research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (3,5-di­chloro-2-hy­dr­oxy­phen­yl){1-[(naphthalen-1-yl)carbon­yl]-1H-pyrazol-4-yl}methanone

aSchool of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
*Correspondence e-mail: ishi206@u-shizuoka-ken.ac.jp

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 18 August 2014; accepted 10 November 2014; online 19 November 2014)

The title compound, C21H12Cl2N2O3, is a 1,4-diaroyl pyrazole derivative and has three aromatic rings. The dihedral angles between the naphthalene ring system and the pyrazole ring, the pyrazole and phenyl rings and the naphthalene ring system and the phenyl ring are 49.44 (13), 49.87 (16) and 0.58 (11)°, respectively. The phenolic proton forms an intra­molecular O—H⋯O hydrogen bond with an adjacent carbonyl O atom. In the crystal, the mol­ecules are linked through stacking inter­actions between the pyrazole rings [centroid–centroid distances = 3.546 (3)] and between the naphthalene ring system and the phenyl ring [centroid–centroid distances = 3.609 (4) Å] along the a-axis direction. The mol­ecules are further connected through C—H⋯O hydrogen bonds, forming inversion dimers.

1. Chemical context

3-Formyl­chromones are used as diverse building blocks (Ali et al., 2013[Ali, T. E. S., Ibrahim, M. A., El-Gohary, N. M. & El-Kazak, A. M. (2013). Eur. J. Chem. 4, 311-328.]), and their Schiff base derivatives have attracted much attention in medicinal chemistry (Nawrot-Modranka et al., 2006[Nawrot-Modranka, J., Nawrot, E. & Graczyk, J. (2006). Eur. J. Med. Chem. 41, 1301-1309.]; Khan et al., 2009[Khan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Iqbal Choudhary, M. (2009). Bioorg. Med. Chem. 17, 2983-2988.]; Wang et al., 2008[Wang, B.-D., Yang, Z.-Y., Qin, D.-D. & Chen, Z.-N. (2008). J. Photochem. Photobiol. Chem. 194, 49-58.]; Tu et al., 2013[Tu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826-2831.]; Gaspar et al., 2014[Gaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960-4992.]). We have recently reported the crystal structures of such Schiff base compounds (Ishikawa & Watanabe, 2014a[Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.],b[Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.],c[Ishikawa, Y. & Watanabe, K. (2014c). Acta Cryst. E70, o784.],d[Ishikawa, Y. & Watanabe, K. (2014d). Acta Cryst. E70, o832.]), which were prepared from condensation reactions of 3-formyl­chromones with aryl­hydrazides. Inter­estingly, crystallographic analysis revealed that the structure of the orange crystals obtained from crystallization of the white solid prepared from the condensation reaction of 6,8-di­bromo-3-formyl­chromone (Ishikawa, 2014[Ishikawa, Y. (2014). Acta Cryst. E70, o439.]) with 1-naph­tho­hydrazide is a 1,4-diaroyl pyrazole (Ishikawa & Motohashi, 2014[Ishikawa, Y. & Motohashi, Y. (2014). Acta Cryst. E70, o1033.]).

[Scheme 1]

2. Structural commentary

The reaction of 6,8-di­chloro-3-formyl­chromone (Ishikawa & Motohashi, 2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]) with 1-naphtho­ylhydrazide in benzene gave yellow solids, and orange crystals were obtained from an ethyl acetate/acetone solution of the yellow solids (Fig. 1[link]). The crystallographic analysis revealed that the structure of the orange crystals is a 1,4-diaroyl pyrazole, as shown in Fig. 2[link], which should be thermodynamically more stable than that of the yellow solids. The dihedral angles between the naphthalene ring system and the pyrazole ring, the pyrazole and phenyl rings and the naphthalene ring system and the phenyl ring are 49.44 (13), 49.87 (16) and 0.58 (11)°, respectively. The phenolic proton forms an intra­molecular O–H⋯O hydrogen bond with the adjacent carbonyl O2 atom. The conformation of the title compound is almost identical to that of our previously reported 1,4-diaroyl pyrazole derivative (Ishikawa & Motohashi, 2014[Ishikawa, Y. & Motohashi, Y. (2014). Acta Cryst. E70, o1033.]).

[Figure 1]
Figure 1
Reaction scheme for the title compound.
[Figure 2]
Figure 2
The mol­ecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

The driving force of the intra­molecular cyclization (Fig. 1[link]) should be a resonance energy gain, resulting from the extension of the conjugated system across the entire mol­ecule. The intra­molecular cyclization is not observed for the chromone derivatives without electron-withdrawing substituents (Ishikawa & Watanabe, 2014a[Ishikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.],b[Ishikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.],c[Ishikawa, Y. & Watanabe, K. (2014c). Acta Cryst. E70, o784.],d[Ishikawa, Y. & Watanabe, K. (2014d). Acta Cryst. E70, o832.]), and thus the activation energy for the chromone derivative with the electron-withdrawing substituents should be lower than that for ones without electron-withdrawing substituents.

3. Supra­molecular features

The mol­ecules are linked along the a-axis through stacking inter­actions between inversion-related pyrazole rings, and between the naphthalene ring system and the phenyl ring of an inversion-related molecule [centroid–centroid distances = 3.546 (3) and 3.609 (4) Å, respectively; symmetry code: –x + 1, –y + 1, –z]. The mol­ecules are further connected through inter­molecular C—H⋯O hydrogen bonds (Table 1[link]), forming inversion dimers, as shown in Fig. 3[link]. Type I halogen⋯halogen contacts between the chlorine atoms, which is seen in the crystal structure of the starting material, 6,8-di­chloro-3-formyl­chromone (Ishikawa & Motohashi, 2013[Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.]), are not observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H3⋯O2 0.84 1.84 2.570 (4) 144
C10—H5⋯O3i 0.95 2.29 3.219 (6) 166
Symmetry code: (i) -x+2, -y+1, -z.
[Figure 3]
Figure 3
A crystal packing view of the title compound. Intra­molecular O—H⋯O and inter­molecular C—H⋯O hydrogen bonds are represented by black and red dashed lines, respectively.

4. Database survey

In the WebCSD (Version 1.1.1, last update November 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) no structures of compounds containing a 1,4-diaroyl pyrazole entity are listed except our previously reported one (Ishikawa & Motohashi, 2014[Ishikawa, Y. & Motohashi, Y. (2014). Acta Cryst. E70, o1033.]).

5. Synthesis and crystallization

Preparation of the yellow precursor, (E)-N′-[(6,8-di­chloro-4-oxo-4H-chromen-3-yl)methyl­ene]-1-naphtho­hydrazide, is as follows: 1-naphtho­hydrazide (2.7 mmol) and 6,8-di­chloro-3-formyl­chromone (2.7 mmol) were dissolved in 50 ml of benzene, and the mixture was refluxed with a Dean–Stark apparatus for 2 h with stirring. After cooling, the yellow precipitates were collected, washed with n-hexane and dried in vacuo (yield 18%). 1H NMR (400 MHz, DMSO-d6): δ = 7.60–7.64 (m, 4H), 7.78 (d, 1H, J = 6.9 Hz), 8.03 (d, 1H, J = 2.5 Hz), 8.11 (d, 1H, J = 8.3 Hz), 8.23 (m, 1H), 8.26 (d, 1H, J = 2.5 Hz), 8.48 (s, 1H), 8.98 (s, 1H), 12.17 (s, 1H). DART–MS calculated for [C21H12Cl2N2O3 + H+]: 411.030, found 410.905. Orange crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate/acetone solution of the yellow precursor at room temperature.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The C-bound hydrogen atoms were placed in geometrical positions and refined using a riding model [C—H 0.95 Å with Uiso(H) = 1.2Ueq(C)]. The phenolic proton was located in a difference Fourier map, and refined using a riding model [O—H 0.84 Å with Uiso(H) = 1.5Ueq(O)].

Table 2
Experimental details

Crystal data
Chemical formula C21H12Cl2N2O3
Mr 411.24
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 100
a, b, c (Å) 7.342 (7), 8.807 (4), 14.861 (5)
α, β, γ (°) 75.49 (3), 76.88 (5), 70.51 (5)
V3) 866.1 (9)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.40
Crystal size (mm) 0.40 × 0.12 × 0.05
 
Data collection
Diffractometer Rigaku AFC-7R diffractometer
No. of measured, independent and observed [F2 > 2σ(F2)] reflections 4892, 3992, 2316
Rint 0.051
(sin θ/λ)max−1) 0.650
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.01
No. of reflections 3992
No. of parameters 254
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.65, −0.57
Computer programs: WinAFC (Rigaku, 1999[Rigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.]), SIR2008 (Burla et al., 2007[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609-613.]), SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Chemical context top

3-Formyl­chromones are used as diverse building blocks (Ali et al., 2013), and their Schiff base derivatives have attracted much attention in medicinal chemistry (Nawrot-Modranka et al., 2006; Khan et al., 2009; Wang et al., 2008; Tu et al., 2013; Gaspar et al., 2014). We have recently reported the crystal structures of such Schiff base compounds (Ishikawa & Watanabe, 2014a,b,c,d), which were prepared from condensation reactions of 3-formyl­chromones with aryl­hydrazides. Inter­estingly, crystallographic analysis revealed that the structure of the orange crystals obtained from crystallization of the white solid prepared from the condensation reaction of 6,8-di­bromo-3-formyl­chromone (Ishikawa, 2014) with 1-naphtho­hydrazide is a 1,4-diaroyl pyrazole (Ishikawa & Motohashi, 2014).

Structural commentary top

The reaction of 6,8-di­chloro-3-formyl­chromone (Ishikawa & Motohashi, 2013) with 1-naphtho­ylhydrazide in benzene gave yellow solids, and orange crystals were obtained from an ethyl acetate/acetone solution of the yellow solids (Fig. 3). The crystallographic analysis revealed that the structure of the orange crystals is a 1,4-diaroyl pyrazole, as shown in Fig.1, which should be thermodynamically more stable than that of the yellow solids. The dihedral angles between the naphthalene ring system and the pyrazole ring, the pyrazole and phenyl rings and the naphthalene ring system and the phenyl ring are 49.44 (13), 49.87 (16) and 0.58 (11)°, respectively. The phenolic proton forms an intra­molecular O—H···O hydrogen bond with an adjacent carbonyl O2 atom. The conformation of the title compound (Fig. 1) is almost identical to that of our previously reported 1,4-diaroyl pyrazole derivative (Ishikawa & Motohashi, 2014).

The driving force of the intra­molecular cyclization (Fig. 2) should be a resonance energy gain, resulting from the extension of the conjugated system across the entire molecule. The intra­molecular cyclization is not observed for the chromone derivatives without electron-withdrawing substituents (Ishikawa & Watanabe, 2014a,b,c,d), and thus the activation energy for the chromone derivative with the electron-withdrawing substituents should be lower than that for ones without electron-withdrawing substituents.

Supra­molecular features top

The molecules are linked through stacking inter­actionsi between the pyrazole rings and between the naphthalene ring system and the phenyl ring along the a-axis [centroid–centroid distances = 3.546 (3) and 3.609 (4) Å, respectively; symmetry code (i): –x+1, –y+1, –z]. The molecules are further connected through inter­molecular C—H···O hydrogen bondsii [symmetry code (ii): –x+2, –y+1, –z], forming inversion dimers, as shown in Fig. 3. Type I halogen···halogen contacts between the chlorine atoms, which is seen in the crystal structure of the starting material, 6,8-di­chloro-3-formyl­chromone (Ishikawa & Motohashi, 2013), are not observed.

Database survey top

In the WebCSD (Version 1.1.1, last update November 2014; Groom & Allen, 2014) no structures of compounds containing a 1,4-diaroyl pyrazole entity are listed except our previously reported one (Ishikawa & Motohashi, 2014).

Synthesis and crystallization top

\ Preparation of the yellow precursor, (E)-N'-[(6,8-di­chloro-4-oxo-4H-chromen-3-yl)methyl­ene]-\ 1-naphtho­hydrazide, is as follows: 1-naphtho­hydrazide (2.7 mmol) and 6,8-di­chloro-3-formyl­chromone (2.7 mmol) were dissolved in 50 ml of benzene, and the mixture was refluxed with a Dean–Stark apparatus for 2 h with stirring. After cooling, the yellow precipitates were collected, washed with n-hexane and dried in vacuo (yield 18%). 1H NMR (400 MHz, DMSO-d6): δ = 7.60–7.64 (m, 4H), 7.78 (d, 1H, J = 6.9 Hz), 8.03 (d, 1H, J = 2.5 Hz), 8.11 (d, 1H, J = 8.3 Hz), 8.23 (m, 1H), 8.26 (d, 1H, J = 2.5 Hz), 8.48 (s, 1H), 8.98 (s, 1H), 12.17 (s, 1H). DART–MS calculated for [C21H12Cl2N2O3 + H+]: 411.030, found 410.905. Orange crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate/acetone solution of the yellow precursor at room temperature.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The Csp2-bound hydrogen atoms were placed in geometrical positions [C—H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. The hydrogen atom of the phenolic proton was found in a difference Fourier map, and refined using a riding model.

Related literature top

For related literature, see: Allen (2002); Gaspar et al. (2014); Ibrahim et al. (2013); Ishikawa (2014); Ishikawa & Motohashi (2013, 2014); Ishikawa & Watanabe (2014a, 2014b, 2014c, 2014d); Khan et al. (2009); Nawrot-Modranka, Nawrot & Graczyk (2006); Tu et al. (2013).

Computing details top

Data collection: WinAFC (Rigaku, 1999); cell refinement: WinAFC (Rigaku, 1999); data reduction: WinAFC (Rigaku, 1999); program(s) used to solve structure: SIR2008 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
Reaction scheme for the title compound.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.

A crystal packing view of the title compound. Intramolecular O—H···O and intermolecular C—H···O hydrogen bonds are represented by black and red dashed lines, respectively.
(3,5-Dichloro-2-hydroxyphenyl){1-[(naphthalen-1-yl)carbonyl]-1H-pyrazol-4-yl}methanone top
Crystal data top
C21H12Cl2N2O3Z = 2
Mr = 411.24F(000) = 420.00
Triclinic, P1Dx = 1.577 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 7.342 (7) ÅCell parameters from 15 reflections
b = 8.807 (4) Åθ = 15.0–17.2°
c = 14.861 (5) ŵ = 0.40 mm1
α = 75.49 (3)°T = 100 K
β = 76.88 (5)°Plate, colorless
γ = 70.51 (5)°0.40 × 0.12 × 0.05 mm
V = 866.1 (9) Å3
Data collection top
Rigaku AFC-7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 95
4892 measured reflectionsk = 1110
3992 independent reflectionsl = 1918
2316 reflections with F2 > 2σ(F2)3 standard reflections every 150 reflections
Rint = 0.051 intensity decay: 0.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0752P)2]
where P = (Fo2 + 2Fc2)/3
3992 reflections(Δ/σ)max < 0.001
254 parametersΔρmax = 0.65 e Å3
0 restraintsΔρmin = 0.57 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
C21H12Cl2N2O3γ = 70.51 (5)°
Mr = 411.24V = 866.1 (9) Å3
Triclinic, P1Z = 2
a = 7.342 (7) ÅMo Kα radiation
b = 8.807 (4) ŵ = 0.40 mm1
c = 14.861 (5) ÅT = 100 K
α = 75.49 (3)°0.40 × 0.12 × 0.05 mm
β = 76.88 (5)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.051
4892 measured reflections3 standard reflections every 150 reflections
3992 independent reflections intensity decay: 0.1%
2316 reflections with F2 > 2σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.01Δρmax = 0.65 e Å3
3992 reflectionsΔρmin = 0.57 e Å3
254 parameters
Special details top

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.19340 (16)0.01726 (12)0.42044 (7)0.0251 (3)
Cl20.99842 (15)0.61336 (11)0.33214 (7)0.0209 (3)
O11.0166 (5)0.0798 (3)0.22817 (19)0.0202 (7)
O20.7994 (4)0.0183 (4)0.07181 (19)0.0199 (6)
O30.8243 (5)0.5545 (4)0.10106 (19)0.0244 (7)
N10.5085 (5)0.3295 (4)0.1019 (3)0.0175 (7)
N20.6723 (5)0.3817 (4)0.0846 (2)0.0140 (7)
C10.9146 (6)0.1862 (5)0.1837 (3)0.0145 (8)
C21.0070 (6)0.0793 (5)0.2486 (3)0.0155 (8)
C31.0896 (6)0.1441 (5)0.3387 (3)0.0162 (8)
C41.0860 (6)0.3057 (5)0.3643 (3)0.0189 (9)
C50.9990 (6)0.4094 (5)0.2991 (3)0.0161 (8)
C60.9122 (6)0.3522 (5)0.2108 (3)0.0149 (8)
C70.8156 (6)0.1231 (5)0.0911 (3)0.0158 (8)
C80.7275 (6)0.2275 (5)0.0197 (3)0.0145 (8)
C90.5447 (6)0.2354 (5)0.0396 (3)0.0177 (8)
C100.8039 (6)0.3241 (5)0.0109 (3)0.0169 (8)
C110.7010 (6)0.4863 (5)0.1363 (3)0.0167 (8)
C120.5799 (6)0.4989 (5)0.2304 (3)0.0138 (8)
C130.5421 (6)0.3616 (5)0.2882 (3)0.0154 (8)
C140.4469 (6)0.3640 (5)0.3814 (3)0.0173 (8)
C150.3854 (6)0.5064 (5)0.4145 (3)0.0162 (8)
C160.3530 (6)0.8001 (5)0.3932 (3)0.0170 (8)
C170.3845 (7)0.9404 (5)0.3393 (3)0.0236 (10)
C180.4877 (6)0.9396 (5)0.2466 (3)0.0208 (9)
C190.5538 (6)0.8003 (5)0.2102 (3)0.0188 (9)
C200.4198 (6)0.6516 (5)0.3576 (3)0.0148 (8)
C210.5229 (6)0.6510 (5)0.2634 (3)0.0135 (8)
H11.14220.34690.42590.0227*
H20.85000.42480.16780.0179*
H30.93940.09830.17840.0243*
H40.45800.17920.03490.0212*
H50.92520.34660.01440.0203*
H60.58120.26260.26490.0185*
H70.42550.26660.42110.0207*
H80.31800.50810.47710.0195*
H90.28530.80050.45570.0203*
H100.33751.03890.36370.0284*
H110.51121.03790.20910.0250*
H120.62240.80320.14770.0225*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0301 (6)0.0222 (5)0.0197 (5)0.0007 (5)0.0007 (5)0.0105 (4)
Cl20.0231 (6)0.0147 (5)0.0260 (6)0.0075 (4)0.0069 (4)0.0004 (4)
O10.0260 (17)0.0121 (13)0.0198 (15)0.0047 (12)0.0005 (12)0.0030 (11)
O20.0243 (15)0.0159 (13)0.0207 (15)0.0067 (12)0.0036 (12)0.0044 (11)
O30.0242 (16)0.0317 (16)0.0237 (16)0.0160 (14)0.0035 (13)0.0125 (13)
N10.0177 (17)0.0212 (17)0.0156 (16)0.0079 (14)0.0031 (13)0.0039 (13)
N20.0146 (16)0.0147 (15)0.0137 (16)0.0051 (13)0.0026 (13)0.0033 (13)
C10.0121 (18)0.0147 (18)0.0162 (19)0.0013 (15)0.0060 (15)0.0018 (15)
C20.016 (2)0.0129 (17)0.0175 (19)0.0015 (15)0.0056 (16)0.0042 (15)
C30.016 (2)0.0175 (19)0.0137 (19)0.0011 (16)0.0035 (15)0.0051 (15)
C40.0142 (19)0.024 (2)0.016 (2)0.0042 (16)0.0032 (16)0.0018 (16)
C50.0149 (19)0.0113 (17)0.023 (2)0.0023 (15)0.0079 (16)0.0023 (15)
C60.0164 (19)0.0145 (18)0.0146 (18)0.0024 (15)0.0028 (15)0.0066 (15)
C70.017 (2)0.0129 (17)0.018 (2)0.0024 (15)0.0078 (16)0.0023 (15)
C80.0158 (19)0.0128 (17)0.0157 (19)0.0043 (15)0.0052 (15)0.0013 (14)
C90.022 (2)0.0170 (19)0.0165 (19)0.0064 (16)0.0062 (16)0.0037 (15)
C100.0140 (19)0.0203 (19)0.0146 (19)0.0029 (16)0.0022 (15)0.0029 (15)
C110.014 (2)0.0187 (19)0.0161 (19)0.0055 (16)0.0016 (15)0.0010 (15)
C120.0123 (18)0.0177 (18)0.0119 (18)0.0040 (15)0.0044 (14)0.0021 (14)
C130.0137 (19)0.0167 (18)0.0176 (19)0.0016 (15)0.0064 (15)0.0067 (15)
C140.016 (2)0.0159 (18)0.019 (2)0.0054 (16)0.0072 (16)0.0027 (15)
C150.016 (2)0.0204 (19)0.0116 (18)0.0051 (16)0.0019 (15)0.0025 (15)
C160.017 (2)0.0195 (19)0.0165 (19)0.0029 (16)0.0046 (16)0.0080 (16)
C170.033 (3)0.0147 (19)0.026 (3)0.0036 (18)0.0139 (19)0.0059 (17)
C180.026 (3)0.0180 (19)0.022 (2)0.0077 (17)0.0117 (18)0.0009 (16)
C190.023 (3)0.021 (2)0.0137 (19)0.0076 (17)0.0084 (16)0.0004 (16)
C200.0135 (19)0.0136 (18)0.0161 (19)0.0006 (15)0.0065 (15)0.0016 (14)
C210.0138 (19)0.0136 (17)0.0142 (18)0.0030 (15)0.0056 (15)0.0026 (14)
Geometric parameters (Å, º) top
Cl1—C31.731 (5)C13—C141.405 (6)
Cl2—C51.738 (4)C14—C151.360 (6)
O1—C21.338 (5)C15—C201.411 (6)
O2—C71.245 (5)C16—C171.354 (6)
O3—C111.203 (6)C16—C201.425 (6)
N1—N21.376 (6)C17—C181.415 (6)
N1—C91.319 (6)C18—C191.360 (7)
N2—C101.364 (5)C19—C211.415 (6)
N2—C111.428 (7)C20—C211.433 (5)
C1—C21.417 (6)O1—H30.840
C1—C61.411 (6)C4—H10.950
C1—C71.471 (5)C6—H20.950
C2—C31.402 (5)C9—H40.950
C3—C41.371 (6)C10—H50.950
C4—C51.398 (6)C13—H60.950
C5—C61.373 (5)C14—H70.950
C7—C81.473 (6)C15—H80.950
C8—C91.419 (6)C16—H90.950
C8—C101.368 (7)C17—H100.950
C11—C121.484 (5)C18—H110.950
C12—C131.368 (6)C19—H120.950
C12—C211.439 (6)
N2—N1—C9104.0 (3)C14—C15—C20121.2 (4)
N1—N2—C10112.0 (4)C17—C16—C20121.1 (4)
N1—N2—C11124.3 (3)C16—C17—C18119.6 (4)
C10—N2—C11123.7 (4)C17—C18—C19120.9 (4)
C2—C1—C6119.3 (4)C18—C19—C21121.6 (4)
C2—C1—C7119.1 (4)C15—C20—C16120.5 (4)
C6—C1—C7121.5 (4)C15—C20—C21120.2 (4)
O1—C2—C1123.0 (4)C16—C20—C21119.3 (4)
O1—C2—C3118.6 (4)C12—C21—C19125.9 (4)
C1—C2—C3118.3 (4)C12—C21—C20116.6 (4)
Cl1—C3—C2118.9 (3)C19—C21—C20117.4 (4)
Cl1—C3—C4119.3 (3)C2—O1—H3109.475
C2—C3—C4121.8 (4)C3—C4—H1120.231
C3—C4—C5119.5 (4)C5—C4—H1120.248
Cl2—C5—C4119.0 (3)C1—C6—H2119.839
Cl2—C5—C6120.4 (3)C5—C6—H2119.826
C4—C5—C6120.6 (4)N1—C9—H4123.764
C1—C6—C5120.3 (4)C8—C9—H4123.759
O2—C7—C1121.0 (4)N2—C10—H5126.593
O2—C7—C8118.2 (4)C8—C10—H5126.577
C1—C7—C8120.8 (4)C12—C13—H6119.300
C7—C8—C9125.3 (5)C14—C13—H6119.300
C7—C8—C10129.8 (4)C13—C14—H7120.180
C9—C8—C10104.7 (4)C15—C14—H7120.174
N1—C9—C8112.5 (5)C14—C15—H8119.408
N2—C10—C8106.8 (4)C20—C15—H8119.412
O3—C11—N2117.3 (4)C17—C16—H9119.434
O3—C11—C12125.1 (5)C20—C16—H9119.430
N2—C11—C12117.5 (4)C16—C17—H10120.195
C11—C12—C13119.5 (4)C18—C17—H10120.201
C11—C12—C21119.3 (4)C17—C18—H11119.540
C13—C12—C21120.8 (4)C19—C18—H11119.536
C12—C13—C14121.4 (4)C18—C19—H12119.210
C13—C14—C15119.6 (4)C21—C19—H12119.207
H3—O1—C2—C113.1C9—C8—C10—H5179.2
H3—O1—C2—C3165.9C10—C8—C9—N10.3 (4)
N2—N1—C9—C81.2 (4)C10—C8—C9—H4179.7
N2—N1—C9—H4178.8O3—C11—C12—C13139.1 (4)
C9—N1—N2—C101.8 (4)O3—C11—C12—C2133.9 (6)
C9—N1—N2—C11179.2 (3)N2—C11—C12—C1339.3 (5)
N1—N2—C10—C81.7 (4)N2—C11—C12—C21147.7 (3)
N1—N2—C10—H5178.3C11—C12—C13—C14172.9 (4)
N1—N2—C11—O3162.4 (3)C11—C12—C13—H67.1
N1—N2—C11—C1219.1 (5)C11—C12—C21—C197.2 (6)
C10—N2—C11—O316.5 (5)C11—C12—C21—C20175.0 (4)
C10—N2—C11—C12162.0 (3)C13—C12—C21—C19180.0 (4)
C11—N2—C10—C8179.3 (3)C13—C12—C21—C202.2 (6)
C11—N2—C10—H50.7C21—C12—C13—C140.0 (6)
C2—C1—C6—C50.3 (6)C21—C12—C13—H6180.0
C2—C1—C6—H2179.7C12—C13—C14—C151.9 (6)
C6—C1—C2—O1179.6 (4)C12—C13—C14—H7178.1
C6—C1—C2—C31.3 (6)H6—C13—C14—C15178.1
C2—C1—C7—O25.4 (6)H6—C13—C14—H71.9
C2—C1—C7—C8176.5 (4)C13—C14—C15—C201.6 (7)
C7—C1—C2—O13.1 (6)C13—C14—C15—H8178.4
C7—C1—C2—C3175.9 (4)H7—C14—C15—C20178.4
C6—C1—C7—O2171.7 (4)H7—C14—C15—H81.6
C6—C1—C7—C86.3 (6)C14—C15—C20—C16179.5 (4)
C7—C1—C6—C5177.4 (4)C14—C15—C20—C210.6 (6)
C7—C1—C6—H22.6H8—C15—C20—C160.5
O1—C2—C3—Cl11.9 (6)H8—C15—C20—C21179.4
O1—C2—C3—C4179.7 (4)C17—C16—C20—C15179.8 (4)
C1—C2—C3—Cl1177.2 (4)C17—C16—C20—C210.3 (7)
C1—C2—C3—C41.2 (7)C20—C16—C17—C180.9 (7)
Cl1—C3—C4—C5178.8 (3)C20—C16—C17—H10179.1
Cl1—C3—C4—H11.2H9—C16—C17—C18179.1
C2—C3—C4—C50.4 (7)H9—C16—C17—H100.9
C2—C3—C4—H1179.6H9—C16—C20—C150.2
C3—C4—C5—Cl2179.2 (4)H9—C16—C20—C21179.7
C3—C4—C5—C62.0 (7)C16—C17—C18—C190.8 (7)
H1—C4—C5—Cl20.8C16—C17—C18—H11179.2
H1—C4—C5—C6178.0H10—C17—C18—C19179.2
Cl2—C5—C6—C1179.3 (3)H10—C17—C18—H110.8
Cl2—C5—C6—H20.7C17—C18—C19—C210.2 (7)
C4—C5—C6—C11.9 (7)C17—C18—C19—H12179.8
C4—C5—C6—H2178.1H11—C18—C19—C21179.8
O2—C7—C8—C939.3 (6)H11—C18—C19—H120.2
O2—C7—C8—C10134.1 (4)C18—C19—C21—C12177.4 (4)
C1—C7—C8—C9138.8 (4)C18—C19—C21—C200.4 (7)
C1—C7—C8—C1047.8 (6)H12—C19—C21—C122.6
C7—C8—C9—N1175.1 (3)H12—C19—C21—C20179.6
C7—C8—C9—H44.9C15—C20—C21—C122.5 (6)
C7—C8—C10—N2173.6 (3)C15—C20—C21—C19179.6 (4)
C7—C8—C10—H56.4C16—C20—C21—C12177.7 (4)
C9—C8—C10—N20.8 (4)C16—C20—C21—C190.3 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O20.841.842.570 (4)144
C10—H5···O3i0.952.293.219 (6)166
Symmetry code: (i) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H3···O20.841.842.570 (4)144
C10—H5···O3i0.952.293.219 (6)166
Symmetry code: (i) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC21H12Cl2N2O3
Mr411.24
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.342 (7), 8.807 (4), 14.861 (5)
α, β, γ (°)75.49 (3), 76.88 (5), 70.51 (5)
V3)866.1 (9)
Z2
Radiation typeMo Kα
µ (mm1)0.40
Crystal size (mm)0.40 × 0.12 × 0.05
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > 2σ(F2)] reflections
4892, 3992, 2316
Rint0.051
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.163, 1.01
No. of reflections3992
No. of parameters254
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.57

Computer programs: WinAFC (Rigaku, 1999), SIR2008 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

We acknowledge the University of Shizuoka for instrumental support and Professor Kei Manabe (University of Shizuoka) for helpful discussions.

References

First citationAli, T. E. S., Ibrahim, M. A., El-Gohary, N. M. & El–Kazak, A. M. (2013). Eur. J. Chem. 4, 311–328.  CrossRef Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaspar, A., Matos, M. J., Garrido, J., Uriarte, E. & Borges, F. (2014). Chem. Rev. 114, 4960–4992.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationIshikawa, Y. (2014). Acta Cryst. E70, o439.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Motohashi, Y. (2014). Acta Cryst. E70, o1033.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014a). Acta Cryst. E70, o472.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014b). Acta Cryst. E70, o565.  CSD CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014c). Acta Cryst. E70, o784.  CrossRef IUCr Journals Google Scholar
First citationIshikawa, Y. & Watanabe, K. (2014d). Acta Cryst. E70, o832.  CSD CrossRef IUCr Journals Google Scholar
First citationKhan, K. M., Ambreen, N., Hussain, S., Perveen, S. & Iqbal Choudhary, M. (2009). Bioorg. Med. Chem. 17, 2983–2988.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNawrot-Modranka, J., Nawrot, E. & Graczyk, J. (2006). Eur. J. Med. Chem. 41, 1301–1309.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (1999). WinAFC Diffractometer Control Software. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTu, Q. D., Li, D., Sun, Y., Han, X. Y., Yi, F., Sha, Y., Ren, Y. L., Ding, M. W., Feng, L. L. & Wan, J. (2013). Bioorg. Med. Chem. 21, 2826–2831.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWang, B.-D., Yang, Z.-Y., Qin, D.-D. & Chen, Z.-N. (2008). J. Photochem. Photobiol. Chem. 194, 49–58.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds