organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1254-o1255

Crystal structure of 4-(3-carb­­oxy­pro­pan­amido)-2-hy­dr­oxy­benzoic acid mono­hydrate

aDepartment of Physics, University of Sargodha, Sargodha, Punjab, Pakistan, bDepartment of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan, cDepartment of Chemistry, Mirpur University of Science and Technology, Mirpur, Azad Jammu and Kashmir, Pakistan, and dDepartment of Chemistry, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 4 November 2014; accepted 9 November 2014; online 15 November 2014)

In the title hydrate, C11H11NO6·H2O, the organic mol­ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.129 Å) and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, the benzoic acid group participates in an O—H⋯O hydrogen bond to the water mol­ecule and accepts a similar bond from another water mol­ecule. The other –CO2H group forms a carb­oxy­lic acid inversion dimer, thereby forming an R22(8) loop. These bonds, along with N—H⋯O and C—H⋯O inter­actions, generate a three-dimensional network.

1. Related literature

For related structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o1827.], 2011[Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2011). Acta Cryst. E67, o249.]); Jia et al. (2012[Jia, C., Chen, S. & Yuan, W. (2012). Acta Cryst. E68, o1098.]); Saraswathi et al. (2011[Saraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o227.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C11H11NO6·H2O

  • Mr = 271.22

  • Monoclinic, C 2/c

  • a = 25.2516 (19) Å

  • b = 8.4656 (5) Å

  • c = 12.4732 (10) Å

  • β = 117.446 (3)°

  • V = 2366.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.16 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.964, Tmax = 0.983

  • 9402 measured reflections

  • 2556 independent reflections

  • 1738 reflections with I > 2σ(I)

  • Rint = 0.038

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.122

  • S = 1.02

  • 2556 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O7 0.82 1.81 2.605 (2) 163
O3—H3⋯O2 0.82 1.89 2.6099 (19) 146
O5—H5⋯O6i 0.82 1.80 2.618 (2) 174
N1—H1A⋯O3ii 0.86 2.18 3.035 (2) 173
C10—H10B⋯O5iii 0.97 2.53 3.424 (3) 153
O7—H7A⋯O4iv 0.78 (3) 2.15 (3) 2.854 (2) 151 (3)
O7—H7B⋯O2v 0.72 (3) 2.17 (3) 2.827 (2) 152 (3)
Symmetry codes: (i) -x, -y+1, -z; (ii) [x, -y, z-{\script{1\over 2}}]; (iii) [-x, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) -x+1, -y-1, -z+2.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON.

Supporting information


Comment top

The title compound (I), (Fig. 1) has been synthesized as a potential ligand for forming different metal complexes.

The crystal structures of N-Phenylsuccinamic acid (Gowda et al., 2011), 4-((4-Chlorophenyl)amino)-4-oxobutanoic acid (Gowda et al., 2009), 3-[(4-methylphenyl)carbamoyl]propanoic acid (Saraswathi et al., 2011) and 4-[(2-Carboxyethyl)amino]benzoic acid monohydrate (Jia et al., 2012) have been published which are related to the title compound (I).

In (I) the moieties of 4-aminosalicylic acid A (C1—C7/N1/O1/O2/O3) and propanal B (C8—C10/O4) are planar with r.m.s. deviation of 0.0440 and 0.0122 Å, respectively. The dihedral angle between A/B is 5.729 (129)°. The carboxylate moiety C (C11/O5/O6) is of course planar. The dihedral angle between B/C is 13.446 (351)°. In (I), S(6) ring motif is present due to H-bonding of O—H···O type (Table 1, Fig. 2). The molecules are dimerized due to H-bondings of O—H···O type (Table 1, Fig. 2) from carboxyl groups formed from succinic anhydride. The dimers are further interlinked due to N—H···O, O—H···O bondings of water molecules and carboxyl group of aminoacid moiety. The molecules are stabilized in the form of three dimensional polymeric network.

