research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tin(II) perchlorate trihydrate

aTU Bergakademie Freiberg, Institute of Inorganic Chemistry, Leipziger Strasse 29, D-09596 Freiberg, Germany
*Correspondence e-mail: Horst.Schmidt@chemie.tu-freiberg.de

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 October 2014; accepted 4 November 2014; online 12 November 2014)

The title compound, [Sn(H2O)3](ClO4)2, was synthesized by the redox reaction of copper(II) perchlorate hexa­hydrate and metallic tin in perchloric acid. Both the trigonal–pyramidal [Sn(H2O)3]2+ cations and tetra­hedral perchlorate anions lie on crystallographic threefold axes. In the crystal, the cations are linked to the anions by O—H⋯O hydrogen bonds, generating (001) sheets.

1. Chemical context

The synthesis and powder diffraction data for tin(II) perchlorate trihydrate were described by Davies & Donaldson (1968[Davies, G. C. & Donaldson, J. D. (1968). J. Inorg. Nucl. Chem. 30, 2635-2639.]) and Schiefelbein & Daugherty (1970[Schiefelbein, B. & Daugherty, N. A. (1970). Inorg. Chem. 9, 1716-1719.]). With our crystal structure determination, the data of Davies & Donaldson (1968[Davies, G. C. & Donaldson, J. D. (1968). J. Inorg. Nucl. Chem. 30, 2635-2639.]) are confirmed. The inter­est in the system tin(II)–perchloric acid-water arose from the redetermination of the redox-potential Sn2+/Sn4+ in perchloric acid by Gajda et al. (2009[Gajda, T., Sipos, P. & Gamsjäger, H. (2009). Monatsh. Chem. 140, 1293-1303.]). There is no solid–liquid diagram for this binary salt–water system known in the literature.

2. Structural commentary

The tin atom lies on a crystallographic threefold rotation axis and is coordinated by three water mol­ecules as a trigonal pyramid (Fig. 1[link], Table 1[link]). The perchlorate tetra­hedra are located in the gaps between the SnO3 pyramids on their own threefold axes. A similar arrangement of the perchlorate tetra­hedra can be observed in the crystal structure of Ba(ClO4)2·3H2O (Gallucci & Gerkin, 1988[Gallucci, J. C. & Gerkin, R. E. (1988). Acta Cryst. C44, 1873-1876.]). The difference between the two structures is that the barium atom is sixfold coordinated by oxygen water mol­ecules. All of them are shared between two barium atoms, so that an average of three are bonded to one Ba atom.

Table 1
Selected geometric parameters (Å, °)

Sn1—O2 2.201 (7) Cl2—O1 1.424 (12)
Cl1—O4 1.430 (4) Cl2—O3 1.426 (5)
Cl1—O5 1.449 (10)    
       
O2i—Sn1—O2 76.9 (3)    
Symmetry code: (i) -y, x-y, z.
[Figure 1]
Figure 1
The component ions in tin(II) perchlorate trihydrate with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) −x + y, −x, z; (ii) −y, x − y, z; (iii) 1 − x + y, 1 − x, z; (iv) 1 − y, x − y, z; (v) 1 − y, 1 + x − y, z; (vi) −x + y, 1 − x, z.]

3. Supra­molecular features

The different coordination of Sn2+ in comparison with Ba2+ is caused by the lone-pair effect. It requires more space, so the distance to the next oxygen atoms is larger than in the barium salt structure. The perchlorate tetra­hedra are connected by O—H⋯O hydrogen bonds (Table 2[link]) with the water mol­ecules coordinated at the tin atoms (Figs. 2[link] and 3[link]), forming sheets parallel to (001).

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4ii 0.94 (7) 1.95 (8) 2.823 (8) 152 (7)
O2—H2⋯O3iii 0.94 (7) 2.46 (8) 2.926 (8) 110 (6)
Symmetry codes: (ii) [-x+1, -y+1, z+{\script{1\over 2}}]; (iii) -x+y, -x+1, z+1.
[Figure 2]
Figure 2
The unit-cell packing in tin(II) perchlorate trihydrate with the ions shown in polyhedral representation.
[Figure 3]
Figure 3
Larger view of the crystal structure of tin(II) perchlorate trihydrate viewed down [001]. Dashed lines indicate hydrogen bonds.

4. Database survey

For properties, thermal behavior and powder diffraction data for tin(II) perchlorate trihydrate, see: Schiefelbein & Daugherty (1970[Schiefelbein, B. & Daugherty, N. A. (1970). Inorg. Chem. 9, 1716-1719.]) and Davies & Donaldson (1968[Davies, G. C. & Donaldson, J. D. (1968). J. Inorg. Nucl. Chem. 30, 2635-2639.]). For crystal structure determinations of other divalent perchlorate trihydrates, see: Gallucci & Gerkin (1988[Gallucci, J. C. & Gerkin, R. E. (1988). Acta Cryst. C44, 1873-1876.]) for the barium salt and Hennings et al. (2014[Hennings, E., Schmidt, H. & Voigt, W. (2014). Acta Cryst. E70, 510-514.]) for the strontium salt.

5. Synthesis and crystallization

Sn(ClO4)2·3H2O was prepared by reaction of copper(II) perchlorate hexa­hydrate (15 g, Alfa Aesar, reagent grade) and elemental tin (12.04 g, VEB Feinchemikalien) in perchloric acid (50 ml, 60%, Merck, pA). After stirring the solution for 2 h the precipitated copper was filtered off and the solution was transferred into a freezer at 253 K for crystallization. All crystals are stable in the saturated aqueous solution over a period of at least four weeks.

The sample was stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The H atoms were placed in the positions indicated by difference Fourier maps. No further constraints were applied.

Table 3
Experimental details

Crystal data
Chemical formula [Sn(H2O)3](ClO4)2
Mr 371.44
Crystal system, space group Hexagonal, P63
Temperature (K) 180
a, c (Å) 7.0701 (10), 9.7631 (15)
V3) 422.64 (16)
Z 2
Radiation type Mo Kα
μ (mm−1) 3.70
Crystal size (mm) 0.70 × 0.52 × 0.22
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Integration (Coppens, 1970[Coppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255-270. Copenhagen: Munksgaard.])
Tmin, Tmax 0.116, 0.441
No. of measured, independent and observed [I > 2σ(I)] reflections 792, 788, 742
Rint 0.152
(sin θ/λ)max−1) 0.689
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.08
No. of reflections 792
No. of parameters 52
No. of restraints 1
H-atom treatment All H-atom parameters refined
Δρmax, Δρmin (e Å−3) 0.85, −0.90
Absolute structure Classical Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]) method preferred over Parsons & Flack (2004[Parsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.]) because s.u. lower
Absolute structure parameter −0.04 (14)
Computer programs: X-AREA and X-RED (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]), SHELXS97 and SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The synthesis and powder diffraction data for tin(II) perchlorate trihydrate were described by Davies et al. (1968) and Schiefelbein et al. (1970). With our crystal structure determination, the data of Davies et al. (1968) are confirmed. The inter­est in the system tin(II)–perchloric acid-water arose from the redetermination of the redox-potential Sn2+/Sn4+ in perchloric acid by Gajda et al. (2009). There is no solid–liquid diagram for this binary salt–water system known in the literature.

Structural commentary top

The tin atom lies on a crystallographic threefold rotation axis and is coordinated by three water molecules as a trigonal pyramid (Fig. 1, Table 1). The perchlorate tetra­hedra are located in the gaps between the SnO3 pyramids on their own threefold axes. A similar arrangement of the perchlorate tetra­hedra can be observed in the crystal structure of Ba(ClO4)2·3H2O (Gallucci et al., 1988). The difference between the two structures is that the barium atom is sixfold coordinated by oxygen water molecules. All of them are shared between two barium atoms, so that an average of three are bonded to one Ba atom.

Supra­molecular features top

The different coordination of Sn2+ is caused by the lone-pair effect. It requires more space, so the distance to the next oxygen atoms is larger than in the barium salt structure. The perchlorate tetra­hedra are connected by O—H···O hydrogen bonds (Table 2) with the water molecules coordinated at the tin atoms (Figs. 2 and 3)

Database survey top

For properties, thermal behavior and powder diffraction data for tin(II) perchlorate trihydrate, see Schiefelbein et al. (1970) and Davies et al. (1968). For crystal structure determinations of divalent perchlorate trihydrates, see Gallucci et al. (1988) and Hennings et al. (2014).

Synthesis and crystallization top

Sn(ClO4)2·3H2O was prepared by reaction of copper(II) perchlorate hexahydrate (15 g, Alfa Aesar, reagent grade) and elemental tin (12.04 g, VEB Feinchemikalien) in perchloric acid (50 ml, 60%, Merck, pA). After stirring the solution for 2 hours the precipitated copper was filtered off and the solution was transferred into a freezer at 253 K for crystallization. All crystals are stable in the saturated aqueous solution over a period of at least four weeks.

The sample was stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3.

Related literature top

For related literature, see: Davies & &Donaldson (1968); Gajda et al. (2009); Gallucci & &Gerkin (1988); Hennings et al. (2014); Schiefelbein & &Daugherty (1970).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA (Stoe & Cie, 2009); data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The component ions in (I) with displacement ellipsoids drawn at the 50% probability level. Symmetry codes: (i) -x+y, -x, z; (ii) -y, x-y, z; (iii) 1-x+y, 1-x, z; (iv) 1-y, x-y, z; (v) 1-y, 1+x-y, z; (vi) -x+y, 1-x, z.

The unit-cell packing in (I) with the ions shown in polyhedral representation.

Larger view of the crystal structure of (I) viewed down [001]. Dashed lines indicate hydrogen bonds.
Tin(II) perchlorate trihydrate top
Crystal data top
[Sn(H2O)3](ClO4)2Dx = 2.919 Mg m3
Mr = 371.44Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P63Cell parameters from 14633 reflections
a = 7.0701 (10) Åθ = 2.1–29.6°
c = 9.7631 (15) ŵ = 3.70 mm1
V = 422.64 (16) Å3T = 180 K
Z = 2Prism, colourless
F(000) = 355.80.70 × 0.52 × 0.22 mm
Data collection top
STOE IPDS 2
diffractometer
788 independent reflections
Radiation source: fine-focus sealed tube742 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1Rint = 0.152
rotation method scansθmax = 29.3°, θmin = 3.3°
Absorption correction: integration
(Coppens, 1970)
h = 79
Tmin = 0.116, Tmax = 0.441k = 09
792 measured reflectionsl = 1313
Refinement top
Refinement on F2All H-atom parameters refined
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0771P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.036(Δ/σ)max < 0.001
wR(F2) = 0.093Δρmax = 0.85 e Å3
S = 1.08Δρmin = 0.90 e Å3
792 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
52 parametersExtinction coefficient: 0.62 (5)
1 restraintAbsolute structure: Classical Flack (1983) method preferred over Parsons & Flack (2004) because s.u. lower.
Hydrogen site location: difference Fourier mapAbsolute structure parameter: 0.04 (14)
Crystal data top
[Sn(H2O)3](ClO4)2Z = 2
Mr = 371.44Mo Kα radiation
Hexagonal, P63µ = 3.70 mm1
a = 7.0701 (10) ÅT = 180 K
c = 9.7631 (15) Å0.70 × 0.52 × 0.22 mm
V = 422.64 (16) Å3
Data collection top
STOE IPDS 2
diffractometer
788 independent reflections
Absorption correction: integration
(Coppens, 1970)
742 reflections with I > 2σ(I)
Tmin = 0.116, Tmax = 0.441Rint = 0.152
792 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.093Δρmax = 0.85 e Å3
S = 1.08Δρmin = 0.90 e Å3
792 reflectionsAbsolute structure: Classical Flack (1983) method preferred over Parsons & Flack (2004) because s.u. lower.
52 parametersAbsolute structure parameter: 0.04 (14)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn10.00000.00000.9724 (6)0.0280 (4)
O20.2529 (5)0.1712 (6)0.8156 (8)0.0239 (8)
O30.5340 (6)0.6895 (7)0.0288 (9)0.0311 (10)
Cl10.66670.33330.0921 (2)0.0182 (5)
Cl20.33330.66670.0195 (3)0.0197 (5)
O10.33330.66670.1653 (12)0.0295 (18)
O40.8132 (6)0.5490 (7)0.1408 (7)0.0280 (10)
O50.66670.33330.0564 (10)0.0204 (16)
H10.386 (19)0.209 (16)0.83 (2)0.06 (3)*
H20.246 (11)0.293 (10)0.783 (8)0.017 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.0337 (4)0.0337 (4)0.0164 (5)0.0169 (2)0.0000.000
O20.0197 (15)0.0232 (14)0.030 (2)0.0113 (12)0.0002 (19)0.001 (2)
O30.0264 (16)0.0359 (18)0.034 (2)0.0178 (15)0.009 (3)0.005 (3)
Cl10.0200 (7)0.0200 (7)0.0146 (12)0.0100 (3)0.0000.000
Cl20.0202 (7)0.0202 (7)0.0187 (13)0.0101 (3)0.0000.000
O10.038 (3)0.038 (3)0.013 (5)0.0190 (15)0.0000.000
O40.0301 (18)0.0236 (17)0.028 (2)0.0118 (14)0.003 (2)0.010 (2)
O50.023 (2)0.023 (2)0.016 (4)0.0114 (11)0.0000.000
Geometric parameters (Å, º) top
Sn1—O2i2.201 (7)Cl1—O51.449 (10)
Sn1—O2ii2.201 (7)Cl2—O11.424 (12)
Sn1—O22.201 (7)Cl2—O3v1.426 (5)
Cl1—O41.430 (4)Cl2—O3vi1.426 (5)
Cl1—O4iii1.430 (4)Cl2—O31.426 (5)
Cl1—O4iv1.430 (4)
O2i—Sn1—O2ii76.9 (3)O4iv—Cl1—O5109.4 (3)
O2i—Sn1—O276.9 (3)O1—Cl2—O3v109.3 (4)
O2ii—Sn1—O276.9 (3)O1—Cl2—O3vi109.3 (4)
O4—Cl1—O4iii109.5 (3)O3v—Cl2—O3vi109.6 (4)
O4—Cl1—O4iv109.5 (3)O1—Cl2—O3109.3 (4)
O4iii—Cl1—O4iv109.5 (3)O3v—Cl2—O3109.6 (4)
O4—Cl1—O5109.4 (3)O3vi—Cl2—O3109.6 (4)
O4iii—Cl1—O5109.4 (3)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z; (iii) x+y+1, x+1, z; (iv) y+1, xy, z; (v) y+1, xy+1, z; (vi) x+y, x+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4vii0.94 (7)1.95 (8)2.823 (8)152 (7)
O2—H2···O3viii0.94 (7)2.46 (8)2.926 (8)110 (6)
Symmetry codes: (vii) x+1, y+1, z+1/2; (viii) x+y, x+1, z+1.
Selected geometric parameters (Å, º) top
Sn1—O22.201 (7)Cl2—O11.424 (12)
Cl1—O41.430 (4)Cl2—O31.426 (5)
Cl1—O51.449 (10)
O2i—Sn1—O276.9 (3)
Symmetry code: (i) y, xy, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O4ii0.94 (7)1.95 (8)2.823 (8)152 (7)
O2—H2···O3iii0.94 (7)2.46 (8)2.926 (8)110 (6)
Symmetry codes: (ii) x+1, y+1, z+1/2; (iii) x+y, x+1, z+1.

Experimental details

Crystal data
Chemical formula[Sn(H2O)3](ClO4)2
Mr371.44
Crystal system, space groupHexagonal, P63
Temperature (K)180
a, c (Å)7.0701 (10), 9.7631 (15)
V3)422.64 (16)
Z2
Radiation typeMo Kα
µ (mm1)3.70
Crystal size (mm)0.70 × 0.52 × 0.22
Data collection
DiffractometerSTOE IPDS 2
diffractometer
Absorption correctionIntegration
(Coppens, 1970)
Tmin, Tmax0.116, 0.441
No. of measured, independent and
observed [I > 2σ(I)] reflections
792, 788, 742
Rint0.152
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.093, 1.08
No. of reflections792
No. of parameters52
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.85, 0.90
Absolute structureClassical Flack (1983) method preferred over Parsons & Flack (2004) because s.u. lower.
Absolute structure parameter0.04 (14)

Computer programs: X-AREA (Stoe & Cie, 2009), X-RED (Stoe & Cie, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

 

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationCoppens, P. (1970). In Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.  Google Scholar
First citationDavies, G. C. & Donaldson, J. D. (1968). J. Inorg. Nucl. Chem. 30, 2635–2639.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGajda, T., Sipos, P. & Gamsjäger, H. (2009). Monatsh. Chem. 140, 1293–1303.  Web of Science CrossRef CAS Google Scholar
First citationGallucci, J. C. & Gerkin, R. E. (1988). Acta Cryst. C44, 1873–1876.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHennings, E., Schmidt, H. & Voigt, W. (2014). Acta Cryst. E70, 510–514.  CSD CrossRef IUCr Journals Google Scholar
First citationParsons, S. & Flack, H. (2004). Acta Cryst. A60, s61.  CrossRef IUCr Journals Google Scholar
First citationSchiefelbein, B. & Daugherty, N. A. (1970). Inorg. Chem. 9, 1716–1719.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds