organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 1-(2,4-di­methyl­phen­yl)-2-(4-tri­methyl­silyl-1H-1,2,3-triazol-1-yl)ethanone

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, India
*Correspondence e-mail: noorsb@rediffmail.com, noorsb05@gmail.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 28 October 2014; accepted 5 November 2014; online 12 November 2014)

The asymmetric unit of the title compound, C15H21N3OSi, contains two mol­ecules with similar conformations (r.m.s. overlay fit for the 20 non-H atoms = 0.163 Å). The dihedral angles between the planes of the 1,2,3-triazole and 2,4-di­methyl­benzene rings are 27.0 (3) and 19.5 (3)°. In the crystal, mol­ecules are linked by very weak C—H⋯O and C—H⋯N hydrogen bonds to generate [100] chains. The chains are cross-linked by C—H⋯π inter­actions.

1. Related literature

For related structures and background to the reactions and properties of triazole derivatives, see: Begum et al. (2004[Begum, N. S., Girija, C. R. & Nagendrappa, G. (2004). CrystEngComm, 6, 116-119.]); Islor et al. (2012[Islor, A. M., Garudachari, B., Shivananda, K. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3387-o3388.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H21N3OSi

  • Mr = 287.44

  • Triclinic, [P \overline 1]

  • a = 5.961 (3) Å

  • b = 13.374 (7) Å

  • c = 20.349 (11) Å

  • α = 79.034 (10)°

  • β = 84.831 (10)°

  • γ = 85.123 (10)°

  • V = 1582.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.15 mm−1

  • T = 100 K

  • 0.18 × 0.15 × 0.12 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]) Tmin = 0.974, Tmax = 0.977

  • 9496 measured reflections

  • 6652 independent reflections

  • 2630 reflections with I > 2σ(I)

  • Rint = 0.066

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.092

  • wR(F2) = 0.268

  • S = 1.03

  • 6652 reflections

  • 371 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.67 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C5B–C10B ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C11B—H11D⋯O1Bi 0.98 2.67 3.358 (5) 128
C2B—H2B1⋯N3Bi 0.99 2.66 3.418 (7) 134
C12B—H12FCg1ii 0.98 2.59 3.446 (4) 146
Symmetry codes: (i) x+1, y, z; (ii) -x-4, -y+4, -z-1.

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

The title compound crystallizes in the triclinic crystal system with space group P-1 containing two molecules in the asymmetric unit. The 1,2,3-triazole ring is planar and it is substituted with trimethylsilyl group at one end. The silicon atom has almost tetrahedral coordination with the Si—C distances having characteristic values of 1.848 Å on average. On the other hand, the ring is bridged with 2,4-dimethylbenzene ring through methylenecarbonyl group with a dihedral angle of 27.00 (2)°. The methylene bridged carbonyl group at N1B adopts cis configuration with respect to N1C3B bond because of intramolecular hydrogen bond between carbonyl group of ketone and methyl substituent at C6B along with C3B—H3B of triazole. This locks the molecular conformation and eliminates conformational flexibility. For crystal structure related to the title compound, see: Begum et al. (2004) & Islor et al. (2012).

The crystal structure of the compound features C—H···O and C—H···N interactions. Both C11B—H11D···O1B and C2B—H2B1···N3B interactions resulted in zigzag one dimensional chain (Figure 2). The crystal structure also features C—H···π interaction of the type C12B—H12F···Cg (Cg is the centroid of phenyl ring C5B–C10B) 2.59 Å (Table 1).

Related literature top

For related structures and background to the reactions and properties of triazole derivatives, see: Begum et al. (2004); Islor et al. (2012).