Related literature top

For related structures, see: Gowda et al. (2009, 2011); Jia et al. (2012); Saraswathi et al. (2011).

Experimental top

Equimolar quantities of 4-aminosalicylic acid and succenic anhydride were stirred in ethylacetate for 4 h. The resulting mixture with white precipitate was placed to dry for 48 h. A colourless plate was selected for data collection.

Refinement top

The coordinates of H7A and H7B of water were refined. The H-atoms were positioned geometrically (O–H = 0.82, N–H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy & x = 1.2 for other H-atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
Fig. 1. View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. The partial packing (PLATON; Spek, 2009), which shows that molecules form dimers which are interlinked to three-dimensional polymeric network.
4-(3-Carboxypropanamido)–2-hydroxybenzoic acid monohydrate top
Crystal data top
C11H11NO6·H2OF(000) = 1136
Mr = 271.22Dx = 1.523 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 25.2516 (19) ÅCell parameters from 1738 reflections
b = 8.4656 (5) Åθ = 2.6–27.0°
c = 12.4732 (10) ŵ = 0.13 mm1
β = 117.446 (3)°T = 296 K
V = 2366.3 (3) Å3Plate, colourless
Z = 80.28 × 0.24 × 0.16 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2556 independent reflections
Radiation source: fine-focus sealed tube1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.80 pixels mm-1θmax = 27.0°, θmin = 2.6°
ω scansh = 3232
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1010
Tmin = 0.964, Tmax = 0.983l = 1515
9402 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.9039P]
where P = (Fo2 + 2Fc2)/3
2556 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C11H11NO6·H2OV = 2366.3 (3) Å3
Mr = 271.22Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.2516 (19) ŵ = 0.13 mm1
b = 8.4656 (5) ÅT = 296 K
c = 12.4732 (10) Å0.28 × 0.24 × 0.16 mm
β = 117.446 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2556 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1738 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.983Rint = 0.038
9402 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.25 e Å3
2556 reflectionsΔρmin = 0.22 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45356 (6)0.2827 (2)0.78347 (15)0.0561 (5)
H10.47650.34040.83790.084*
O20.39232 (6)0.35291 (17)0.85809 (13)0.0452 (4)
O30.28556 (6)0.22986 (16)0.76254 (12)0.0378 (4)
H30.31330.28450.80980.057*
O40.14489 (7)0.0630 (2)0.42736 (15)0.0607 (5)
O50.01362 (6)0.3599 (2)0.08989 (17)0.0658 (6)
H50.02870.42490.03520.099*
O60.06897 (6)0.43838 (18)0.08601 (14)0.0494 (4)
N10.22758 (6)0.07905 (19)0.40306 (14)0.0340 (4)
H1A0.24110.11920.35710.041*
C10.40152 (9)0.2813 (2)0.78284 (18)0.0347 (5)
C20.35583 (8)0.1892 (2)0.68505 (17)0.0301 (4)
C30.29976 (8)0.1667 (2)0.67907 (16)0.0281 (4)
C40.25635 (8)0.0780 (2)0.58744 (16)0.0292 (4)
H40.21940.06240.58520.035*
C50.26845 (8)0.0126 (2)0.49906 (17)0.0288 (4)
C60.32402 (9)0.0373 (2)0.50317 (19)0.0378 (5)
H60.33200.00510.44330.045*
C70.36652 (9)0.1230 (2)0.59436 (19)0.0383 (5)
H70.40350.13790.59640.046*
C80.17030 (9)0.1135 (2)0.37201 (19)0.0364 (5)
C90.13998 (9)0.2187 (2)0.26307 (18)0.0381 (5)
H9A0.14330.17170.19550.046*
H9B0.16000.32030.28000.046*
C100.07507 (9)0.2429 (2)0.22904 (19)0.0412 (5)
H10A0.05480.14170.20650.049*
H10B0.07200.28080.29930.049*
C110.04396 (9)0.3559 (2)0.12818 (18)0.0367 (5)
O70.54172 (8)0.4497 (2)0.94112 (17)0.0565 (5)
H7A0.5638 (13)0.464 (3)0.914 (3)0.085*
H7B0.5480 (14)0.501 (4)0.991 (3)0.085*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0331 (8)0.0803 (12)0.0558 (11)0.0224 (8)0.0212 (8)0.0336 (9)
O20.0410 (9)0.0564 (9)0.0380 (9)0.0118 (7)0.0181 (7)0.0180 (7)
O30.0376 (8)0.0478 (8)0.0336 (8)0.0106 (7)0.0213 (7)0.0120 (6)
O40.0362 (9)0.0880 (12)0.0641 (11)0.0175 (8)0.0284 (8)0.0389 (10)
O50.0295 (9)0.0899 (14)0.0719 (13)0.0136 (8)0.0181 (9)0.0463 (10)
O60.0346 (8)0.0602 (10)0.0530 (10)0.0090 (7)0.0199 (8)0.0229 (8)
N10.0254 (9)0.0424 (9)0.0339 (10)0.0059 (7)0.0133 (8)0.0122 (8)
C10.0309 (11)0.0383 (11)0.0343 (11)0.0058 (9)0.0147 (9)0.0034 (9)
C20.0281 (10)0.0325 (10)0.0283 (10)0.0038 (8)0.0118 (8)0.0032 (8)
C30.0316 (10)0.0289 (9)0.0257 (10)0.0002 (8)0.0148 (8)0.0014 (8)
C40.0235 (10)0.0335 (10)0.0313 (11)0.0024 (8)0.0133 (9)0.0013 (8)
C50.0255 (10)0.0290 (10)0.0294 (10)0.0022 (8)0.0105 (8)0.0018 (8)
C60.0328 (11)0.0473 (12)0.0385 (12)0.0067 (9)0.0207 (10)0.0135 (10)
C70.0295 (11)0.0479 (12)0.0421 (12)0.0088 (9)0.0203 (10)0.0128 (10)
C80.0335 (11)0.0388 (11)0.0385 (12)0.0020 (9)0.0180 (10)0.0058 (9)
C90.0335 (11)0.0411 (11)0.0379 (12)0.0055 (9)0.0149 (10)0.0085 (9)
C100.0325 (11)0.0482 (13)0.0416 (12)0.0067 (10)0.0159 (10)0.0106 (10)
C110.0295 (11)0.0424 (12)0.0371 (12)0.0045 (9)0.0143 (10)0.0039 (9)
O70.0420 (10)0.0775 (13)0.0557 (11)0.0260 (9)0.0273 (9)0.0329 (9)
Geometric parameters (Å, º) top
O1—C11.310 (2)C4—C51.388 (3)
O1—H10.8200C4—H40.9300
O2—C11.226 (2)C5—C61.396 (3)
O3—C31.357 (2)C6—C71.359 (3)
O3—H30.8200C6—H60.9300
O4—C81.217 (2)C7—H70.9300
O5—C111.305 (2)C8—C91.505 (3)
O5—H50.8200C9—C101.506 (3)
O6—C111.212 (2)C9—H9A0.9700
N1—C81.346 (2)C9—H9B0.9700
N1—C51.400 (2)C10—C111.485 (3)
N1—H1A0.8600C10—H10A0.9700
C1—C21.459 (3)C10—H10B0.9700
C2—C71.396 (3)O7—H7A0.78 (3)
C2—C31.396 (3)O7—H7B0.72 (3)
C3—C41.385 (3)
C1—O1—H1109.5C5—C6—H6119.9
C3—O3—H3109.5C6—C7—C2121.31 (18)
C11—O5—H5109.5C6—C7—H7119.3
C8—N1—C5129.57 (16)C2—C7—H7119.3
C8—N1—H1A115.2O4—C8—N1122.57 (19)
C5—N1—H1A115.2O4—C8—C9122.59 (18)
O2—C1—O1122.28 (18)N1—C8—C9114.84 (17)
O2—C1—C2123.24 (18)C8—C9—C10111.69 (17)
O1—C1—C2114.48 (17)C8—C9—H9A109.3
C7—C2—C3118.18 (17)C10—C9—H9A109.3
C7—C2—C1121.20 (17)C8—C9—H9B109.3
C3—C2—C1120.62 (17)C10—C9—H9B109.3
O3—C3—C4117.26 (16)H9A—C9—H9B107.9
O3—C3—C2121.68 (16)C11—C10—C9114.12 (17)
C4—C3—C2121.05 (16)C11—C10—H10A108.7
C3—C4—C5119.45 (17)C9—C10—H10A108.7
C3—C4—H4120.3C11—C10—H10B108.7
C5—C4—H4120.3C9—C10—H10B108.7
C4—C5—C6119.77 (17)H10A—C10—H10B107.6
C4—C5—N1123.71 (16)O6—C11—O5122.79 (19)
C6—C5—N1116.52 (17)O6—C11—C10124.11 (18)
C7—C6—C5120.22 (18)O5—C11—C10113.09 (18)
C7—C6—H6119.9H7A—O7—H7B111 (3)
O2—C1—C2—C7173.4 (2)C8—N1—C5—C6175.30 (19)
O1—C1—C2—C76.1 (3)C4—C5—C6—C71.0 (3)
O2—C1—C2—C35.8 (3)N1—C5—C6—C7179.09 (18)
O1—C1—C2—C3174.74 (18)C5—C6—C7—C20.5 (3)
C7—C2—C3—O3178.72 (17)C3—C2—C7—C60.8 (3)
C1—C2—C3—O30.5 (3)C1—C2—C7—C6180.0 (2)
C7—C2—C3—C41.6 (3)C5—N1—C8—O41.2 (4)
C1—C2—C3—C4179.23 (17)C5—N1—C8—C9179.15 (18)
O3—C3—C4—C5179.20 (16)O4—C8—C9—C103.5 (3)
C2—C3—C4—C51.1 (3)N1—C8—C9—C10176.14 (17)
C3—C4—C5—C60.2 (3)C8—C9—C10—C11175.35 (17)
C3—C4—C5—N1179.88 (17)C9—C10—C11—O69.3 (3)
C8—N1—C5—C44.6 (3)C9—C10—C11—O5171.72 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O70.821.812.605 (2)163
O3—H3···O20.821.892.6099 (19)146
O5—H5···O6i0.821.802.618 (2)174
N1—H1A···O3ii0.862.183.035 (2)173
C10—H10B···O5iii0.972.533.424 (3)153
O7—H7A···O4iv0.78 (3)2.15 (3)2.854 (2)151 (3)
O7—H7B···O2v0.72 (3)2.17 (3)2.827 (2)152 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1, y1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O70.821.812.605 (2)163
O3—H3···O20.821.892.6099 (19)146
O5—H5···O6i0.821.802.618 (2)174
N1—H1A···O3ii0.862.183.035 (2)173
C10—H10B···O5iii0.972.533.424 (3)153
O7—H7A···O4iv0.78 (3)2.15 (3)2.854 (2)151 (3)
O7—H7B···O2v0.72 (3)2.17 (3)2.827 (2)152 (3)
Symmetry codes: (i) x, y+1, z; (ii) x, y, z1/2; (iii) x, y, z+1/2; (iv) x+1/2, y1/2, z+1/2; (v) x+1, y1, z+2.
 

Acknowledgements

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

References

First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o1827.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2011). Acta Cryst. E67, o249.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJia, C., Chen, S. & Yuan, W. (2012). Acta Cryst. E68, o1098.  CSD CrossRef IUCr Journals Google Scholar
First citationSaraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o227.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1254-o1255
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds