organic compounds
d][1,3]dioxol-5-yl)methyl]-2-(3,4,5-trimethoxyphenyl)-1,3-thiazolidin-4-one
of (±)-3-[(benzo[aDepartamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad del Valle, AA 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, IFSC, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es
In the title thiazolidine-4-one derivative, C20H21NO6S, the central thiazolidine ring is essentially planar (r.m.s. deviation for all non-H atoms = 0.0287 Å) and forms a dihedral angle of 88.25 (5)° with the methoxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The heterocyclic ring (with two O atoms) fused to benzene ring adopts an with the non-ring-junction C atom as the flap. In the crystal, the molecules are linked into chains along [001] through weak C—H⋯O interactions, forming R44(28) edge-fused rings.
Keywords: crystal structure; benzo[d][1,3]dioxole; 1,3-thiazolidin-4-one; biological properties; pharmacological properties; hydrogen bonding.
CCDC reference: 1030709
1. Related literature
For biological and pharmacological properties of thiazolidin-4-one systems, see: Rojas et al. (2011); Jackson et al. (2007); Gududuru et al. (2004); Kunzler et al. (2013); Rawal et al. (2008); Barreca et al. (2002); Rawal et al. (2007); Cunico et al. (2007). For similar structures, see: Fun et al. (2011); Cunico et al. (2007). For the synthesis of heterocycles of synthetic and biological interest, see: Abonia et al. (2010); Abonia (2014); Moreno-Fuquen et al. (2014). For hydrogen bonding, see: Nardelli (1995). For hydrogen-bond graph-set motifs, see: Etter (1990).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
|
Data collection: COLLECT (Nonius, 2000); cell SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).
Supporting information
CCDC reference: 1030709
10.1107/S160053681402340X/gg2142sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681402340X/gg2142Isup2.hkl
Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. A 5 mL pyrex test tube was charged with a mixture of 3,4,5-trimethoxybenzaldehyde (145 mg, 0.74 mmol), mercaptoacetic acid (75 mg, 0.82 mmol) and 3,4-(methylenedioxy)benzylamine (111 mg, 0.74 mmol) in absence of solvent. The mixture was heated in an oil bath at 120° C for 20 min until the starting materials were no longer detected by
Then, the obtained oily material was purified by on silica gel using a mixture of CH2Cl2/EtOAc (10:1) as White crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethanol [66% yield, m.p. 395 (1) K].All H-atoms were positioned at geometrically idealized positions [C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene and C-H = 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C), (C—H methylene and aromatic) and to 1.5 (methyl) times Ueq of the respective parent atom.
Data collection: COLLECT (Nonius, 2000); cell
SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).Fig. 1. Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius. Fig. 2. Part of the of (I), forming one-dimensional chain, along [001]. Symmetry code: (i) -x+1,-y,-z+1; (ii) x,+y,+z-1. Fig. 3. The formation of the title compound. |
C20H21NO6S | F(000) = 848 |
Mr = 403.44 | Dx = 1.420 Mg m−3 |
Monoclinic, P21/c | Melting point: 395(1) K |
Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
a = 15.3098 (11) Å | Cell parameters from 4353 reflections |
b = 14.3677 (12) Å | θ = 2.9–26.4° |
c = 8.6546 (3) Å | µ = 0.21 mm−1 |
β = 97.429 (4)° | T = 295 K |
V = 1887.7 (2) Å3 | Block, white |
Z = 4 | 0.25 × 0.24 × 0.12 mm |
Nonius KappaCCD diffractometer | 2922 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.018 |
Graphite monochromator | θmax = 26.4°, θmin = 2.9° |
CCD rotation images, thick slices scans | h = −19→19 |
6325 measured reflections | k = −17→14 |
3845 independent reflections | l = −10→10 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.049 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.150 | w = 1/[σ2(Fo2) + (0.0917P)2 + 0.3214P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max < 0.001 |
3845 reflections | Δρmax = 0.34 e Å−3 |
258 parameters | Δρmin = −0.34 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.031 (5) |
C20H21NO6S | V = 1887.7 (2) Å3 |
Mr = 403.44 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.3098 (11) Å | µ = 0.21 mm−1 |
b = 14.3677 (12) Å | T = 295 K |
c = 8.6546 (3) Å | 0.25 × 0.24 × 0.12 mm |
β = 97.429 (4)° |
Nonius KappaCCD diffractometer | 2922 reflections with I > 2σ(I) |
6325 measured reflections | Rint = 0.018 |
3845 independent reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.150 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.34 e Å−3 |
3845 reflections | Δρmin = −0.34 e Å−3 |
258 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.05694 (4) | 0.24960 (4) | 0.17750 (7) | 0.0661 (2) | |
N1 | 0.14541 (10) | 0.12826 (11) | 0.03330 (17) | 0.0446 (4) | |
O1 | 0.33492 (13) | −0.23628 (12) | 0.3230 (2) | 0.0820 (5) | |
O2 | 0.18594 (11) | −0.21212 (12) | 0.26924 (19) | 0.0699 (5) | |
O3 | 0.03899 (10) | 0.05317 (10) | −0.12885 (15) | 0.0544 (4) | |
O4 | 0.43425 (9) | 0.18093 (12) | 0.53026 (18) | 0.0665 (4) | |
O5 | 0.36360 (10) | 0.04832 (11) | 0.69166 (16) | 0.0633 (4) | |
O6 | 0.20130 (10) | −0.01846 (11) | 0.59983 (16) | 0.0611 (4) | |
C1 | 0.25404 (13) | −0.00145 (13) | 0.0739 (2) | 0.0465 (4) | |
C2 | 0.19505 (13) | −0.06376 (13) | 0.1275 (2) | 0.0471 (4) | |
H2 | 0.1345 | −0.0546 | 0.1076 | 0.056* | |
C3 | 0.23005 (13) | −0.13912 (14) | 0.2109 (2) | 0.0496 (5) | |
C4 | 0.31919 (15) | −0.15342 (14) | 0.2424 (2) | 0.0569 (5) | |
C5 | 0.37858 (15) | −0.09274 (17) | 0.1948 (3) | 0.0681 (6) | |
H5 | 0.4390 | −0.1018 | 0.2186 | 0.082* | |
C6 | 0.34390 (14) | −0.01630 (15) | 0.1082 (3) | 0.0597 (5) | |
H6 | 0.3824 | 0.0262 | 0.0723 | 0.072* | |
C7 | 0.2520 (2) | −0.2654 (2) | 0.3556 (4) | 0.0985 (10) | |
H7A | 0.2483 | −0.2583 | 0.4660 | 0.118* | |
H7B | 0.2436 | −0.3307 | 0.3291 | 0.118* | |
C8 | 0.21892 (14) | 0.08075 (14) | −0.0244 (2) | 0.0517 (5) | |
H8A | 0.2663 | 0.1250 | −0.0290 | 0.062* | |
H8B | 0.2001 | 0.0593 | −0.1297 | 0.062* | |
C9 | 0.06129 (12) | 0.11079 (12) | −0.02699 (19) | 0.0440 (4) | |
C10 | −0.00378 (13) | 0.16964 (15) | 0.0466 (2) | 0.0531 (5) | |
H10A | −0.0405 | 0.1304 | 0.1028 | 0.064* | |
H10B | −0.0415 | 0.2033 | −0.0332 | 0.064* | |
C11 | 0.16404 (13) | 0.19973 (13) | 0.1526 (2) | 0.0487 (4) | |
H11 | 0.1991 (14) | 0.2490 (14) | 0.116 (2) | 0.047 (5)* | |
C12 | 0.21490 (13) | 0.16198 (13) | 0.3015 (2) | 0.0455 (4) | |
C13 | 0.17821 (13) | 0.09318 (14) | 0.3864 (2) | 0.0485 (4) | |
H13 | 0.1202 | 0.0744 | 0.3582 | 0.058* | |
C14 | 0.22882 (13) | 0.05301 (14) | 0.5134 (2) | 0.0480 (4) | |
C15 | 0.31476 (13) | 0.08397 (14) | 0.5598 (2) | 0.0494 (5) | |
C16 | 0.35014 (13) | 0.15420 (14) | 0.4761 (2) | 0.0495 (5) | |
C17 | 0.30002 (13) | 0.19268 (14) | 0.3455 (2) | 0.0485 (4) | |
H17 | 0.3238 | 0.2388 | 0.2882 | 0.058* | |
C18 | 0.47265 (17) | 0.2509 (2) | 0.4451 (4) | 0.0809 (8) | |
H18A | 0.5313 | 0.2637 | 0.4940 | 0.121* | |
H18B | 0.4747 | 0.2298 | 0.3404 | 0.121* | |
H18C | 0.4379 | 0.3066 | 0.4432 | 0.121* | |
C19 | 0.40464 (18) | −0.03832 (19) | 0.6684 (3) | 0.0789 (7) | |
H19A | 0.4372 | −0.0586 | 0.7648 | 0.118* | |
H19B | 0.3604 | −0.0837 | 0.6335 | 0.118* | |
H19C | 0.4440 | −0.0312 | 0.5914 | 0.118* | |
C20 | 0.11256 (16) | −0.0499 (2) | 0.5620 (3) | 0.0705 (6) | |
H20A | 0.1015 | −0.0999 | 0.6305 | 0.106* | |
H20B | 0.0728 | 0.0005 | 0.5738 | 0.106* | |
H20C | 0.1037 | −0.0715 | 0.4561 | 0.106* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0659 (4) | 0.0607 (4) | 0.0668 (4) | 0.0178 (3) | −0.0108 (3) | −0.0235 (3) |
N1 | 0.0525 (9) | 0.0384 (8) | 0.0411 (7) | 0.0034 (7) | −0.0006 (6) | −0.0032 (6) |
O1 | 0.0796 (12) | 0.0583 (10) | 0.0997 (13) | 0.0094 (9) | −0.0203 (10) | 0.0197 (9) |
O2 | 0.0717 (10) | 0.0571 (9) | 0.0785 (10) | −0.0042 (8) | 0.0007 (8) | 0.0229 (8) |
O3 | 0.0715 (9) | 0.0474 (8) | 0.0423 (7) | −0.0078 (7) | −0.0001 (6) | −0.0040 (6) |
O4 | 0.0510 (8) | 0.0731 (11) | 0.0703 (9) | −0.0093 (7) | −0.0115 (7) | 0.0114 (8) |
O5 | 0.0688 (10) | 0.0676 (10) | 0.0492 (8) | 0.0066 (8) | −0.0093 (7) | 0.0052 (7) |
O6 | 0.0635 (9) | 0.0663 (10) | 0.0527 (8) | −0.0078 (7) | 0.0049 (6) | 0.0109 (7) |
C1 | 0.0514 (10) | 0.0423 (10) | 0.0461 (9) | 0.0034 (8) | 0.0072 (8) | −0.0041 (8) |
C2 | 0.0463 (10) | 0.0450 (10) | 0.0487 (10) | 0.0017 (8) | 0.0011 (8) | −0.0004 (8) |
C3 | 0.0566 (11) | 0.0443 (10) | 0.0467 (10) | −0.0019 (8) | 0.0017 (8) | −0.0024 (8) |
C4 | 0.0622 (12) | 0.0446 (11) | 0.0594 (12) | 0.0071 (10) | −0.0093 (9) | −0.0018 (9) |
C5 | 0.0483 (11) | 0.0590 (13) | 0.0941 (17) | 0.0082 (10) | −0.0015 (11) | −0.0036 (12) |
C6 | 0.0500 (11) | 0.0495 (12) | 0.0808 (14) | −0.0006 (9) | 0.0137 (10) | −0.0004 (10) |
C7 | 0.095 (2) | 0.087 (2) | 0.108 (2) | −0.0009 (17) | −0.0095 (18) | 0.0476 (18) |
C8 | 0.0570 (11) | 0.0478 (11) | 0.0518 (10) | 0.0038 (9) | 0.0122 (9) | 0.0026 (8) |
C9 | 0.0565 (11) | 0.0366 (9) | 0.0374 (8) | −0.0016 (8) | 0.0007 (7) | 0.0038 (7) |
C10 | 0.0548 (11) | 0.0517 (12) | 0.0510 (10) | 0.0031 (9) | 0.0003 (8) | −0.0020 (9) |
C11 | 0.0564 (11) | 0.0395 (10) | 0.0473 (10) | −0.0005 (8) | −0.0039 (8) | −0.0045 (8) |
C12 | 0.0525 (10) | 0.0391 (9) | 0.0429 (9) | 0.0016 (8) | −0.0015 (7) | −0.0054 (7) |
C13 | 0.0488 (10) | 0.0489 (11) | 0.0462 (10) | −0.0018 (9) | 0.0002 (8) | −0.0050 (8) |
C14 | 0.0567 (11) | 0.0456 (10) | 0.0415 (9) | −0.0009 (9) | 0.0060 (8) | −0.0035 (8) |
C15 | 0.0536 (11) | 0.0511 (11) | 0.0414 (9) | 0.0053 (9) | −0.0019 (8) | −0.0024 (8) |
C16 | 0.0472 (10) | 0.0497 (11) | 0.0495 (10) | 0.0007 (8) | −0.0018 (8) | −0.0062 (8) |
C17 | 0.0524 (10) | 0.0452 (10) | 0.0465 (10) | 0.0003 (8) | 0.0009 (8) | −0.0010 (8) |
C18 | 0.0523 (13) | 0.089 (2) | 0.0960 (19) | −0.0172 (12) | −0.0103 (12) | 0.0222 (15) |
C19 | 0.0738 (16) | 0.0671 (16) | 0.0913 (18) | 0.0130 (13) | −0.0061 (13) | 0.0130 (14) |
C20 | 0.0702 (14) | 0.0772 (16) | 0.0645 (13) | −0.0188 (13) | 0.0107 (11) | 0.0061 (12) |
S1—C10 | 1.788 (2) | C7—H7A | 0.9700 |
S1—C11 | 1.828 (2) | C7—H7B | 0.9700 |
N1—C9 | 1.349 (2) | C8—H8A | 0.9700 |
N1—C11 | 1.458 (2) | C8—H8B | 0.9700 |
N1—C8 | 1.459 (2) | C9—C10 | 1.509 (3) |
O1—C4 | 1.385 (3) | C10—H10A | 0.9700 |
O1—C7 | 1.399 (4) | C10—H10B | 0.9700 |
O2—C3 | 1.378 (2) | C11—C12 | 1.517 (3) |
O2—C7 | 1.405 (3) | C11—H11 | 0.97 (2) |
O3—C9 | 1.225 (2) | C12—C17 | 1.382 (3) |
O4—C16 | 1.367 (2) | C12—C13 | 1.393 (3) |
O4—C18 | 1.418 (3) | C13—C14 | 1.386 (3) |
O5—C15 | 1.380 (2) | C13—H13 | 0.9300 |
O5—C19 | 1.420 (3) | C14—C15 | 1.398 (3) |
O6—C14 | 1.369 (2) | C15—C16 | 1.392 (3) |
O6—C20 | 1.429 (3) | C16—C17 | 1.396 (3) |
C1—C6 | 1.386 (3) | C17—H17 | 0.9300 |
C1—C2 | 1.393 (3) | C18—H18A | 0.9600 |
C1—C8 | 1.513 (3) | C18—H18B | 0.9600 |
C2—C3 | 1.371 (3) | C18—H18C | 0.9600 |
C2—H2 | 0.9300 | C19—H19A | 0.9600 |
C3—C4 | 1.372 (3) | C19—H19B | 0.9600 |
C4—C5 | 1.361 (3) | C19—H19C | 0.9600 |
C5—C6 | 1.395 (3) | C20—H20A | 0.9600 |
C5—H5 | 0.9300 | C20—H20B | 0.9600 |
C6—H6 | 0.9300 | C20—H20C | 0.9600 |
C10—S1—C11 | 94.26 (9) | C9—C10—H10B | 110.1 |
C9—N1—C11 | 119.64 (16) | S1—C10—H10B | 110.1 |
C9—N1—C8 | 121.38 (16) | H10A—C10—H10B | 108.4 |
C11—N1—C8 | 118.90 (16) | N1—C11—C12 | 112.43 (15) |
C4—O1—C7 | 104.81 (19) | N1—C11—S1 | 105.27 (13) |
C3—O2—C7 | 104.86 (19) | C12—C11—S1 | 114.18 (14) |
C16—O4—C18 | 117.14 (16) | N1—C11—H11 | 110.3 (12) |
C15—O5—C19 | 114.25 (18) | C12—C11—H11 | 107.3 (13) |
C14—O6—C20 | 117.56 (17) | S1—C11—H11 | 107.2 (12) |
C6—C1—C2 | 119.85 (18) | C17—C12—C13 | 120.77 (17) |
C6—C1—C8 | 120.77 (18) | C17—C12—C11 | 118.81 (17) |
C2—C1—C8 | 119.37 (17) | C13—C12—C11 | 120.29 (17) |
C3—C2—C1 | 117.18 (18) | C14—C13—C12 | 119.46 (18) |
C3—C2—H2 | 121.4 | C14—C13—H13 | 120.3 |
C1—C2—H2 | 121.4 | C12—C13—H13 | 120.3 |
C2—C3—C4 | 122.25 (19) | O6—C14—C13 | 124.46 (18) |
C2—C3—O2 | 128.10 (19) | O6—C14—C15 | 115.25 (17) |
C4—C3—O2 | 109.59 (18) | C13—C14—C15 | 120.28 (18) |
C5—C4—C3 | 122.0 (2) | O5—C15—C16 | 119.59 (18) |
C5—C4—O1 | 128.6 (2) | O5—C15—C14 | 120.59 (18) |
C3—C4—O1 | 109.4 (2) | C16—C15—C14 | 119.76 (17) |
C4—C5—C6 | 116.4 (2) | O4—C16—C15 | 115.97 (17) |
C4—C5—H5 | 121.8 | O4—C16—C17 | 124.14 (19) |
C6—C5—H5 | 121.8 | C15—C16—C17 | 119.89 (18) |
C1—C6—C5 | 122.3 (2) | C12—C17—C16 | 119.78 (18) |
C1—C6—H6 | 118.8 | C12—C17—H17 | 120.1 |
C5—C6—H6 | 118.8 | C16—C17—H17 | 120.1 |
O1—C7—O2 | 109.8 (2) | O4—C18—H18A | 109.5 |
O1—C7—H7A | 109.7 | O4—C18—H18B | 109.5 |
O2—C7—H7A | 109.7 | H18A—C18—H18B | 109.5 |
O1—C7—H7B | 109.7 | O4—C18—H18C | 109.5 |
O2—C7—H7B | 109.7 | H18A—C18—H18C | 109.5 |
H7A—C7—H7B | 108.2 | H18B—C18—H18C | 109.5 |
N1—C8—C1 | 113.99 (15) | O5—C19—H19A | 109.5 |
N1—C8—H8A | 108.8 | O5—C19—H19B | 109.5 |
C1—C8—H8A | 108.8 | H19A—C19—H19B | 109.5 |
N1—C8—H8B | 108.8 | O5—C19—H19C | 109.5 |
C1—C8—H8B | 108.8 | H19A—C19—H19C | 109.5 |
H8A—C8—H8B | 107.6 | H19B—C19—H19C | 109.5 |
O3—C9—N1 | 124.56 (18) | O6—C20—H20A | 109.5 |
O3—C9—C10 | 122.99 (18) | O6—C20—H20B | 109.5 |
N1—C9—C10 | 112.44 (15) | H20A—C20—H20B | 109.5 |
C9—C10—S1 | 108.06 (14) | O6—C20—H20C | 109.5 |
C9—C10—H10A | 110.1 | H20A—C20—H20C | 109.5 |
S1—C10—H10A | 110.1 | H20B—C20—H20C | 109.5 |
C6—C1—C2—C3 | −1.2 (3) | C8—N1—C11—C12 | −60.8 (2) |
C8—C1—C2—C3 | 177.50 (16) | C9—N1—C11—S1 | −2.3 (2) |
C1—C2—C3—C4 | 0.4 (3) | C8—N1—C11—S1 | 174.29 (13) |
C1—C2—C3—O2 | −176.52 (18) | C10—S1—C11—N1 | 4.45 (14) |
C7—O2—C3—C2 | −175.1 (2) | C10—S1—C11—C12 | −119.35 (15) |
C7—O2—C3—C4 | 7.6 (3) | N1—C11—C12—C17 | 113.8 (2) |
C2—C3—C4—C5 | 1.1 (3) | S1—C11—C12—C17 | −126.32 (17) |
O2—C3—C4—C5 | 178.6 (2) | N1—C11—C12—C13 | −62.1 (2) |
C2—C3—C4—O1 | −177.80 (18) | S1—C11—C12—C13 | 57.8 (2) |
O2—C3—C4—O1 | −0.3 (2) | C17—C12—C13—C14 | −2.2 (3) |
C7—O1—C4—C5 | 174.1 (3) | C11—C12—C13—C14 | 173.64 (17) |
C7—O1—C4—C3 | −7.1 (3) | C20—O6—C14—C13 | −3.9 (3) |
C3—C4—C5—C6 | −1.8 (3) | C20—O6—C14—C15 | 177.17 (19) |
O1—C4—C5—C6 | 176.9 (2) | C12—C13—C14—O6 | −176.27 (17) |
C2—C1—C6—C5 | 0.5 (3) | C12—C13—C14—C15 | 2.7 (3) |
C8—C1—C6—C5 | −178.2 (2) | C19—O5—C15—C16 | −100.9 (2) |
C4—C5—C6—C1 | 0.9 (3) | C19—O5—C15—C14 | 81.9 (2) |
C4—O1—C7—O2 | 12.0 (3) | O6—C14—C15—O5 | −5.0 (3) |
C3—O2—C7—O1 | −12.2 (3) | C13—C14—C15—O5 | 175.98 (17) |
C9—N1—C8—C1 | −98.3 (2) | O6—C14—C15—C16 | 177.76 (17) |
C11—N1—C8—C1 | 85.2 (2) | C13—C14—C15—C16 | −1.3 (3) |
C6—C1—C8—N1 | −137.52 (19) | C18—O4—C16—C15 | 178.6 (2) |
C2—C1—C8—N1 | 43.8 (2) | C18—O4—C16—C17 | −1.4 (3) |
C11—N1—C9—O3 | 178.98 (17) | O5—C15—C16—O4 | 2.1 (3) |
C8—N1—C9—O3 | 2.5 (3) | C14—C15—C16—O4 | 179.39 (18) |
C11—N1—C9—C10 | −1.8 (2) | O5—C15—C16—C17 | −177.93 (17) |
C8—N1—C9—C10 | −178.28 (16) | C14—C15—C16—C17 | −0.7 (3) |
O3—C9—C10—S1 | −175.68 (14) | C13—C12—C17—C16 | 0.3 (3) |
N1—C9—C10—S1 | 5.1 (2) | C11—C12—C17—C16 | −175.61 (17) |
C11—S1—C10—C9 | −5.43 (15) | O4—C16—C17—C12 | −178.89 (18) |
C9—N1—C11—C12 | 122.59 (18) | C15—C16—C17—C12 | 1.2 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···O1i | 0.96 | 2.45 | 3.350 (3) | 155 |
C8—H8B···O6ii | 0.97 | 2.60 | 3.529 (2) | 161 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
C18—H18A···O1i | 0.96 | 2.45 | 3.350 (3) | 155 |
C8—H8B···O6ii | 0.97 | 2.60 | 3.529 (2) | 161 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1. |
Acknowledgements
RMF and RA are grateful to the Universidad del Valle, Colombia, for partial financial support. JCC acknowledges his doctoral fellowship granted by COLCIENCIAS.
References
Abonia, R. (2014). Curr. Org. Synth. 11, 773-786. CrossRef CAS Google Scholar
Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454–6463. Web of Science CrossRef Google Scholar
Barreca, M. L., Balzarini, J., Chimirri, A., Clercq, E., Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410–5413. Web of Science CrossRef PubMed CAS Google Scholar
Cunico, W., Capri, L. R., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o102–o107. Web of Science CSD CrossRef IUCr Journals Google Scholar
Etter, M. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293. Web of Science CrossRef PubMed CAS Google Scholar
Jackson, C. M., Blass, B., Coburn, K., Djandjighian, L., Fadayel, G., Fluxe, A. J., Hodson, S., Janusz, J. M., Murawsky, M., Ridgeway, J. M., White, R. E. & Wu, S. (2007). Bioorg. Med. Chem. Lett. 17, 282–284. Web of Science CrossRef PubMed CAS Google Scholar
Kunzler, A., Neuenfeldt, D. N., Neves, A., Pereira, C., Marques, G. H., Nascente, P., Fernandes, M., Hubner, S. O. & Cunico, W. (2013). Eur. J. Med. Chem. 64, 74–80. Web of Science CrossRef CAS PubMed Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Moreno-Fuquen, R., Castillo, J. C., Abonia, R., Ellena, J. & Tenorio, J. C. (2014). Acta Cryst. E70, o490. CSD CrossRef IUCr Journals Google Scholar
Nardelli, M. (1995). J. Appl. Cryst. 28, 659. CrossRef IUCr Journals Google Scholar
Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Rawal, R. K., Katti, S. B., Kaushik-Basu, N., Arora, P. & Pan, Z. (2008). Bioorg. Med. Chem. Lett. 18, 6110–6114. Web of Science CrossRef PubMed CAS Google Scholar
Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731. Web of Science CrossRef PubMed CAS Google Scholar
Rojas, F. A., Garcia, R. N., Villabona, S., Gomez, A., Torres, D. F., Perez, B. M., Nogal, J. J., Martinez, A. R. & Kouznetsov, V. V. (2011). Bioorg. Med. Chem. 19, 4562–4573. PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title thiazolidin-4-one compound, C20H21NO6S belongs to a class of important heterocycles that have attracted considerable attention because of their biological and pharmacological properties. Their structures are present in a well-known group of patented drugs and substances which possess antimalarial (Rojas et al., 2011), anti-arrhythmic (Jackson et al., 2007), antitumor (Gududuru et al., 2004), antifungal (Kunzler et al., 2013), antihepatitic (Rawal et al., 2008) and antiviral (Barreca et al., 2002) among other activities. There is an interest in developing biologically active molecules, with 5-membered rings containing two heteroatoms. Among them, the thiazolidin-4-ones are one of the most investigated classes of compounds (Rawal et al., 2007). Continuing with our current studies on the use of imines and imminium ions for the synthesis of heterocycles of synthetic and biological interest (Abonia et al., 2010, Abonia, 2014, Moreno-Fuquen et al., 2014), the 1,3-thiazolidin-4-one (I) was obtained from a solvent-free three-component reaction involving 3,4-(methylenedioxy)benzylamine, mercaptoacetic acid and 3,4,5-trimethoxybenzaldehyde. The reaction proceeded with the initial formation of an imine, which underwent a nucleophilic attack by the sulfur atom of the mercaptoacetic acid, followed by an intramolecular cyclization with the releasing of a molecule of water to afford the title compound (I).
The molecular structure of (I) is shown in Fig. 1. The central thiazolidine (C9/C10/S1/C11/N1) ring is essentially planar [r.m.s. deviation for all non-H atoms = 0.0287 Å] and it forms dihedral angles of 88.25 (5)° with the methoxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The 1,3-benzodioxole ring is essentially planar [r.m.s. deviation for all non-H atoms = 0.0439 Å]. The dihedral angle between the benzene and benzodioxole rings is 25.12 (8)°. Two methoxy groups attached to the benzene ring are approximately parallel to the plane of the ring and the third methoxy group forms a nearly perpendicular angle with this ring. Methoxy groups on the benzene ring, have the following values of torsion angles: -3.9 (3)°, 81.9 (2)° and -1.4 (3)°. Bond lengths and bond angles in the central thiazolidine ring are very close to those reported in similar structures (Fun et al., 2011; Cunico et al., 2007). The molecules form a one dimensional chain, through C—H···O weak interactions, (see Table 1; Nardelli, 1995). Weak C18-H18···O1 and C8-H8···O6 contacts which reinforced each other, allow the molecules to propagate, forming R44(28) edge-fused rings, along [001] (Etter, 1990), (see Fig. 2).