Experimental top

To a solution of 2-bromo-1-(2,4-dimethylphenyl)ethanone (1 mmol), sodium azide (1.5 mmol) and trimethylsilylacetylene (1.2 mmol) in 30 ml Acetone/H2O (1:1 v/v) was added Cu(OAc)2. H2O (15 mol%) and sodium ascorbate (30 mol%). The mixture was subjected to ultrasonication for 60 min at room temperature. After completion of the reaction, as indicated by TLC, the reaction mixture was extracted with ethyl acetate. The combined organic layer was washed with brine solution. The organic layer was dried over anhydrous Na2SO4. The solvent was removed in vacuo and the residue was purified by column chromatography to isolate the title compound. Colourless blocks were grown from ethyl acetate solution; Yield: 92%; m.p: 379–381 K; FT–IR (KBr, cm-1): 2960 (C—H), 1706 (CO), 1610 (CC), 1251 (Si—C); 1H NMR (400 MHz, DMSO-d6): δ 0.27 (s, 9H), 2.34 (s, 3H), 2.41 (s, 3H), 6.02 (s, 2H), 7.22–7.20 (d, J = 8.1 Hz, 2H), 7.95 (s, 1H), 8.07 (s, 1H); 13C NMR (400 MHz, CDCl3): δ -1.1, 21.4, 21.8, 56.0, 126.7, 129.1, 130.7, 130.8, 133.6, 140.5, 144.0, 146.8, 192.2; ESI–MS m/z: 288 [M+H]+.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.95, 0.98, and 0.99 Å for aryl, methyl, and methylene H-atoms respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other H atom.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Figure 1. ORTEP view of the title compound, showing 50% probability ellipsoids.

Figure 2. The unit cell packing of the title compound, showing C—H···O and C—H···N interactions. H-atoms not involved in hydrogen bonding have been excluded.
1-(2,4-Dimethylphenyl)-2-(4-trimethylsilyl-1H-1,2,3-triazol-1-yl)ethanone top
Crystal data top
C15H21N3OSiZ = 4
Mr = 287.44F(000) = 616
Triclinic, P1Dx = 1.206 Mg m3
a = 5.961 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 13.374 (7) Åθ = 1.0–27.0°
c = 20.349 (11) ŵ = 0.15 mm1
α = 79.034 (10)°T = 100 K
β = 84.831 (10)°Block, colorless
γ = 85.123 (10)°0.18 × 0.15 × 0.12 mm
V = 1582.5 (15) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
6652 independent reflections
Radiation source: fine-focus sealed tube2630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 27.0°, θmin = 1.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 77
Tmin = 0.974, Tmax = 0.977k = 1417
9496 measured reflectionsl = 2325
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.092Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0941P)2]
where P = (Fo2 + 2Fc2)/3
6652 reflections(Δ/σ)max = 0.004
371 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C15H21N3OSiγ = 85.123 (10)°
Mr = 287.44V = 1582.5 (15) Å3
Triclinic, P1Z = 4
a = 5.961 (3) ÅMo Kα radiation
b = 13.374 (7) ŵ = 0.15 mm1
c = 20.349 (11) ÅT = 100 K
α = 79.034 (10)°0.18 × 0.15 × 0.12 mm
β = 84.831 (10)°
Data collection top
Bruker SMART APEX CCD
diffractometer
6652 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
2630 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.977Rint = 0.066
9496 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0920 restraints
wR(F2) = 0.268H-atom parameters constrained
S = 1.03Δρmax = 0.59 e Å3
6652 reflectionsΔρmin = 0.67 e Å3
371 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Si1A0.6655 (3)0.63732 (13)0.37769 (8)0.0357 (5)
O1A1.1714 (7)0.8439 (3)0.1518 (2)0.0434 (11)
N1A0.8973 (9)0.8892 (4)0.2595 (2)0.0390 (13)
N2A0.6708 (9)0.9139 (4)0.2642 (2)0.0437 (14)
N3A0.5761 (8)0.8349 (4)0.3016 (2)0.0379 (13)
C1A1.1885 (9)0.9286 (5)0.1633 (3)0.0321 (14)
C2A1.0499 (11)0.9633 (5)0.2231 (3)0.0445 (17)
H2A11.15480.97810.25450.053*
H2A20.96061.02770.20670.053*
C3A0.9454 (9)0.7958 (4)0.2940 (3)0.0327 (14)
H3A1.09100.76140.29830.039*
C4A0.7423 (9)0.7585 (4)0.3223 (3)0.0308 (14)
C5A1.3451 (10)1.0026 (4)0.1252 (3)0.0304 (14)
C6A1.5553 (9)0.9695 (5)0.0966 (3)0.0315 (14)
C7A1.6955 (10)1.0443 (5)0.0638 (3)0.0383 (15)
H7A1.84011.02290.04560.046*
C8A1.6372 (10)1.1479 (5)0.0560 (3)0.0353 (15)
C9A1.4301 (10)1.1781 (5)0.0831 (3)0.0361 (15)
H9A1.38481.24880.07820.043*
C10A1.2854 (9)1.1069 (5)0.1177 (3)0.0342 (15)
H10A1.14311.12970.13660.041*
C11A1.6318 (10)0.8584 (4)0.1027 (3)0.0433 (16)
H11A1.79490.85140.09130.065*
H11B1.55290.82800.07190.065*
H11C1.59760.82310.14890.065*
C12A1.7946 (10)1.2257 (5)0.0189 (3)0.0488 (18)
H12A1.95111.19720.02200.073*
H12B1.77381.28730.03880.073*
H12C1.76131.24310.02840.073*
C13A0.9173 (10)0.5666 (5)0.4104 (3)0.0508 (18)
H13A1.02110.55060.37310.076*
H13B0.87560.50310.44000.076*
H13C0.99140.60800.43580.076*
C14A0.4733 (10)0.6683 (5)0.4500 (3)0.0448 (17)
H14A0.54550.71410.47260.067*
H14B0.44260.60520.48170.067*
H14C0.33120.70170.43350.067*
C15A0.5243 (10)0.5607 (5)0.3288 (3)0.0451 (17)
H15A0.39850.60230.30720.068*
H15B0.46680.50070.35890.068*
H15C0.63290.53870.29440.068*
Si1B2.0301 (3)1.48939 (13)0.13801 (8)0.0339 (5)
O1B2.6087 (7)1.6995 (3)0.3364 (2)0.0432 (11)
N1B2.3335 (8)1.7427 (4)0.2292 (2)0.0333 (12)
N2B2.1155 (8)1.7787 (4)0.2235 (2)0.0363 (12)
N3B1.9970 (8)1.7011 (4)0.1939 (2)0.0361 (12)
C1B2.6300 (10)1.7819 (5)0.3206 (3)0.0325 (14)
C2B2.5058 (9)1.8107 (4)0.2585 (3)0.0341 (15)
H2B12.61561.81090.22480.041*
H2B22.43511.88090.27000.041*
C3B2.3521 (9)1.6422 (4)0.2044 (3)0.0311 (14)
H3B2.48761.59930.20330.037*
C4B2.1414 (9)1.6127 (4)0.1812 (3)0.0296 (13)
C5B2.7930 (8)1.8559 (4)0.3571 (3)0.0277 (13)
C6B3.0050 (9)1.8236 (4)0.3865 (3)0.0320 (14)
C7B3.1501 (10)1.8981 (5)0.4176 (3)0.0361 (15)
H7B3.29411.87720.43640.043*
C8B3.0914 (10)2.0014 (5)0.4219 (3)0.0332 (14)
C9B2.8835 (10)2.0317 (5)0.3945 (3)0.0353 (15)
H9B2.83982.10240.39810.042*
C10B2.7368 (9)1.9601 (4)0.3617 (3)0.0322 (14)
H10B2.59561.98250.34190.039*
C11B3.0815 (10)1.7114 (4)0.3847 (3)0.0395 (16)
H11D3.23941.70580.40260.059*
H11E2.98691.68220.41220.059*
H11F3.06751.67420.33830.059*
C12B3.2525 (9)2.0802 (5)0.4572 (3)0.0377 (15)
H12D3.40092.06410.43920.056*
H12E3.19352.14820.44990.056*
H12F3.26712.07930.50550.056*
C13B2.2658 (10)1.4065 (5)0.1010 (3)0.0415 (16)
H13D2.37821.39200.13670.062*
H13E2.20931.34240.07590.062*
H13F2.33571.44100.07040.062*
C14B1.8129 (8)1.5216 (4)0.0720 (3)0.0342 (15)
H14D1.87881.56170.04400.051*
H14E1.76131.45850.04400.051*
H14F1.68461.56140.09330.051*
C15B1.8988 (10)1.4271 (5)0.1982 (3)0.0454 (17)
H15D1.80271.47800.22620.068*
H15E1.80731.37280.17320.068*
H15F2.01761.39780.22690.068*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Si1A0.0272 (9)0.0354 (11)0.0438 (10)0.0046 (8)0.0054 (8)0.0080 (8)
O1A0.040 (3)0.034 (3)0.058 (3)0.008 (2)0.009 (2)0.016 (2)
N1A0.044 (3)0.028 (3)0.041 (3)0.001 (2)0.016 (3)0.006 (2)
N2A0.040 (3)0.043 (4)0.042 (3)0.010 (3)0.002 (3)0.003 (3)
N3A0.026 (3)0.044 (3)0.039 (3)0.002 (2)0.011 (2)0.004 (3)
C1A0.026 (3)0.033 (4)0.036 (3)0.001 (3)0.004 (3)0.004 (3)
C2A0.054 (4)0.033 (4)0.043 (4)0.012 (3)0.014 (3)0.005 (3)
C3A0.023 (3)0.038 (4)0.034 (3)0.002 (3)0.016 (3)0.007 (3)
C4A0.024 (3)0.029 (3)0.038 (3)0.009 (3)0.004 (3)0.010 (3)
C5A0.030 (3)0.028 (4)0.032 (3)0.002 (3)0.003 (3)0.006 (3)
C6A0.021 (3)0.037 (4)0.035 (3)0.004 (3)0.002 (3)0.008 (3)
C7A0.021 (3)0.045 (4)0.048 (4)0.001 (3)0.002 (3)0.008 (3)
C8A0.030 (3)0.042 (4)0.033 (3)0.005 (3)0.007 (3)0.007 (3)
C9A0.035 (4)0.029 (4)0.041 (4)0.004 (3)0.006 (3)0.005 (3)
C10A0.023 (3)0.042 (4)0.034 (3)0.003 (3)0.008 (3)0.006 (3)
C11A0.033 (4)0.043 (4)0.055 (4)0.004 (3)0.003 (3)0.013 (3)
C12A0.035 (4)0.047 (4)0.065 (4)0.007 (3)0.004 (4)0.010 (4)
C13A0.039 (4)0.050 (5)0.058 (4)0.008 (3)0.003 (3)0.006 (3)
C14A0.034 (4)0.044 (4)0.056 (4)0.009 (3)0.013 (3)0.014 (3)
C15A0.022 (3)0.050 (4)0.064 (4)0.003 (3)0.005 (3)0.018 (4)
Si1B0.0269 (9)0.0306 (10)0.0421 (10)0.0004 (7)0.0058 (8)0.0065 (8)
O1B0.037 (3)0.038 (3)0.055 (3)0.004 (2)0.005 (2)0.013 (2)
N1B0.020 (3)0.037 (3)0.040 (3)0.002 (2)0.004 (2)0.004 (2)
N2B0.025 (3)0.029 (3)0.050 (3)0.003 (2)0.012 (2)0.003 (2)
N3B0.028 (3)0.029 (3)0.046 (3)0.000 (2)0.008 (2)0.001 (2)
C1B0.028 (3)0.030 (4)0.038 (3)0.000 (3)0.007 (3)0.002 (3)
C2B0.018 (3)0.038 (4)0.042 (3)0.004 (3)0.008 (3)0.002 (3)
C3B0.018 (3)0.039 (4)0.031 (3)0.001 (3)0.004 (3)0.002 (3)
C4B0.019 (3)0.031 (3)0.038 (3)0.006 (2)0.000 (3)0.007 (3)
C5B0.011 (3)0.035 (4)0.035 (3)0.002 (2)0.004 (2)0.003 (3)
C6B0.022 (3)0.036 (4)0.038 (3)0.001 (3)0.001 (3)0.007 (3)
C7B0.034 (4)0.036 (4)0.037 (3)0.000 (3)0.004 (3)0.004 (3)
C8B0.027 (3)0.041 (4)0.029 (3)0.002 (3)0.007 (3)0.005 (3)
C9B0.037 (4)0.030 (4)0.038 (3)0.004 (3)0.002 (3)0.005 (3)
C10B0.022 (3)0.031 (4)0.042 (3)0.001 (3)0.001 (3)0.005 (3)
C11B0.024 (3)0.044 (4)0.049 (4)0.002 (3)0.009 (3)0.012 (3)
C12B0.027 (3)0.043 (4)0.042 (4)0.010 (3)0.001 (3)0.004 (3)
C13B0.038 (4)0.036 (4)0.048 (4)0.004 (3)0.010 (3)0.006 (3)
C14B0.012 (3)0.037 (4)0.050 (4)0.001 (2)0.004 (3)0.003 (3)
C15B0.033 (4)0.041 (4)0.064 (4)0.004 (3)0.009 (3)0.019 (3)
Geometric parameters (Å, º) top
Si1A—C13A1.814 (6)Si1B—C13B1.839 (6)
Si1A—C15A1.853 (6)Si1B—C4B1.860 (6)
Si1A—C4A1.856 (6)Si1B—C14B1.864 (6)
Si1A—C14A1.870 (6)Si1B—C15B1.865 (6)
O1A—C1A1.214 (7)O1B—C1B1.224 (7)
N1A—C3A1.333 (7)N1B—C3B1.341 (7)
N1A—N2A1.362 (7)N1B—N2B1.350 (6)
N1A—C2A1.453 (7)N1B—C2B1.442 (6)
N2A—N3A1.317 (6)N2B—N3B1.322 (6)
N3A—C4A1.394 (7)N3B—C4B1.399 (7)
C1A—C5A1.478 (8)C1B—C5B1.493 (7)
C1A—C2A1.532 (8)C1B—C2B1.504 (8)
C2A—H2A10.9900C2B—H2B10.9900
C2A—H2A20.9900C2B—H2B20.9900
C3A—C4A1.383 (7)C3B—C4B1.365 (7)
C3A—H3A0.9500C3B—H3B0.9500
C5A—C10A1.394 (8)C5B—C10B1.393 (8)
C5A—C6A1.406 (8)C5B—C6B1.418 (7)
C6A—C7A1.390 (7)C6B—C7B1.397 (7)
C6A—C11A1.503 (8)C6B—C11B1.526 (8)
C7A—C8A1.383 (8)C7B—C8B1.384 (8)
C7A—H7A0.9500C7B—H7B0.9500
C8A—C9A1.367 (8)C8B—C9B1.374 (8)
C8A—C12A1.507 (8)C8B—C12B1.520 (7)
C9A—C10A1.385 (7)C9B—C10B1.387 (7)
C9A—H9A0.9500C9B—H9B0.9500
C10A—H10A0.9500C10B—H10B0.9500
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—H13A0.9800C13B—H13D0.9800
C13A—H13B0.9800C13B—H13E0.9800
C13A—H13C0.9800C13B—H13F0.9800
C14A—H14A0.9800C14B—H14D0.9800
C14A—H14B0.9800C14B—H14E0.9800
C14A—H14C0.9800C14B—H14F0.9800
C15A—H15A0.9800C15B—H15D0.9800
C15A—H15B0.9800C15B—H15E0.9800
C15A—H15C0.9800C15B—H15F0.9800
C13A—Si1A—C15A110.1 (3)C13B—Si1B—C4B108.2 (3)
C13A—Si1A—C4A109.8 (3)C13B—Si1B—C14B111.4 (3)
C15A—Si1A—C4A109.0 (3)C4B—Si1B—C14B106.0 (3)
C13A—Si1A—C14A108.4 (3)C13B—Si1B—C15B110.4 (3)
C15A—Si1A—C14A110.7 (3)C4B—Si1B—C15B110.8 (3)
C4A—Si1A—C14A108.7 (3)C14B—Si1B—C15B110.1 (3)
C3A—N1A—N2A110.8 (5)C3B—N1B—N2B110.0 (4)
C3A—N1A—C2A129.2 (5)C3B—N1B—C2B129.8 (5)
N2A—N1A—C2A120.0 (5)N2B—N1B—C2B120.2 (5)
N3A—N2A—N1A106.9 (5)N3B—N2B—N1B107.2 (5)
N2A—N3A—C4A109.6 (5)N2B—N3B—C4B109.4 (5)
O1A—C1A—C5A124.6 (6)O1B—C1B—C5B123.2 (6)
O1A—C1A—C2A119.9 (5)O1B—C1B—C2B121.2 (5)
C5A—C1A—C2A115.3 (5)C5B—C1B—C2B115.4 (5)
N1A—C2A—C1A114.0 (5)N1B—C2B—C1B113.2 (5)
N1A—C2A—H2A1108.7N1B—C2B—H2B1108.9
C1A—C2A—H2A1108.7C1B—C2B—H2B1108.9
N1A—C2A—H2A2108.7N1B—C2B—H2B2108.9
C1A—C2A—H2A2108.7C1B—C2B—H2B2108.9
H2A1—C2A—H2A2107.6H2B1—C2B—H2B2107.8
N1A—C3A—C4A106.8 (5)N1B—C3B—C4B107.8 (5)
N1A—C3A—H3A126.6N1B—C3B—H3B126.1
C4A—C3A—H3A126.6C4B—C3B—H3B126.1
C3A—C4A—N3A106.0 (5)C3B—C4B—N3B105.6 (5)
C3A—C4A—Si1A133.5 (5)C3B—C4B—Si1B133.8 (5)
N3A—C4A—Si1A120.5 (4)N3B—C4B—Si1B120.6 (4)
C10A—C5A—C6A119.1 (5)C10B—C5B—C6B118.8 (5)
C10A—C5A—C1A119.8 (5)C10B—C5B—C1B119.1 (5)
C6A—C5A—C1A121.1 (5)C6B—C5B—C1B122.2 (5)
C7A—C6A—C5A117.3 (5)C7B—C6B—C5B118.2 (6)
C7A—C6A—C11A120.5 (5)C7B—C6B—C11B118.9 (5)
C5A—C6A—C11A122.2 (5)C5B—C6B—C11B122.8 (5)
C8A—C7A—C6A124.0 (6)C8B—C7B—C6B122.3 (6)
C8A—C7A—H7A118.0C8B—C7B—H7B118.9
C6A—C7A—H7A118.0C6B—C7B—H7B118.9
C9A—C8A—C7A117.6 (5)C9B—C8B—C7B118.9 (5)
C9A—C8A—C12A120.7 (6)C9B—C8B—C12B120.4 (6)
C7A—C8A—C12A121.7 (6)C7B—C8B—C12B120.7 (5)
C8A—C9A—C10A120.9 (6)C8B—C9B—C10B120.6 (6)
C8A—C9A—H9A119.6C8B—C9B—H9B119.7
C10A—C9A—H9A119.6C10B—C9B—H9B119.7
C9A—C10A—C5A121.2 (6)C9B—C10B—C5B121.2 (6)
C9A—C10A—H10A119.4C9B—C10B—H10B119.4
C5A—C10A—H10A119.4C5B—C10B—H10B119.4
C6A—C11A—H11A109.5C6B—C11B—H11D109.5
C6A—C11A—H11B109.5C6B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C6A—C11A—H11C109.5C6B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C8A—C12A—H12A109.5C8B—C12B—H12D109.5
C8A—C12A—H12B109.5C8B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C8A—C12A—H12C109.5C8B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
Si1A—C13A—H13A109.5Si1B—C13B—H13D109.5
Si1A—C13A—H13B109.5Si1B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
Si1A—C13A—H13C109.5Si1B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
Si1A—C14A—H14A109.5Si1B—C14B—H14D109.5
Si1A—C14A—H14B109.5Si1B—C14B—H14E109.5
H14A—C14A—H14B109.5H14D—C14B—H14E109.5
Si1A—C14A—H14C109.5Si1B—C14B—H14F109.5
H14A—C14A—H14C109.5H14D—C14B—H14F109.5
H14B—C14A—H14C109.5H14E—C14B—H14F109.5
Si1A—C15A—H15A109.5Si1B—C15B—H15D109.5
Si1A—C15A—H15B109.5Si1B—C15B—H15E109.5
H15A—C15A—H15B109.5H15D—C15B—H15E109.5
Si1A—C15A—H15C109.5Si1B—C15B—H15F109.5
H15A—C15A—H15C109.5H15D—C15B—H15F109.5
H15B—C15A—H15C109.5H15E—C15B—H15F109.5
C3A—N1A—N2A—N3A0.4 (6)C3B—N1B—N2B—N3B1.1 (6)
C2A—N1A—N2A—N3A177.6 (5)C2B—N1B—N2B—N3B178.6 (5)
N1A—N2A—N3A—C4A0.8 (6)N1B—N2B—N3B—C4B0.8 (6)
C3A—N1A—C2A—C1A63.9 (8)C3B—N1B—C2B—C1B61.0 (8)
N2A—N1A—C2A—C1A119.6 (6)N2B—N1B—C2B—C1B119.3 (6)
O1A—C1A—C2A—N1A2.9 (8)O1B—C1B—C2B—N1B11.4 (8)
C5A—C1A—C2A—N1A179.9 (5)C5B—C1B—C2B—N1B173.7 (5)
N2A—N1A—C3A—C4A0.1 (7)N2B—N1B—C3B—C4B0.9 (6)
C2A—N1A—C3A—C4A176.7 (5)C2B—N1B—C3B—C4B178.8 (5)
N1A—C3A—C4A—N3A0.6 (6)N1B—C3B—C4B—N3B0.4 (6)
N1A—C3A—C4A—Si1A178.8 (4)N1B—C3B—C4B—Si1B177.6 (4)
N2A—N3A—C4A—C3A0.9 (6)N2B—N3B—C4B—C3B0.3 (6)
N2A—N3A—C4A—Si1A178.6 (4)N2B—N3B—C4B—Si1B178.6 (4)
C13A—Si1A—C4A—C3A11.9 (7)C13B—Si1B—C4B—C3B19.6 (7)
C15A—Si1A—C4A—C3A108.9 (6)C14B—Si1B—C4B—C3B139.1 (6)
C14A—Si1A—C4A—C3A130.3 (6)C15B—Si1B—C4B—C3B101.5 (6)
C13A—Si1A—C4A—N3A167.4 (5)C13B—Si1B—C4B—N3B158.2 (4)
C15A—Si1A—C4A—N3A71.8 (5)C14B—Si1B—C4B—N3B38.6 (5)
C14A—Si1A—C4A—N3A49.0 (5)C15B—Si1B—C4B—N3B80.7 (5)
O1A—C1A—C5A—C10A148.5 (6)O1B—C1B—C5B—C10B147.1 (6)
C2A—C1A—C5A—C10A34.4 (7)C2B—C1B—C5B—C10B38.1 (7)
O1A—C1A—C5A—C6A32.1 (9)O1B—C1B—C5B—C6B33.8 (9)
C2A—C1A—C5A—C6A144.9 (6)C2B—C1B—C5B—C6B140.9 (6)
C10A—C5A—C6A—C7A1.8 (8)C10B—C5B—C6B—C7B1.3 (8)
C1A—C5A—C6A—C7A177.6 (5)C1B—C5B—C6B—C7B177.8 (5)
C10A—C5A—C6A—C11A179.8 (5)C10B—C5B—C6B—C11B179.5 (5)
C1A—C5A—C6A—C11A0.4 (9)C1B—C5B—C6B—C11B1.5 (9)
C5A—C6A—C7A—C8A2.1 (9)C5B—C6B—C7B—C8B1.6 (8)
C11A—C6A—C7A—C8A179.9 (6)C11B—C6B—C7B—C8B179.1 (5)
C6A—C7A—C8A—C9A0.9 (9)C6B—C7B—C8B—C9B0.3 (9)
C6A—C7A—C8A—C12A178.9 (5)C6B—C7B—C8B—C12B178.9 (5)
C7A—C8A—C9A—C10A0.6 (9)C7B—C8B—C9B—C10B1.5 (9)
C12A—C8A—C9A—C10A179.6 (5)C12B—C8B—C9B—C10B179.3 (5)
C8A—C9A—C10A—C5A0.8 (9)C8B—C9B—C10B—C5B1.8 (9)
C6A—C5A—C10A—C9A0.4 (8)C6B—C5B—C10B—C9B0.4 (8)
C1A—C5A—C10A—C9A179.0 (5)C1B—C5B—C10B—C9B179.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5B–C10B ring.
D—H···AD—HH···AD···AD—H···A
C11B—H11D···O1Bi0.982.673.358 (5)128
C2B—H2B1···N3Bi0.992.663.418 (7)134
C12B—H12F···Cg1ii0.982.593.446 (4)146
Symmetry codes: (i) x+1, y, z; (ii) x4, y+4, z1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C5B–C10B ring.
D—H···AD—HH···AD···AD—H···A
C11B—H11D···O1Bi0.982.673.358 (5)128
C2B—H2B1···N3Bi0.992.663.418 (7)134
C12B—H12F···Cg1ii0.982.593.446 (4)146
Symmetry codes: (i) x+1, y, z; (ii) x4, y+4, z1.
 

Acknowledgements

NSB thanks the University Grants Commission (UGC) for support.

References

First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIslor, A. M., Garudachari, B., Shivananda, K. N., Gerber, T., Hosten, E. & Betz, R. (2012). Acta Cryst. E68, o3387–o3388.  CSD CrossRef IUCr Journals Google Scholar
First citationBegum, N. S., Girija, C. R. & Nagendrappa, G. (2004). CrystEngComm, 6, 116–119.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds