research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of di-μ-iodido-bis­­[(di­methyl sulfoxide-κO)(tri­phenyl­phosphane-κP)copper(I)]

aInstitut UTINAM UMR CNRS 6213, University of Franche-Comté, 16 Route de Gray, Besançon, 25030, France, and bICMUB UMR CNRS 5260, University of Bourgogne, 9 Avenue A. Savary, Dijon, 21078, France
*Correspondence e-mail: marek.kubicki@u-bourgogne.fr

Edited by M. Gdaniec, Adam Mickiewicz University, Poland (Received 8 October 2014; accepted 17 November 2014; online 21 November 2014)

The centrosymmetric dinuclear title compound, [Cu2I2(C2H6OS)2(C18H15P)2], represents the first example of a CuI complex ligated by an O-bound dimethyl sulfoxide ligand. In the crystal, the two tetrahedrally coordinated CuI atoms are bridged by two μ2-iodido ligands in an almost symmetrical rhomboid geometry. The loose Cu⋯Cu contact of 2.9874 (8) Å is longer than the sum of the van der Waals radii of two Cu atoms (2.8 Å), excluding a significant cupriophilic inter­action in the actual dimer. C—H⋯O and C—H⋯I hydrogen bonding interactions as well as C—H⋯π(aryl) interactions stabilize the three-dimensional supramolecular network.

1. Chemical context

There exists a large family of dinuclear CuI⋯CuI-halide-bridged complexes of the type [PPh3(L′)Cu(μ2-I)2Cu(L′)PPh3], with the ligands L commonly bearing the coordinating N and S atoms, in which cupriophilic inter­actions may play a crucial role in determining their photophysical properties (Lobana et al., 2012[Lobana, T. S., Sharma, R., Hundal, G., Castineiras, A. & Butcher, R. J. (2012). Polyhedron, 47, 134-142.] and references therein; Engelhardt et al., 1989[Engelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 913-922.]). The title compound, [PPh3(DMSO)Cu(μ2-I)2Cu(DMSO)PPh3] (1), belongs to this family of compounds for which an association of L = PPh3 and L′ = DMSO has never been mentioned before.

[Scheme 1]

2. Database survey

The polar aprotic solvent (CH3)2S=O (DMSO) is frequently used in organic chemistry for reactions involving salts such nucleophilic substitutions reactions, but it has also found widespread use as a ligating solvent in the coordination chemistry of transition metals, where it may act both as an S-donor and an O-donor ligand towards a metal centre (Selbin et al., 1961[Selbin, J., Bull, W. E. & Holmes, L. H. Jr (1961). J. Inorg. Nucl. Chem. 16, 219-224.]). A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) reveals a large number of structurally characterized CuII halide complexes ligated by O-bound DMSO ligands. However, we found just one entry concerning a CuI halide complex, namely the tetra­metallic chain complex [Cu4Br(μ-Br)3(μ-dpmppm)2(DMSO)2] (dpmppm = bis­[(di­phenyl­phosphinometh­yl)phenyl­phos­phino]methane) reported by Takemura et al. (2009[Takemura, Y., Nakajima, T. & Tanase, T. (2009). Dalton Trans. pp. 10231-10243.]). Note that in the case of a soft CuI ion (compared with a harder CuII ion according the HSAB principle), DMSO could be a priori coordinating either via the sulfur or via the oxygen atom. Surprisingly, we found no CuII complex ligated by DMSO in the CSD.

3. Structural commentary

CuI is known to afford with DMSO in the presence of P2S5 the 2D coordination polymer [(Me2S)3{Cu4(μ-I)4}]n, the production of SMe2 being explained by the de­oxy­genation of Me2SO by P2S5 (Zhou et al., 2006[Zhou, J., Bian, G.-Q., Dai, J., Zhang, Y., Zhu, Q.-Y. & Lu, W. (2006). Inorg. Chem. 45, 8486-8488.]). In the context of our research on the coordination of thio­ethers R–S–R on CuX salts (Knorr et al., 2010[Knorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834-5844.]; Lapprand et al., 2013[Lapprand, A., Bonnot, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Fortin, D. & Harvey, P. D. (2013). Chem. Commun. pp. 8848-8850.]), we reacted a CuI solution in hot DMSO with a stoichiometric amount of PPh3 and succeeded in isolating in moderate yield X-ray-suitable crystals of (1). Structural analysis revealed that a centrosymmetric dinuclear complex is formed (Fig. 1[link]), in which the two tetra­hedrally coordinated CuI atoms are bridged by two μ2-iodido ligands in a slightly asymmetric rhomboid manner. Despite the soft character of CuI, the DMSO ligands are O-bound. The Cu—O bond length of 2.140 (2) Å is considerably longer than those of polymeric CuII compounds [(DMSO)2CuBr2]n [1.962 (9) Å; Willett et al., 1977[Willett, R. D., Jardine, F. H. & Roberts, S. A. (1977). Inorg. Chim. Acta, 25, 97-101.]] and [(DMSO)2CuCl2]n [1.955 (4) Å; Willett & Chang, 1970[Willett, R. D. & Chang, K. U. (1970). Inorg. Chim. Acta, 4, 447-451.]], but is in the same range as found for [Cu4Br(μ-Br)3(μ-dpmppm)2(DMSO)2] [2.200 (7) Å]. The Cu⋯Cu contact of 2.9874 (8) Å is longer than the sum of the van der Waals radii of two Cu atoms (2.8 Å), excluding any cupriophilic inter­action. This separation is in the same range as reported for [PPh3(pyridine)Cu(μ2-I)2Cu(pyridine)PPh3] (2.97 Å) (Bow­maker et al., 1994[Bowmaker, G. A., Hanna, J. V., Hart, R. D., Healy, P. C. & White, A. H. (1994). J. Chem. Soc. Dalton Trans. pp. 2621-2629.]), and the P—Cu bond lengths are also quite similar in the two compounds [2.2295 (10) vs 2.24 Å].

[Figure 1]
Figure 1
The mol­ecular structure of title compound built over a symmetry centre, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry code for unlabelled atoms is (1 − x, −y, −z).

4. Supra­molecular features

The assembly of the crystal structure seems to be first governed by C—H⋯O-type hydrogen bonds (inter­molecular ligand-to-ligand DMSO inter­actions), leading to a 1D chain structure extending in the [110] direction (Fig. 2[link]). Further, the very weak C—H⋯I inter­actions (for a 2D structure), followed by those of the C—H⋯π(ar­yl) type are probably responsible for the 3D assembly (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯Oi 0.98 2.46 3.434 (5) 173
C1—H1B⋯Iii 0.98 3.12 3.931 (4) 142
C2—H2B⋯Iii 0.98 3.15 3.978 (4) 143
C26—H26⋯C16iii 0.95 2.85 3.781 (5) 168
Symmetry codes: (i) -x+2, -y+1, -z; (ii) -x+2, -y, -z; (iii) x, y+1, z.
[Figure 2]
Figure 2
One-dimensional chain along [110] built via C—H⋯O inter­molecular inter­actions between the DMSO ligands.

5. Synthesis and crystallization

Tri­phenyl­phosphane (262 mg, 1.0 mmol) was added to a solution of CuI (192 mg, 1.0 mmol) in 10 ml of DMSO. The reaction mixture was first stirred at room temperature for 30 min and then heated for further 30 min to 368 K. After allowing the mixture to reach ambient temperature, yellowish crystals were formed (36% yield). Characterization data: 1H NMR (CDCl3): 2.62 (s, 6H, Me), 7.30–7.57 (m, 15H, Ph).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. All H atoms were placed in calculated positions and treated in a riding-model approximation. C—H distances were set to 0.95 (aromatic) and 0.98 Å (meth­yl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms.

Table 2
Experimental details

Crystal data
Chemical formula [Cu2I2(C2H6OS)2(C18H15P)2]
Mr 1061.67
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 115
a, b, c (Å) 8.6099 (2), 9.3435 (2), 14.5279 (4)
α, β, γ (°) 91.016 (1), 104.049 (1), 116.004 (1)
V3) 1008.60 (4)
Z 1
Radiation type Mo Kα
μ (mm−1) 2.80
Crystal size (mm) 0.17 × 0.05 × 0.05
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2σ(I)] reflections 8368, 4586, 3541
Rint 0.036
(sin θ/λ)max−1) 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 0.99
No. of reflections 4586
No. of parameters 228
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −0.98
Computer programs: DENZO and SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]), SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]), SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Chemical context top

There exists a large family of dinuclear CuI···CuI-halide-bridged complexes of the type [PPh3(L')Cu(µ2-I)2Cu(L')PPh3], with the ligands L commonly bearing the coordinating N and S atoms, in which cupriophilic inter­actions may play a crucial role in the determination of their photophysical properties (Lobana et al., 2012 and references therein; Engelhardt et al., 1989). The title compound, [PPh3(DMSO)Cu(µ2-I)2Cu(DMSO)PPh3] (1), belongs to this family of compounds for which an association of L = PPh3 and L' = DMSO has never been mentioned before.

Database survey top

The polar aprotic solvent (CH3)2S=O (DMSO) is frequently used in organic chemistry for reactions involving salts such nucleophilic substitutions reactions, but it has also found widespread use as a ligating solvent in the coordination chemistry of transition metals, where it may act both as an S-donor and an O-donor ligand towards a metal centre (Selbin et al., 1961). A survey of the Cambridge Structural Database (CSD; Groom & Allen, 2014) reveals a large number of structurally characterized CuII halide complexes ligated by O-bound DMSO ligands. However, we found just one entry concerning a CuI halide complex, namely the tetra­metallic chain complex [Cu4Br(µ-Br)3(µ-dpmppm)2(DMSO)2] (dpmppm = bis­[(di­phenyl­phosphino­methyl)­phenyl­phosphino]methane) reported by Takemura et al., 2009). Note that in the case of a soft CuI ion (compared with a harder CuII ion according the HSAB principle), DMSO would be a priori coordinated either via the sulfur or via the oxygen atom. Surprisingly, we found no CuI complex ligated by DMSO in the CSD.

Structural commentary top

CuI is known to afford with DMSO in the presence of P2S5 the 2D coordination polymer [(Me2S)3{Cu4(µ-I)4}]n, the production of SMe2 being explained by the de­oxy­genation of Me2SO by P2S5 (Zhou et al., 2006). In the context of our research on the coordination of thio­ethers R–S–R on CuX salts (Knorr et al., 2010; Lapprand et al., 2013), we reacted a CuI solution in hot DMSO with a stoichiometric amount of PPh3 and succeeded to isolate in moderate yield X-ray-suitable crystals of [PPh3(DMSO)Cu(µ2-I)2Cu(DMSO)PPh3] (1). Structural analysis revealed that a centrosymmetric dinuclear complex is formed, in which the two tetra­hedrally coordinated CuI atoms are bridged by two µ2-iodo ligands in a slightly asymmetric rhomboid manner. Despite the soft character of CuI, the DMSO ligands are O-bound. The Cu—O bond length of 2.140 (2) Å is considerably longer than those of polymeric CuII compounds [(DMSO)2CuBr2]n [1.962 (9) Å; Willett et al., 1977] and [(DMSO)2CuCl2]n [1.955 (4) Å; Willett & Chang, 1970], but is in the same range as found for [Cu4Br(µ-Br)3(µ-dpmppm)2(DMSO)2] [2.200 (7) Å]. The Cu···Cu contact of 2.9874 (8) Å is longer the sum of the van der Waals radii of two Cu atoms (2.8 Å), excluding any cupriophilic inter­action. This separation is in the same range as reported for [PPh3(pyridine)Cu(µ2-I)2Cu(pyridine)PPh3] (2.97 Å) (Bowmaker et al., 1994), and the P—Cu bond lengths are also quite similar in the two compounds [2.2295 (10) vs. 2.24 Å].

Supra­molecular features top

The assembly of the crystal structure seems to be first governed by the C—H···O type hydrogen bonds (inter­molecular ligand-to-ligand DMSO inter­actions), leading to a 1D chain structure extending in the [110] direction (Fig. 2). Further, the very weak C—H···I inter­actions (for a 2D structure) followed by those of the C—H···π(aryl) type are probably responsible for the 3D assembly (Table 1).

Synthesis and crystallization top

Tri­phenyl­phosphane (262 mg, 1.0 mmol) was added to a solution of CuI (192 mg, 1.0 mmol) in 10 ml of DMSO. The reaction mixture was first stirred at room temperature for 30 min and then heated for further 30 min to 368 K. After allowing the mixture to reach ambient temperature, yellowish crystals were formed ( 36% yield). Characterization data: 1H NMR (CDCl3): 2.62 (s, 6H, Me), 7.30–7.57 (m, 15H, Ph).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were placed in calculated positions and treated in a riding-model approximation. C—H distances were set to 0.95 (aromatic) and 0.98 Å (methyl) with Uiso(H) = xUeq(C), where x = 1.5 for methyl and 1.2 for aromatic H atoms.

Related literature top

There exists a large family of dinuclear Cu(I)···Cu(I)-halide bridged complexes of the type [PPh3(L)Cu(µ2-I)2Cu(L)PPh3] with the ligands L bearing commonly the N and S coordinating atoms in which the cupriophilic interactions may play a crucial role in the determination of their photophysical properties (Lobana et al., (2012), and references therein, Engelhardt et al. (1989))

Computing details top

Data collection: DENZO and SCALEPACK (Otwinowski & Minor, 1997); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012; software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
The molecular structure of title compound built over a symmetry centre, with atom labels and 50% probability displacement ellipsoids for non-H atoms. Symmetry code for unlabelled atoms is (1 - x, -y, -z).

One-dimensional chain along [110] built via C—H···O intermolecular interactions between the DMSO ligands.
Di-µ-iodido-bis[(dimethyl sulfoxide-κO)(triphenylphosphane-κP)copper(I)] top
Crystal data top
[Cu2I2(C2H6OS)2(C18H15P)2]Z = 1
Mr = 1061.67F(000) = 524
Triclinic, P1Dx = 1.748 Mg m3
a = 8.6099 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3435 (2) ÅCell parameters from 8449 reflections
c = 14.5279 (4) Åθ = 1.0–27.5°
α = 91.016 (1)°µ = 2.80 mm1
β = 104.049 (1)°T = 115 K
γ = 116.004 (1)°Prism, clear light colourless
V = 1008.60 (4) Å30.17 × 0.05 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
3541 reflections with I > 2σ(I)
Radiation source: X-ray tube, Enraf–Nonius FR590Rint = 0.036
Horizonally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 2.9°
Detector resolution: 9 pixels mm-1h = 1111
CCD rotation images, thick slices scansk = 1212
8368 measured reflectionsl = 1818
4586 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0332P)2]
where P = (Fo2 + 2Fc2)/3
4586 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.97 e Å3
Crystal data top
[Cu2I2(C2H6OS)2(C18H15P)2]γ = 116.004 (1)°
Mr = 1061.67V = 1008.60 (4) Å3
Triclinic, P1Z = 1
a = 8.6099 (2) ÅMo Kα radiation
b = 9.3435 (2) ŵ = 2.80 mm1
c = 14.5279 (4) ÅT = 115 K
α = 91.016 (1)°0.17 × 0.05 × 0.05 mm
β = 104.049 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3541 reflections with I > 2σ(I)
8368 measured reflectionsRint = 0.036
4586 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.99Δρmax = 0.78 e Å3
4586 reflectionsΔρmin = 0.97 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1097 (5)0.1762 (5)0.1426 (3)0.0287 (9)
H1A1.21800.17670.13190.043*
H1B1.02270.06560.14430.043*
H1C1.14170.24240.20380.043*
C21.2026 (5)0.4468 (4)0.0613 (3)0.0289 (10)
H2A1.24360.49950.12760.043*
H2B1.16870.51380.01790.043*
H2C1.29990.43240.04580.043*
C110.4456 (4)0.0357 (4)0.2784 (3)0.0164 (8)
C120.2884 (5)0.1295 (4)0.2069 (3)0.0261 (9)
H120.27630.10440.14320.031*
C130.1487 (5)0.2598 (4)0.2276 (3)0.0309 (10)
H130.04070.32220.17840.037*
C140.1662 (5)0.2989 (4)0.3195 (3)0.0270 (9)
H140.07110.38900.33350.032*
C150.3233 (5)0.2061 (4)0.3913 (3)0.0228 (8)
H150.33550.23210.45480.027*
C160.4625 (5)0.0756 (4)0.3707 (3)0.0178 (8)
H160.57030.01300.41990.021*
C170.8273 (4)0.1580 (4)0.3337 (3)0.0154 (7)
C180.8942 (5)0.0488 (4)0.3218 (3)0.0193 (8)
H180.83160.03580.26930.023*
C191.0498 (5)0.0623 (4)0.3852 (3)0.0235 (9)
H191.09370.01270.37630.028*
C201.1422 (5)0.1862 (4)0.4623 (3)0.0244 (9)
H201.24900.19590.50630.029*
C211.0783 (5)0.2938 (4)0.4742 (3)0.0240 (9)
H211.14140.37840.52670.029*
C220.9227 (4)0.2810 (4)0.4107 (3)0.0187 (8)
H220.88070.35730.41980.022*
C230.5978 (4)0.3083 (4)0.2747 (2)0.0145 (7)
C240.6736 (5)0.4388 (4)0.2269 (3)0.0201 (8)
H240.73840.43380.18350.024*
C250.6536 (5)0.5769 (4)0.2431 (3)0.0236 (9)
H250.70750.66700.21190.028*
C260.5561 (5)0.5829 (4)0.3040 (3)0.0229 (9)
H260.54030.67600.31310.028*
C270.4813 (5)0.4551 (4)0.3520 (3)0.0219 (8)
H270.41600.46120.39480.026*
C280.5013 (4)0.3171 (4)0.3378 (3)0.0180 (8)
H280.44960.22900.37080.022*
O0.8790 (3)0.2915 (3)0.0820 (2)0.0270 (6)
P0.62437 (12)0.13151 (10)0.24350 (7)0.0145 (2)
S1.01292 (12)0.25565 (10)0.04801 (7)0.0206 (2)
Cu0.62834 (6)0.10410 (5)0.09145 (3)0.01942 (12)
I0.60513 (3)0.17153 (2)0.03064 (2)0.02049 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.023 (2)0.038 (2)0.028 (2)0.0175 (19)0.0055 (18)0.0123 (18)
C20.0155 (19)0.023 (2)0.045 (3)0.0060 (16)0.0084 (18)0.0055 (18)
C110.0143 (18)0.0132 (17)0.022 (2)0.0066 (14)0.0051 (15)0.0019 (14)
C120.024 (2)0.027 (2)0.018 (2)0.0044 (17)0.0029 (17)0.0028 (16)
C130.016 (2)0.029 (2)0.031 (3)0.0013 (17)0.0020 (18)0.0011 (18)
C140.022 (2)0.0182 (19)0.035 (3)0.0016 (16)0.0126 (18)0.0056 (17)
C150.026 (2)0.024 (2)0.025 (2)0.0136 (17)0.0135 (18)0.0091 (16)
C160.0168 (18)0.0154 (18)0.021 (2)0.0070 (15)0.0063 (15)0.0023 (15)
C170.0111 (17)0.0169 (18)0.018 (2)0.0052 (14)0.0061 (15)0.0048 (14)
C180.0224 (19)0.0148 (17)0.022 (2)0.0087 (15)0.0071 (16)0.0064 (15)
C190.024 (2)0.027 (2)0.030 (2)0.0174 (17)0.0132 (18)0.0116 (17)
C200.0179 (19)0.032 (2)0.024 (2)0.0124 (17)0.0052 (17)0.0087 (17)
C210.0163 (19)0.0224 (19)0.025 (2)0.0049 (16)0.0009 (16)0.0038 (16)
C220.0152 (18)0.0184 (18)0.022 (2)0.0087 (15)0.0026 (16)0.0017 (15)
C230.0095 (16)0.0136 (17)0.0149 (19)0.0030 (14)0.0016 (14)0.0017 (14)
C240.0180 (19)0.0182 (18)0.023 (2)0.0073 (15)0.0049 (16)0.0033 (15)
C250.029 (2)0.0147 (18)0.022 (2)0.0084 (16)0.0022 (17)0.0042 (15)
C260.024 (2)0.0166 (19)0.026 (2)0.0151 (16)0.0068 (17)0.0038 (16)
C270.0200 (19)0.024 (2)0.025 (2)0.0128 (16)0.0060 (17)0.0005 (16)
C280.0162 (18)0.0177 (18)0.019 (2)0.0076 (15)0.0031 (15)0.0024 (15)
O0.0147 (13)0.0222 (13)0.0462 (19)0.0076 (11)0.0138 (12)0.0082 (12)
P0.0139 (4)0.0123 (4)0.0175 (5)0.0062 (4)0.0042 (4)0.0020 (4)
S0.0147 (5)0.0205 (5)0.0232 (5)0.0059 (4)0.0036 (4)0.0038 (4)
Cu0.0195 (2)0.0204 (2)0.0200 (3)0.0100 (2)0.0066 (2)0.00351 (19)
I0.02019 (14)0.01809 (13)0.02255 (15)0.01034 (10)0.00187 (10)0.00121 (10)
Geometric parameters (Å, º) top
C1—H1A0.9800C19—C201.393 (5)
C1—H1B0.9800C20—H200.9500
C1—H1C0.9800C20—C211.367 (5)
C1—S1.777 (4)C21—H210.9500
C2—H2A0.9800C21—C221.384 (5)
C2—H2B0.9800C22—H220.9500
C2—H2C0.9800C23—C241.396 (5)
C2—S1.781 (3)C23—C281.401 (5)
C11—C121.387 (5)C23—P1.828 (3)
C11—C161.388 (5)C24—H240.9500
C11—P1.834 (3)C24—C251.398 (4)
C12—H120.9500C25—H250.9500
C12—C131.386 (5)C25—C261.374 (5)
C13—H130.9500C26—H260.9500
C13—C141.382 (5)C26—C271.379 (5)
C14—H140.9500C27—H270.9500
C14—C151.387 (5)C27—C281.392 (4)
C15—H150.9500C28—H280.9500
C15—C161.386 (5)O—S1.514 (2)
C16—H160.9500O—Cu2.140 (2)
C17—C181.399 (4)P—Cu2.2295 (10)
C17—C221.388 (5)Cu—Cui2.9874 (8)
C17—P1.825 (3)Cu—I2.6144 (4)
C18—H180.9500Cu—Ii2.6463 (5)
C18—C191.381 (5)I—Cui2.6463 (5)
C19—H190.9500
H1A—C1—H1B109.5C22—C21—H21119.6
H1A—C1—H1C109.5C17—C22—H22119.6
H1B—C1—H1C109.5C21—C22—C17120.8 (3)
S—C1—H1A109.5C21—C22—H22119.6
S—C1—H1B109.5C24—C23—C28119.5 (3)
S—C1—H1C109.5C24—C23—P115.5 (3)
H2A—C2—H2B109.5C28—C23—P124.9 (3)
H2A—C2—H2C109.5C23—C24—H24120.2
H2B—C2—H2C109.5C23—C24—C25119.6 (3)
S—C2—H2A109.5C25—C24—H24120.2
S—C2—H2B109.5C24—C25—H25119.9
S—C2—H2C109.5C26—C25—C24120.3 (3)
C12—C11—C16119.1 (3)C26—C25—H25119.9
C12—C11—P117.3 (3)C25—C26—H26119.7
C16—C11—P123.6 (3)C25—C26—C27120.6 (3)
C11—C12—H12119.8C27—C26—H26119.7
C13—C12—C11120.5 (4)C26—C27—H27120.0
C13—C12—H12119.8C26—C27—C28120.0 (3)
C12—C13—H13119.9C28—C27—H27120.0
C14—C13—C12120.2 (4)C23—C28—H28120.0
C14—C13—H13119.9C27—C28—C23119.9 (3)
C13—C14—H14120.1C27—C28—H28120.0
C13—C14—C15119.7 (4)S—O—Cu121.91 (13)
C15—C14—H14120.1C11—P—Cu116.27 (11)
C14—C15—H15120.0C17—P—C11102.77 (16)
C16—C15—C14120.1 (4)C17—P—C23103.83 (14)
C16—C15—H15120.0C17—P—Cu115.71 (12)
C11—C16—H16119.8C23—P—C11104.58 (15)
C15—C16—C11120.4 (3)C23—P—Cu112.25 (12)
C15—C16—H16119.8C1—S—C298.10 (19)
C18—C17—P117.0 (3)O—S—C1106.07 (17)
C22—C17—C18118.1 (3)O—S—C2104.70 (16)
C22—C17—P124.9 (3)O—Cu—P106.70 (8)
C17—C18—H18119.5O—Cu—Cui116.74 (8)
C19—C18—C17121.0 (3)O—Cu—I108.23 (6)
C19—C18—H18119.5O—Cu—Ii101.47 (7)
C18—C19—H19120.1P—Cu—Cui136.38 (3)
C18—C19—C20119.8 (3)P—Cu—Ii114.07 (3)
C20—C19—H19120.1P—Cu—I114.48 (3)
C19—C20—H20120.2I—Cu—Cui55.904 (14)
C21—C20—C19119.6 (3)Ii—Cu—Cui54.897 (14)
C21—C20—H20120.2I—Cu—Ii110.801 (16)
C20—C21—H21119.6Cu—I—Cui69.201 (16)
C20—C21—C22120.8 (3)
C11—C12—C13—C141.1 (6)C22—C17—P—C234.7 (4)
C12—C11—C16—C150.9 (5)C22—C17—P—Cu128.1 (3)
C12—C11—P—C17154.0 (3)C23—C24—C25—C261.6 (5)
C12—C11—P—C2397.8 (3)C24—C23—C28—C270.2 (5)
C12—C11—P—Cu26.6 (3)C24—C23—P—C11158.7 (3)
C12—C13—C14—C150.8 (6)C24—C23—P—C1793.8 (3)
C13—C14—C15—C160.5 (5)C24—C23—P—Cu31.8 (3)
C14—C15—C16—C110.6 (5)C24—C25—C26—C271.9 (5)
C16—C11—C12—C131.2 (5)C25—C26—C27—C281.1 (5)
C16—C11—P—C1723.6 (3)C26—C27—C28—C230.1 (5)
C16—C11—P—C2384.6 (3)C28—C23—C24—C250.5 (5)
C16—C11—P—Cu151.0 (2)C28—C23—P—C1117.9 (3)
C17—C18—C19—C200.0 (5)C28—C23—P—C1789.5 (3)
C18—C17—C22—C210.7 (5)C28—C23—P—Cu144.8 (3)
C18—C17—P—C1178.3 (3)P—C11—C12—C13178.8 (3)
C18—C17—P—C23172.9 (3)P—C11—C16—C15178.4 (2)
C18—C17—P—Cu49.5 (3)P—C17—C18—C19178.3 (3)
C18—C19—C20—C210.3 (6)P—C17—C22—C21178.3 (3)
C19—C20—C21—C220.1 (6)P—C23—C24—C25177.4 (3)
C20—C21—C22—C170.4 (6)P—C23—C28—C27176.3 (2)
C22—C17—C18—C190.5 (5)Cu—O—S—C172.7 (2)
C22—C17—P—C11104.1 (3)Cu—O—S—C2175.87 (19)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Oii0.982.463.434 (5)173
C1—H1B···Iiii0.983.123.931 (4)142
C2—H2B···Iiii0.983.153.978 (4)143
C26—H26···C16iv0.952.853.781 (5)168
Symmetry codes: (ii) x+2, y+1, z; (iii) x+2, y, z; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···Oi0.982.463.434 (5)173
C1—H1B···Iii0.983.123.931 (4)142
C2—H2B···Iii0.983.153.978 (4)143
C26—H26···C16iii0.952.853.781 (5)168
Symmetry codes: (i) x+2, y+1, z; (ii) x+2, y, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2I2(C2H6OS)2(C18H15P)2]
Mr1061.67
Crystal system, space groupTriclinic, P1
Temperature (K)115
a, b, c (Å)8.6099 (2), 9.3435 (2), 14.5279 (4)
α, β, γ (°)91.016 (1), 104.049 (1), 116.004 (1)
V3)1008.60 (4)
Z1
Radiation typeMo Kα
µ (mm1)2.80
Crystal size (mm)0.17 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8368, 4586, 3541
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.077, 0.99
No. of reflections4586
No. of parameters228
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.97

Computer programs: DENZO and SCALEPACK (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL2012 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012, WinGX (Farrugia, 2012).

 

Acknowledgements

The authors thank the CNRS for financial support.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBowmaker, G. A., Hanna, J. V., Hart, R. D., Healy, P. C. & White, A. H. (1994). J. Chem. Soc. Dalton Trans. pp. 2621–2629.  CSD CrossRef Web of Science Google Scholar
First citationEngelhardt, L. M., Healy, P. C., Kildea, J. D. & White, A. H. (1989). Aust. J. Chem. 42, 913–922.  CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKnorr, M., Pam, A., Khatyr, A., Strohmann, C., Kubicki, M. M., Rousselin, Y., Aly, S. M., Fortin, D. & Harvey, P. D. (2010). Inorg. Chem. 49, 5834–5844.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationLapprand, A., Bonnot, A., Knorr, M., Rousselin, Y., Kubicki, M. M., Fortin, D. & Harvey, P. D. (2013). Chem. Commun. pp. 8848–8850.  Web of Science CSD CrossRef Google Scholar
First citationLobana, T. S., Sharma, R., Hundal, G., Castineiras, A. & Butcher, R. J. (2012). Polyhedron, 47, 134–142.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSelbin, J., Bull, W. E. & Holmes, L. H. Jr (1961). J. Inorg. Nucl. Chem. 16, 219–224.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakemura, Y., Nakajima, T. & Tanase, T. (2009). Dalton Trans. pp. 10231–10243.  Web of Science CSD CrossRef Google Scholar
First citationWillett, R. D. & Chang, K. U. (1970). Inorg. Chim. Acta, 4, 447–451.  CSD CrossRef CAS Google Scholar
First citationWillett, R. D., Jardine, F. H. & Roberts, S. A. (1977). Inorg. Chim. Acta, 25, 97–101.  CSD CrossRef CAS Web of Science Google Scholar
First citationZhou, J., Bian, G.-Q., Dai, J., Zhang, Y., Zhu, Q.-Y. & Lu, W. (2006). Inorg. Chem. 45, 8486–8488.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds