organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1235-o1236

Crystal structure of (±)-3-[(benzo[d][1,3]dioxol-5-yl)meth­yl]-2-(3,4,5-tri­meth­­oxy­phen­yl)-1,3-thia­zolidin-4-one

aDepartamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, AA 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

Edited by J. F. Gallagher, Dublin City University, Ireland (Received 18 September 2014; accepted 23 October 2014; online 5 November 2014)

In the title thia­zolidine-4-one derivative, C20H21NO6S, the central thia­zolidine ring is essentially planar (r.m.s. deviation for all non-H atoms = 0.0287 Å) and forms a dihedral angle of 88.25 (5)° with the meth­oxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The heterocyclic ring (with two O atoms) fused to benzene ring adopts an envelope conformation with the non-ring-junction C atom as the flap. In the crystal, the mol­ecules are linked into chains along [001] through weak C—H⋯O inter­actions, forming R44(28) edge-fused rings.

1. Related literature

For biological and pharmacological properties of thia­zolidin-4-one systems, see: Rojas et al. (2011[Rojas, F. A., Garcia, R. N., Villabona, S., Gomez, A., Torres, D. F., Perez, B. M., Nogal, J. J., Martinez, A. R. & Kouznetsov, V. V. (2011). Bioorg. Med. Chem. 19, 4562-4573.]); Jackson et al. (2007[Jackson, C. M., Blass, B., Coburn, K., Djandjighian, L., Fadayel, G., Fluxe, A. J., Hodson, S., Janusz, J. M., Murawsky, M., Ridgeway, J. M., White, R. E. & Wu, S. (2007). Bioorg. Med. Chem. Lett. 17, 282-284.]); Gududuru et al. (2004[Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289-5293.]); Kunzler et al. (2013[Kunzler, A., Neuenfeldt, D. N., Neves, A., Pereira, C., Marques, G. H., Nascente, P., Fernandes, M., Hubner, S. O. & Cunico, W. (2013). Eur. J. Med. Chem. 64, 74-80.]); Rawal et al. (2008[Rawal, R. K., Katti, S. B., Kaushik-Basu, N., Arora, P. & Pan, Z. (2008). Bioorg. Med. Chem. Lett. 18, 6110-6114.]); Barreca et al. (2002[Barreca, M. L., Balzarini, J., Chimirri, A., Clercq, E., Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410-5413.]); Rawal et al. (2007[Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725-1731.]); Cunico et al. (2007[Cunico, W., Capri, L. R., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o102-o107.]). For similar structures, see: Fun et al. (2011[Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.]); Cunico et al. (2007[Cunico, W., Capri, L. R., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o102-o107.]). For the synthesis of heterocycles of synthetic and biological inter­est, see: Abonia et al. (2010[Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454-6463.]); Abonia (2014[Abonia, R. (2014). Curr. Org. Synth. 11, 773-786.]); Moreno-Fuquen et al. (2014[Moreno-Fuquen, R., Castillo, J. C., Abonia, R., Ellena, J. & Tenorio, J. C. (2014). Acta Cryst. E70, o490.]). For hydrogen bonding, see: Nardelli (1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]). For hydrogen-bond graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H21NO6S

  • Mr = 403.44

  • Monoclinic, P 21 /c

  • a = 15.3098 (11) Å

  • b = 14.3677 (12) Å

  • c = 8.6546 (3) Å

  • β = 97.429 (4)°

  • V = 1887.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.25 × 0.24 × 0.12 mm

2.2. Data collection

  • Nonius KappaCCD diffractometer

  • 6325 measured reflections

  • 3845 independent reflections

  • 2922 reflections with I > 2σ(I)

  • Rint = 0.018

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.150

  • S = 1.03

  • 3845 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯O1i 0.96 2.45 3.350 (3) 155
C8—H8B⋯O6ii 0.97 2.60 3.529 (2) 161
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title thiazolidin-4-one compound, C20H21NO6S belongs to a class of important heterocycles that have attracted considerable attention because of their biological and pharmacological properties. Their structures are present in a well-known group of patented drugs and substances which possess antimalarial (Rojas et al., 2011), anti-arrhythmic (Jackson et al., 2007), antitumor (Gududuru et al., 2004), antifungal (Kunzler et al., 2013), antihepatitic (Rawal et al., 2008) and antiviral (Barreca et al., 2002) among other activities. There is an interest in developing biologically active molecules, with 5-membered rings containing two heteroatoms. Among them, the thiazolidin-4-ones are one of the most investigated classes of compounds (Rawal et al., 2007). Continuing with our current studies on the use of imines and imminium ions for the synthesis of heterocycles of synthetic and biological interest (Abonia et al., 2010, Abonia, 2014, Moreno-Fuquen et al., 2014), the 1,3-thiazolidin-4-one (I) was obtained from a solvent-free three-component reaction involving 3,4-(methylenedioxy)benzylamine, mercaptoacetic acid and 3,4,5-trimethoxybenzaldehyde. The reaction proceeded with the initial formation of an imine, which underwent a nucleophilic attack by the sulfur atom of the mercaptoacetic acid, followed by an intramolecular cyclization with the releasing of a molecule of water to afford the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The central thiazolidine (C9/C10/S1/C11/N1) ring is essentially planar [r.m.s. deviation for all non-H atoms = 0.0287 Å] and it forms dihedral angles of 88.25 (5)° with the methoxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The 1,3-benzodioxole ring is essentially planar [r.m.s. deviation for all non-H atoms = 0.0439 Å]. The dihedral angle between the benzene and benzodioxole rings is 25.12 (8)°. Two methoxy groups attached to the benzene ring are approximately parallel to the plane of the ring and the third methoxy group forms a nearly perpendicular angle with this ring. Methoxy groups on the benzene ring, have the following values of torsion angles: -3.9 (3)°, 81.9 (2)° and -1.4 (3)°. Bond lengths and bond angles in the central thiazolidine ring are very close to those reported in similar structures (Fun et al., 2011; Cunico et al., 2007). The molecules form a one dimensional chain, through C—H···O weak interactions, (see Table 1; Nardelli, 1995). Weak C18-H18···O1 and C8-H8···O6 contacts which reinforced each other, allow the molecules to propagate, forming R44(28) edge-fused rings, along [001] (Etter, 1990), (see Fig. 2).

Related literature top

For biological and pharmacological properties of thiazolidin-4-one systems, see: Rojas et al. (2011); Jackson et al. (2007); Gududuru et al. (2004); Kunzler et al. (2013); Rawal et al. (2008); Barreca et al. (2002); Rawal et al. (2007); Cunico et al. (2007). For similar structures, see: Fun et al. (2011); Cunico et al. (2007). For the synthesis of heterocycles of synthetic and biological interest, see: Abonia et al. (2010); Abonia (2014); Moreno-Fuquen et al. (2014). For hydrogen bonding, see: Nardelli (1995). For hydrogen-bond graph-set motifs, see: Etter (1990).

Experimental top

Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. A 5 mL pyrex test tube was charged with a mixture of 3,4,5-trimethoxybenzaldehyde (145 mg, 0.74 mmol), mercaptoacetic acid (75 mg, 0.82 mmol) and 3,4-(methylenedioxy)benzylamine (111 mg, 0.74 mmol) in absence of solvent. The mixture was heated in an oil bath at 120° C for 20 min until the starting materials were no longer detected by thin-layer chromatography. Then, the obtained oily material was purified by column chromatography on silica gel using a mixture of CH2Cl2/EtOAc (10:1) as eluent. White crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethanol [66% yield, m.p. 395 (1) K].

Refinement top

All H-atoms were positioned at geometrically idealized positions [C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene and C-H = 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C), (C—H methylene and aromatic) and to 1.5 (methyl) times Ueq of the respective parent atom.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2. Part of the crystal structure of (I), forming one-dimensional chain, along [001]. Symmetry code: (i) -x+1,-y,-z+1; (ii) x,+y,+z-1.

Fig. 3. The formation of the title compound.
(I) top
Crystal data top
C20H21NO6SF(000) = 848
Mr = 403.44Dx = 1.420 Mg m3
Monoclinic, P21/cMelting point: 395(1) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 15.3098 (11) ÅCell parameters from 4353 reflections
b = 14.3677 (12) Åθ = 2.9–26.4°
c = 8.6546 (3) ŵ = 0.21 mm1
β = 97.429 (4)°T = 295 K
V = 1887.7 (2) Å3Block, white
Z = 40.25 × 0.24 × 0.12 mm
Data collection top
Nonius KappaCCD
diffractometer
2922 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.018
Graphite monochromatorθmax = 26.4°, θmin = 2.9°
CCD rotation images, thick slices scansh = 1919
6325 measured reflectionsk = 1714
3845 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.3214P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3845 reflectionsΔρmax = 0.34 e Å3
258 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (5)
Crystal data top
C20H21NO6SV = 1887.7 (2) Å3
Mr = 403.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.3098 (11) ŵ = 0.21 mm1
b = 14.3677 (12) ÅT = 295 K
c = 8.6546 (3) Å0.25 × 0.24 × 0.12 mm
β = 97.429 (4)°
Data collection top
Nonius KappaCCD
diffractometer
2922 reflections with I > 2σ(I)
6325 measured reflectionsRint = 0.018
3845 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.34 e Å3
3845 reflectionsΔρmin = 0.34 e Å3
258 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.05694 (4)0.24960 (4)0.17750 (7)0.0661 (2)
N10.14541 (10)0.12826 (11)0.03330 (17)0.0446 (4)
O10.33492 (13)0.23628 (12)0.3230 (2)0.0820 (5)
O20.18594 (11)0.21212 (12)0.26924 (19)0.0699 (5)
O30.03899 (10)0.05317 (10)0.12885 (15)0.0544 (4)
O40.43425 (9)0.18093 (12)0.53026 (18)0.0665 (4)
O50.36360 (10)0.04832 (11)0.69166 (16)0.0633 (4)
O60.20130 (10)0.01846 (11)0.59983 (16)0.0611 (4)
C10.25404 (13)0.00145 (13)0.0739 (2)0.0465 (4)
C20.19505 (13)0.06376 (13)0.1275 (2)0.0471 (4)
H20.13450.05460.10760.056*
C30.23005 (13)0.13912 (14)0.2109 (2)0.0496 (5)
C40.31919 (15)0.15342 (14)0.2424 (2)0.0569 (5)
C50.37858 (15)0.09274 (17)0.1948 (3)0.0681 (6)
H50.43900.10180.21860.082*
C60.34390 (14)0.01630 (15)0.1082 (3)0.0597 (5)
H60.38240.02620.07230.072*
C70.2520 (2)0.2654 (2)0.3556 (4)0.0985 (10)
H7A0.24830.25830.46600.118*
H7B0.24360.33070.32910.118*
C80.21892 (14)0.08075 (14)0.0244 (2)0.0517 (5)
H8A0.26630.12500.02900.062*
H8B0.20010.05930.12970.062*
C90.06129 (12)0.11079 (12)0.02699 (19)0.0440 (4)
C100.00378 (13)0.16964 (15)0.0466 (2)0.0531 (5)
H10A0.04050.13040.10280.064*
H10B0.04150.20330.03320.064*
C110.16404 (13)0.19973 (13)0.1526 (2)0.0487 (4)
H110.1991 (14)0.2490 (14)0.116 (2)0.047 (5)*
C120.21490 (13)0.16198 (13)0.3015 (2)0.0455 (4)
C130.17821 (13)0.09318 (14)0.3864 (2)0.0485 (4)
H130.12020.07440.35820.058*
C140.22882 (13)0.05301 (14)0.5134 (2)0.0480 (4)
C150.31476 (13)0.08397 (14)0.5598 (2)0.0494 (5)
C160.35014 (13)0.15420 (14)0.4761 (2)0.0495 (5)
C170.30002 (13)0.19268 (14)0.3455 (2)0.0485 (4)
H170.32380.23880.28820.058*
C180.47265 (17)0.2509 (2)0.4451 (4)0.0809 (8)
H18A0.53130.26370.49400.121*
H18B0.47470.22980.34040.121*
H18C0.43790.30660.44320.121*
C190.40464 (18)0.03832 (19)0.6684 (3)0.0789 (7)
H19A0.43720.05860.76480.118*
H19B0.36040.08370.63350.118*
H19C0.44400.03120.59140.118*
C200.11256 (16)0.0499 (2)0.5620 (3)0.0705 (6)
H20A0.10150.09990.63050.106*
H20B0.07280.00050.57380.106*
H20C0.10370.07150.45610.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0659 (4)0.0607 (4)0.0668 (4)0.0178 (3)0.0108 (3)0.0235 (3)
N10.0525 (9)0.0384 (8)0.0411 (7)0.0034 (7)0.0006 (6)0.0032 (6)
O10.0796 (12)0.0583 (10)0.0997 (13)0.0094 (9)0.0203 (10)0.0197 (9)
O20.0717 (10)0.0571 (9)0.0785 (10)0.0042 (8)0.0007 (8)0.0229 (8)
O30.0715 (9)0.0474 (8)0.0423 (7)0.0078 (7)0.0001 (6)0.0040 (6)
O40.0510 (8)0.0731 (11)0.0703 (9)0.0093 (7)0.0115 (7)0.0114 (8)
O50.0688 (10)0.0676 (10)0.0492 (8)0.0066 (8)0.0093 (7)0.0052 (7)
O60.0635 (9)0.0663 (10)0.0527 (8)0.0078 (7)0.0049 (6)0.0109 (7)
C10.0514 (10)0.0423 (10)0.0461 (9)0.0034 (8)0.0072 (8)0.0041 (8)
C20.0463 (10)0.0450 (10)0.0487 (10)0.0017 (8)0.0011 (8)0.0004 (8)
C30.0566 (11)0.0443 (10)0.0467 (10)0.0019 (8)0.0017 (8)0.0024 (8)
C40.0622 (12)0.0446 (11)0.0594 (12)0.0071 (10)0.0093 (9)0.0018 (9)
C50.0483 (11)0.0590 (13)0.0941 (17)0.0082 (10)0.0015 (11)0.0036 (12)
C60.0500 (11)0.0495 (12)0.0808 (14)0.0006 (9)0.0137 (10)0.0004 (10)
C70.095 (2)0.087 (2)0.108 (2)0.0009 (17)0.0095 (18)0.0476 (18)
C80.0570 (11)0.0478 (11)0.0518 (10)0.0038 (9)0.0122 (9)0.0026 (8)
C90.0565 (11)0.0366 (9)0.0374 (8)0.0016 (8)0.0007 (7)0.0038 (7)
C100.0548 (11)0.0517 (12)0.0510 (10)0.0031 (9)0.0003 (8)0.0020 (9)
C110.0564 (11)0.0395 (10)0.0473 (10)0.0005 (8)0.0039 (8)0.0045 (8)
C120.0525 (10)0.0391 (9)0.0429 (9)0.0016 (8)0.0015 (7)0.0054 (7)
C130.0488 (10)0.0489 (11)0.0462 (10)0.0018 (9)0.0002 (8)0.0050 (8)
C140.0567 (11)0.0456 (10)0.0415 (9)0.0009 (9)0.0060 (8)0.0035 (8)
C150.0536 (11)0.0511 (11)0.0414 (9)0.0053 (9)0.0019 (8)0.0024 (8)
C160.0472 (10)0.0497 (11)0.0495 (10)0.0007 (8)0.0018 (8)0.0062 (8)
C170.0524 (10)0.0452 (10)0.0465 (10)0.0003 (8)0.0009 (8)0.0010 (8)
C180.0523 (13)0.089 (2)0.0960 (19)0.0172 (12)0.0103 (12)0.0222 (15)
C190.0738 (16)0.0671 (16)0.0913 (18)0.0130 (13)0.0061 (13)0.0130 (14)
C200.0702 (14)0.0772 (16)0.0645 (13)0.0188 (13)0.0107 (11)0.0061 (12)
Geometric parameters (Å, º) top
S1—C101.788 (2)C7—H7A0.9700
S1—C111.828 (2)C7—H7B0.9700
N1—C91.349 (2)C8—H8A0.9700
N1—C111.458 (2)C8—H8B0.9700
N1—C81.459 (2)C9—C101.509 (3)
O1—C41.385 (3)C10—H10A0.9700
O1—C71.399 (4)C10—H10B0.9700
O2—C31.378 (2)C11—C121.517 (3)
O2—C71.405 (3)C11—H110.97 (2)
O3—C91.225 (2)C12—C171.382 (3)
O4—C161.367 (2)C12—C131.393 (3)
O4—C181.418 (3)C13—C141.386 (3)
O5—C151.380 (2)C13—H130.9300
O5—C191.420 (3)C14—C151.398 (3)
O6—C141.369 (2)C15—C161.392 (3)
O6—C201.429 (3)C16—C171.396 (3)
C1—C61.386 (3)C17—H170.9300
C1—C21.393 (3)C18—H18A0.9600
C1—C81.513 (3)C18—H18B0.9600
C2—C31.371 (3)C18—H18C0.9600
C2—H20.9300C19—H19A0.9600
C3—C41.372 (3)C19—H19B0.9600
C4—C51.361 (3)C19—H19C0.9600
C5—C61.395 (3)C20—H20A0.9600
C5—H50.9300C20—H20B0.9600
C6—H60.9300C20—H20C0.9600
C10—S1—C1194.26 (9)C9—C10—H10B110.1
C9—N1—C11119.64 (16)S1—C10—H10B110.1
C9—N1—C8121.38 (16)H10A—C10—H10B108.4
C11—N1—C8118.90 (16)N1—C11—C12112.43 (15)
C4—O1—C7104.81 (19)N1—C11—S1105.27 (13)
C3—O2—C7104.86 (19)C12—C11—S1114.18 (14)
C16—O4—C18117.14 (16)N1—C11—H11110.3 (12)
C15—O5—C19114.25 (18)C12—C11—H11107.3 (13)
C14—O6—C20117.56 (17)S1—C11—H11107.2 (12)
C6—C1—C2119.85 (18)C17—C12—C13120.77 (17)
C6—C1—C8120.77 (18)C17—C12—C11118.81 (17)
C2—C1—C8119.37 (17)C13—C12—C11120.29 (17)
C3—C2—C1117.18 (18)C14—C13—C12119.46 (18)
C3—C2—H2121.4C14—C13—H13120.3
C1—C2—H2121.4C12—C13—H13120.3
C2—C3—C4122.25 (19)O6—C14—C13124.46 (18)
C2—C3—O2128.10 (19)O6—C14—C15115.25 (17)
C4—C3—O2109.59 (18)C13—C14—C15120.28 (18)
C5—C4—C3122.0 (2)O5—C15—C16119.59 (18)
C5—C4—O1128.6 (2)O5—C15—C14120.59 (18)
C3—C4—O1109.4 (2)C16—C15—C14119.76 (17)
C4—C5—C6116.4 (2)O4—C16—C15115.97 (17)
C4—C5—H5121.8O4—C16—C17124.14 (19)
C6—C5—H5121.8C15—C16—C17119.89 (18)
C1—C6—C5122.3 (2)C12—C17—C16119.78 (18)
C1—C6—H6118.8C12—C17—H17120.1
C5—C6—H6118.8C16—C17—H17120.1
O1—C7—O2109.8 (2)O4—C18—H18A109.5
O1—C7—H7A109.7O4—C18—H18B109.5
O2—C7—H7A109.7H18A—C18—H18B109.5
O1—C7—H7B109.7O4—C18—H18C109.5
O2—C7—H7B109.7H18A—C18—H18C109.5
H7A—C7—H7B108.2H18B—C18—H18C109.5
N1—C8—C1113.99 (15)O5—C19—H19A109.5
N1—C8—H8A108.8O5—C19—H19B109.5
C1—C8—H8A108.8H19A—C19—H19B109.5
N1—C8—H8B108.8O5—C19—H19C109.5
C1—C8—H8B108.8H19A—C19—H19C109.5
H8A—C8—H8B107.6H19B—C19—H19C109.5
O3—C9—N1124.56 (18)O6—C20—H20A109.5
O3—C9—C10122.99 (18)O6—C20—H20B109.5
N1—C9—C10112.44 (15)H20A—C20—H20B109.5
C9—C10—S1108.06 (14)O6—C20—H20C109.5
C9—C10—H10A110.1H20A—C20—H20C109.5
S1—C10—H10A110.1H20B—C20—H20C109.5
C6—C1—C2—C31.2 (3)C8—N1—C11—C1260.8 (2)
C8—C1—C2—C3177.50 (16)C9—N1—C11—S12.3 (2)
C1—C2—C3—C40.4 (3)C8—N1—C11—S1174.29 (13)
C1—C2—C3—O2176.52 (18)C10—S1—C11—N14.45 (14)
C7—O2—C3—C2175.1 (2)C10—S1—C11—C12119.35 (15)
C7—O2—C3—C47.6 (3)N1—C11—C12—C17113.8 (2)
C2—C3—C4—C51.1 (3)S1—C11—C12—C17126.32 (17)
O2—C3—C4—C5178.6 (2)N1—C11—C12—C1362.1 (2)
C2—C3—C4—O1177.80 (18)S1—C11—C12—C1357.8 (2)
O2—C3—C4—O10.3 (2)C17—C12—C13—C142.2 (3)
C7—O1—C4—C5174.1 (3)C11—C12—C13—C14173.64 (17)
C7—O1—C4—C37.1 (3)C20—O6—C14—C133.9 (3)
C3—C4—C5—C61.8 (3)C20—O6—C14—C15177.17 (19)
O1—C4—C5—C6176.9 (2)C12—C13—C14—O6176.27 (17)
C2—C1—C6—C50.5 (3)C12—C13—C14—C152.7 (3)
C8—C1—C6—C5178.2 (2)C19—O5—C15—C16100.9 (2)
C4—C5—C6—C10.9 (3)C19—O5—C15—C1481.9 (2)
C4—O1—C7—O212.0 (3)O6—C14—C15—O55.0 (3)
C3—O2—C7—O112.2 (3)C13—C14—C15—O5175.98 (17)
C9—N1—C8—C198.3 (2)O6—C14—C15—C16177.76 (17)
C11—N1—C8—C185.2 (2)C13—C14—C15—C161.3 (3)
C6—C1—C8—N1137.52 (19)C18—O4—C16—C15178.6 (2)
C2—C1—C8—N143.8 (2)C18—O4—C16—C171.4 (3)
C11—N1—C9—O3178.98 (17)O5—C15—C16—O42.1 (3)
C8—N1—C9—O32.5 (3)C14—C15—C16—O4179.39 (18)
C11—N1—C9—C101.8 (2)O5—C15—C16—C17177.93 (17)
C8—N1—C9—C10178.28 (16)C14—C15—C16—C170.7 (3)
O3—C9—C10—S1175.68 (14)C13—C12—C17—C160.3 (3)
N1—C9—C10—S15.1 (2)C11—C12—C17—C16175.61 (17)
C11—S1—C10—C95.43 (15)O4—C16—C17—C12178.89 (18)
C9—N1—C11—C12122.59 (18)C15—C16—C17—C121.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.962.453.350 (3)155
C8—H8B···O6ii0.972.603.529 (2)161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18A···O1i0.962.453.350 (3)155
C8—H8B···O6ii0.972.603.529 (2)161
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1.
 

Acknowledgements

RMF and RA are grateful to the Universidad del Valle, Colombia, for partial financial support. JCC acknowledges his doctoral fellowship granted by COLCIENCIAS.

References

First citationAbonia, R. (2014). Curr. Org. Synth. 11, 773-786.  CrossRef CAS Google Scholar
First citationAbonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454–6463.  Web of Science CrossRef Google Scholar
First citationBarreca, M. L., Balzarini, J., Chimirri, A., Clercq, E., Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410–5413.  Web of Science CrossRef PubMed CAS Google Scholar
First citationCunico, W., Capri, L. R., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o102–o107.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJackson, C. M., Blass, B., Coburn, K., Djandjighian, L., Fadayel, G., Fluxe, A. J., Hodson, S., Janusz, J. M., Murawsky, M., Ridgeway, J. M., White, R. E. & Wu, S. (2007). Bioorg. Med. Chem. Lett. 17, 282–284.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKunzler, A., Neuenfeldt, D. N., Neves, A., Pereira, C., Marques, G. H., Nascente, P., Fernandes, M., Hubner, S. O. & Cunico, W. (2013). Eur. J. Med. Chem. 64, 74–80.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMoreno-Fuquen, R., Castillo, J. C., Abonia, R., Ellena, J. & Tenorio, J. C. (2014). Acta Cryst. E70, o490.  CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationRawal, R. K., Katti, S. B., Kaushik-Basu, N., Arora, P. & Pan, Z. (2008). Bioorg. Med. Chem. Lett. 18, 6110–6114.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRojas, F. A., Garcia, R. N., Villabona, S., Gomez, A., Torres, D. F., Perez, B. M., Nogal, J. J., Martinez, A. R. & Kouznetsov, V. V. (2011). Bioorg. Med. Chem. 19, 4562–4573.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1235-o1236
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds