)0.2355 (3)0.129 (2)
O2W0.4859 (3)0.5308 (6)0.6429 (3)0.130 (2)
H1A0.6939 (16)0.002 (8)0.248 (4)0.195*
H2A0.499 (6)0.534 (10)0.6748 (17)0.195*
H1B0.754 (4)0.021 (8)0.275 (2)0.195*
H2B0.436 (6)0.534 (8)0.629 (4)0.195*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0493 (3)0.0356 (3)0.0161 (3)0.0011 (3)0.0011 (2)0.0008 (2)
C10.059 (3)0.062 (3)0.032 (3)0.021 (3)0.006 (2)0.001 (3)
C20.073 (4)0.051 (3)0.034 (3)0.024 (3)0.001 (3)0.005 (2)
C30.052 (3)0.043 (3)0.028 (3)0.007 (2)0.001 (2)0.005 (2)
C40.060 (3)0.058 (3)0.031 (3)0.004 (3)0.004 (2)0.022 (2)
C50.056 (3)0.050 (3)0.028 (3)0.005 (2)0.000 (2)0.013 (2)
C60.062 (3)0.054 (3)0.028 (3)0.005 (3)0.004 (2)0.010 (2)
C70.063 (3)0.061 (3)0.030 (3)0.010 (3)0.003 (2)0.009 (3)
C80.042 (3)0.039 (3)0.033 (3)0.004 (2)0.004 (2)0.003 (2)
C90.067 (4)0.039 (3)0.037 (3)0.004 (2)0.004 (3)0.000 (2)
C100.058 (3)0.047 (3)0.031 (3)0.007 (3)0.008 (2)0.003 (2)
C110.049 (3)0.041 (3)0.023 (3)0.007 (2)0.002 (2)0.008 (2)
C120.082 (4)0.044 (3)0.026 (3)0.008 (3)0.005 (3)0.004 (2)
C130.086 (4)0.036 (3)0.034 (3)0.009 (3)0.003 (3)0.007 (2)
C140.062 (3)0.061 (3)0.030 (3)0.003 (3)0.002 (2)0.018 (3)
C150.063 (3)0.050 (3)0.029 (3)0.000 (3)0.002 (2)0.008 (2)
C160.060 (3)0.057 (3)0.025 (3)0.006 (3)0.001 (2)0.008 (2)
C170.060 (3)0.059 (3)0.023 (3)0.005 (3)0.005 (2)0.013 (2)
C180.055 (3)0.036 (2)0.024 (3)0.009 (2)0.001 (2)0.007 (2)
C190.056 (3)0.053 (3)0.027 (3)0.003 (3)0.001 (2)0.003 (2)
C200.054 (3)0.051 (3)0.035 (3)0.015 (3)0.007 (2)0.007 (2)
C210.047 (3)0.056 (3)0.033 (3)0.009 (2)0.003 (2)0.009 (2)
C220.052 (3)0.044 (3)0.046 (3)0.007 (2)0.005 (3)0.004 (2)
C230.044 (3)0.052 (3)0.035 (3)0.005 (2)0.005 (2)0.006 (2)
C240.051 (3)0.048 (3)0.071 (4)0.001 (3)0.018 (3)0.003 (3)
C250.047 (3)0.054 (3)0.052 (3)0.001 (2)0.003 (3)0.004 (3)
N10.051 (2)0.040 (2)0.018 (2)0.0064 (18)0.0005 (17)0.0011 (16)
N20.058 (3)0.046 (2)0.025 (2)0.001 (2)0.001 (2)0.0066 (18)
N30.051 (2)0.043 (2)0.026 (2)0.0048 (19)0.0063 (19)0.0080 (18)
N40.057 (2)0.038 (2)0.021 (2)0.0000 (19)0.0043 (18)0.0002 (16)
N50.052 (2)0.038 (2)0.020 (2)0.0028 (18)0.0003 (17)0.0011 (16)
N60.058 (3)0.046 (2)0.025 (2)0.007 (2)0.0028 (19)0.0071 (19)
N70.057 (3)0.042 (2)0.023 (2)0.007 (2)0.0022 (19)0.0060 (18)
N80.059 (3)0.039 (2)0.023 (2)0.0006 (19)0.0003 (19)0.0015 (17)
N90.050 (2)0.044 (2)0.028 (2)0.0029 (18)0.0026 (18)0.0014 (18)
N100.045 (2)0.042 (2)0.051 (3)0.0019 (19)0.006 (2)0.0033 (19)
N110.097 (5)0.040 (3)0.113 (6)0.006 (3)0.007 (5)0.009 (3)
O10.203 (7)0.086 (4)0.129 (6)0.018 (4)0.037 (5)0.018 (4)
O20.081 (4)0.153 (5)0.131 (6)0.001 (4)0.011 (4)0.041 (4)
O1W0.117 (5)0.129 (5)0.076 (4)0.022 (4)0.011 (3)0.013 (4)
O30.101 (5)0.131 (5)0.154 (6)0.012 (3)0.042 (4)0.014 (4)
O2W0.102 (4)0.177 (6)0.110 (5)0.019 (4)0.031 (4)0.007 (5)
Geometric parameters (Å, º) top
Cu1—N1i2.012 (4)C14—H14A0.9700
Cu1—N8ii2.013 (4)C14—H14B0.9700
Cu1—N52.019 (4)C15—C161.519 (6)
Cu1—N42.043 (4)C15—H15A0.9700
Cu1—N92.220 (4)C15—H15B0.9700
C1—C21.337 (7)C16—C171.512 (7)
C1—N11.364 (6)C16—H16A0.9700
C1—H10.9300C16—H16B0.9700
C2—N21.360 (6)C17—N71.484 (6)
C2—H20.9300C17—H25A0.9700
C3—N11.328 (6)C17—H25B0.9700
C3—N21.353 (6)C18—N81.327 (6)
C3—H30.9300C18—N71.338 (5)
C4—N21.472 (6)C18—H170.9300
C4—C51.519 (7)C19—N81.361 (6)
C4—H4A0.9700C19—C201.362 (7)
C4—H4B0.9700C19—H180.9300
C5—C61.527 (6)C20—N71.358 (6)
C5—H5A0.9700C20—H190.9300
C5—H5B0.9700C21—C221.345 (7)
C6—C71.500 (7)C21—N91.384 (6)
C6—H6A0.9700C21—H210.9300
C6—H6B0.9700C22—N101.375 (6)
C7—N31.469 (6)C22—H220.9300
C7—H7A0.9700C23—N91.327 (6)
C7—H7B0.9700C23—N101.351 (6)
C8—N41.320 (5)C23—H200.9300
C8—N31.337 (6)C24—N101.453 (6)
C8—H80.9300C24—C251.503 (7)
C9—C101.336 (6)C24—H23A0.9700
C9—N31.381 (6)C24—H23B0.9700
C9—H90.9300C25—C25iii1.518 (9)
C10—N41.373 (6)C25—H24A0.9700
C10—H100.9300C25—H24B0.9700
C11—N51.317 (5)N1—Cu1iv2.012 (4)
C11—N61.333 (5)N8—Cu1v2.013 (4)
C11—H110.9300N11—O21.200 (8)
C12—C131.354 (7)N11—O31.213 (8)
C12—N51.380 (6)N11—O11.254 (8)
C12—H120.9300O1W—H1A0.839 (10)
C13—N61.362 (6)O1W—H1B0.839 (10)
C13—H130.9300O2W—H2A0.842 (10)
C14—N61.475 (6)O2W—H2B1.06 (11)
C14—C151.499 (7)
N1i—Cu1—N8ii161.25 (15)C15—C16—H16A109.5
N1i—Cu1—N590.72 (15)C17—C16—H16B109.5
N8ii—Cu1—N588.42 (15)C15—C16—H16B109.5
N1i—Cu1—N488.91 (15)H16A—C16—H16B108.1
N8ii—Cu1—N488.74 (15)N7—C17—C16110.8 (4)
N5—Cu1—N4170.05 (15)N7—C17—H25A109.5
N1i—Cu1—N997.52 (15)C16—C17—H25A109.5
N8ii—Cu1—N9101.23 (15)N7—C17—H25B109.5
N5—Cu1—N992.02 (14)C16—C17—H25B109.5
N4—Cu1—N997.89 (15)H25A—C17—H25B108.1
C2—C1—N1111.0 (4)N8—C18—N7111.4 (4)
C2—C1—H1124.5N8—C18—H17124.3
N1—C1—H1124.5N7—C18—H17124.3
C1—C2—N2106.1 (4)N8—C19—C20110.2 (4)
C1—C2—H2126.9N8—C19—H18124.9
N2—C2—H2126.9C20—C19—H18124.9
N1—C3—N2110.6 (4)N7—C20—C19105.7 (4)
N1—C3—H3124.7N7—C20—H19127.1
N2—C3—H3124.7C19—C20—H19127.1
N2—C4—C5111.2 (4)C22—C21—N9110.2 (4)
N2—C4—H4A109.4C22—C21—H21124.9
C5—C4—H4A109.4N9—C21—H21124.9
N2—C4—H4B109.4C21—C22—N10106.5 (4)
C5—C4—H4B109.4C21—C22—H22126.8
H4A—C4—H4B108.0N10—C22—H22126.8
C4—C5—C6110.4 (4)N9—C23—N10111.5 (4)
C4—C5—H5A109.6N9—C23—H20124.3
C6—C5—H5A109.6N10—C23—H20124.3
C4—C5—H5B109.6N10—C24—C25113.4 (4)
C6—C5—H5B109.6N10—C24—H23A108.9
H5A—C5—H5B108.1C25—C24—H23A108.9
C7—C6—C5111.2 (4)N10—C24—H23B108.9
C7—C6—H6A109.4C25—C24—H23B108.9
C5—C6—H6A109.4H23A—C24—H23B107.7
C7—C6—H6B109.4C24—C25—C25iii111.6 (5)
C5—C6—H6B109.4C24—C25—H24A109.3
H6A—C6—H6B108.0C25iii—C25—H24A109.3
N3—C7—C6113.3 (4)C24—C25—H24B109.3
N3—C7—H7A108.9C25iii—C25—H24B109.3
C6—C7—H7A108.9H24A—C25—H24B108.0
N3—C7—H7B108.9C3—N1—C1104.9 (4)
C6—C7—H7B108.9C3—N1—Cu1iv127.7 (3)
H7A—C7—H7B107.7C1—N1—Cu1iv127.2 (3)
N4—C8—N3111.2 (4)C3—N2—C2107.3 (4)
N4—C8—H8124.4C3—N2—C4124.9 (4)
N3—C8—H8124.4C2—N2—C4127.7 (4)
C10—C9—N3106.2 (4)C8—N3—C9107.0 (4)
C10—C9—H9126.9C8—N3—C7126.0 (4)
N3—C9—H9126.9C9—N3—C7126.9 (4)
C9—C10—N4110.0 (4)C8—N4—C10105.5 (4)
C9—C10—H10125.0C8—N4—Cu1128.7 (3)
N4—C10—H10125.0C10—N4—Cu1125.8 (3)
N5—C11—N6111.3 (4)C11—N5—C12105.6 (4)
N5—C11—H11124.3C11—N5—Cu1128.9 (3)
N6—C11—H11124.3C12—N5—Cu1125.2 (3)
C13—C12—N5109.1 (4)C11—N6—C13107.7 (4)
C13—C12—H12125.5C11—N6—C14126.6 (4)
N5—C12—H12125.5C13—N6—C14125.6 (4)
C12—C13—N6106.3 (4)C18—N7—C20107.6 (4)
C12—C13—H13126.8C18—N7—C17125.9 (4)
N6—C13—H13126.8C20—N7—C17126.5 (4)
N6—C14—C15112.0 (4)C18—N8—C19104.9 (4)
N6—C14—H14A109.2C18—N8—Cu1v125.9 (3)
C15—C14—H14A109.2C19—N8—Cu1v129.0 (3)
N6—C14—H14B109.2C23—N9—C21104.9 (4)
C15—C14—H14B109.2C23—N9—Cu1127.9 (3)
H14A—C14—H14B107.9C21—N9—Cu1126.5 (3)
C14—C15—C16110.5 (4)C23—N10—C22107.0 (4)
C14—C15—H15A109.6C23—N10—C24125.9 (5)
C16—C15—H15A109.6C22—N10—C24127.1 (4)
C14—C15—H15B109.6O2—N11—O3122.1 (9)
C16—C15—H15B109.6O2—N11—O1117.9 (8)
H15A—C15—H15B108.1O3—N11—O1120.0 (9)
C17—C16—C15110.9 (4)H1A—O1W—H1B113 (2)
C17—C16—H16A109.5H2A—O2W—H2B127 (10)
N1—C1—C2—N21.1 (6)C13—C12—N5—Cu1174.6 (3)
N2—C4—C5—C6179.5 (4)N1i—Cu1—N5—C1120.7 (4)
C4—C5—C6—C7177.2 (4)N8ii—Cu1—N5—C11140.6 (4)
C5—C6—C7—N3178.6 (4)N4—Cu1—N5—C1167.1 (10)
N3—C9—C10—N40.6 (6)N9—Cu1—N5—C11118.3 (4)
N5—C12—C13—N61.1 (6)N1i—Cu1—N5—C12151.1 (4)
N6—C14—C15—C16174.3 (4)N8ii—Cu1—N5—C1247.6 (4)
C14—C15—C16—C17177.3 (4)N4—Cu1—N5—C12121.1 (8)
C15—C16—C17—N7176.0 (4)N9—Cu1—N5—C1253.6 (4)
N8—C19—C20—N70.9 (6)N5—C11—N6—C130.1 (6)
N9—C21—C22—N100.0 (6)N5—C11—N6—C14176.0 (4)
N10—C24—C25—C25iii178.5 (6)C12—C13—N6—C110.6 (6)
N2—C3—N1—C11.4 (5)C12—C13—N6—C14175.3 (4)
N2—C3—N1—Cu1iv176.9 (3)C15—C14—N6—C11109.5 (6)
C2—C1—N1—C31.5 (6)C15—C14—N6—C1365.6 (6)
C2—C1—N1—Cu1iv177.1 (4)N8—C18—N7—C201.3 (5)
N1—C3—N2—C20.7 (5)N8—C18—N7—C17178.3 (4)
N1—C3—N2—C4179.7 (4)C19—C20—N7—C180.2 (5)
C1—C2—N2—C30.2 (6)C19—C20—N7—C17179.4 (4)
C1—C2—N2—C4179.3 (5)C16—C17—N7—C18138.9 (5)
C5—C4—N2—C3122.3 (5)C16—C17—N7—C2040.6 (7)
C5—C4—N2—C258.3 (7)N7—C18—N8—C191.8 (5)
N4—C8—N3—C90.7 (5)N7—C18—N8—Cu1v177.4 (3)
N4—C8—N3—C7177.0 (4)C20—C19—N8—C181.7 (5)
C10—C9—N3—C80.8 (5)C20—C19—N8—Cu1v177.1 (3)
C10—C9—N3—C7177.1 (4)N10—C23—N9—C210.2 (5)
C6—C7—N3—C8104.1 (6)N10—C23—N9—Cu1170.6 (3)
C6—C7—N3—C971.6 (6)C22—C21—N9—C230.2 (6)
N3—C8—N4—C100.3 (5)C22—C21—N9—Cu1170.9 (3)
N3—C8—N4—Cu1178.7 (3)N1i—Cu1—N9—C23103.9 (4)
C9—C10—N4—C80.2 (6)N8ii—Cu1—N9—C2376.3 (4)
C9—C10—N4—Cu1179.3 (3)N5—Cu1—N9—C23165.1 (4)
N1i—Cu1—N4—C8134.7 (4)N4—Cu1—N9—C2314.0 (4)
N8ii—Cu1—N4—C826.7 (4)N1i—Cu1—N9—C2165.1 (4)
N5—Cu1—N4—C846.8 (11)N8ii—Cu1—N9—C21114.7 (4)
N9—Cu1—N4—C8127.8 (4)N5—Cu1—N9—C2125.9 (4)
N1i—Cu1—N4—C1044.1 (4)N4—Cu1—N9—C21155.0 (4)
N8ii—Cu1—N4—C10154.5 (4)N9—C23—N10—C220.2 (6)
N5—Cu1—N4—C10132.1 (8)N9—C23—N10—C24176.7 (4)
N9—Cu1—N4—C1053.3 (4)C21—C22—N10—C230.1 (5)
N6—C11—N5—C120.8 (5)C21—C22—N10—C24176.8 (4)
N6—C11—N5—Cu1173.9 (3)C25—C24—N10—C23110.7 (6)
C13—C12—N5—C111.2 (6)C25—C24—N10—C2273.0 (7)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z+1; (iv) x, y+1/2, z1/2; (v) x, y+3/2, z+1/2.
Selected geometric parameters (Å, º) top
Cu1—N1i2.012 (4)Cu1—N42.043 (4)
Cu1—N8ii2.013 (4)Cu1—N92.220 (4)
Cu1—N52.019 (4)
N1i—Cu1—N8ii161.25 (15)N5—Cu1—N4170.05 (15)
N1i—Cu1—N590.72 (15)N1i—Cu1—N997.52 (15)
N8ii—Cu1—N588.42 (15)N8ii—Cu1—N9101.23 (15)
N1i—Cu1—N488.91 (15)N5—Cu1—N992.02 (14)
N8ii—Cu1—N488.74 (15)N4—Cu1—N997.89 (15)
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu2(C10H14N4)5](NO3)4·4H2O
Mr1398.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)20.034 (4), 13.057 (3), 24.979 (5)
V3)6534 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.73
Crystal size (mm)0.21 × 0.17 × 0.14
Data collection
DiffractometerOxford Diffraction Gemini R Ultra
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2012)
Tmin, Tmax0.859, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
48000, 5763, 3398
Rint0.111
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.172, 1.03
No. of reflections5763
No. of parameters391
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.39

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Heilongjiang Provincial Education Department for support under the project `The structures and luminescent properties of d10 metal ions incorporating N-containing neutral ligands' (serial No. 12515210).

References

First citationAgilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationBaburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). J. Solid State Chem. 178, 2452–2474.  Web of Science CrossRef CAS Google Scholar
First citationBatten, S. R. (2001). CrystEngComm, 3, 67–73.  Web of Science CrossRef Google Scholar
First citationBatten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.  Web of Science CrossRef Google Scholar
First citationBlatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377–395.  Web of Science CrossRef CAS Google Scholar
First citationBu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195.  Web of Science CSD CrossRef CAS Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003a). Coord. Chem. Rev. 246, 247–289.  Web of Science CrossRef CAS Google Scholar
First citationCarlucci, L., Ciani, G. & Proserpio, D. M. (2003b). CrystEngComm, 5, 269–279.  Web of Science CrossRef CAS Google Scholar
First citationChen, P., Batten, S. R., Qi, Y. & Zheng, J.-M. (2009). Cryst. Growth Des. 9, 2456–2761.  CAS Google Scholar
First citationChen, L., Xu, G.-J., Shao, K.-Z., Zhao, Y.-H., Yang, G.-S., Lan, Y.-Q., Wang, X.-L., Xu, H.-B. & Su, Z.-M. (2010). CrystEngComm, 12, 2157–2165.  Web of Science CSD CrossRef CAS Google Scholar
First citationDong, B., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H. & Hu, N. (2007). Inorg. Chem. 46, 5933–5941.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationJames, S. L. (2003). Chem. Soc. Rev. 32, 276–288.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMa, J.-F., Yang, J., Zheng, G.-L., Li, L., Zhang, Y.-M., Li, F.-F. & Liu, J.-F. (2004). Polyhedron, 23, 553–559.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurphy, D. L., Malachowski, M. R., Campana, C. F. & Cohen, S. M. (2005). Chem. Commun. pp. 5506–5508.  Web of Science CSD CrossRef Google Scholar
First citationPerry, J. J., Kravtsov, V. Ch., McManus, G. J. & Zaworotko, M. J. (2007). J. Am. Chem. Soc. 129, 10076–10077.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2014). Acta Cryst. C70. Submitted [LN3172].  CrossRef IUCr Journals Google Scholar
First citationWen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161–7170.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, H., Liu, H.-Y., Liu, Y.-Y., Yang, J., Liu, B. & Ma, J.-F. (2011a). Chem. Commun. 47, 1818–1820.  Web of Science CSD CrossRef CAS Google Scholar
First citationWu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. (2011b). J. Am. Chem. Soc. 133, 11406–11409.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationYang, J., Ma, J.-F. & Batten, S. R. (2012). Chem. Commun. 48, 7899–7912.  Web of Science CrossRef CAS Google Scholar
First citationYang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235.  Web of Science CSD CrossRef Google Scholar
First citationZhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009–2018.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds