organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-{1-[(1-allyl-1H-indazol-6-yl)amino]­ethyl­­idene}-6-methyl-2H-pyran-2,4(3H)-dione

aLaboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, Béni-Mellal, BP 523, Morocco, and bLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: m_elghozlani@yahoo.fr

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 6 November 2014; accepted 7 November 2014; online 15 November 2014)

In the title compound, C18H17N3O3, the dihedral angle between the planes of the indazole ring system [maximum deviation = 0.012 (1) Å] and the pyran-2,4-dione ring is 54.03 (6)°. An intra­molecular N—H⋯O hydrogen bond closes an S(6) ring. The same H atom also participates in an inter­molecular N—H⋯O hydrogen bond, which generates an inversion dimer. The dimers are linked by weak C—H⋯O contacts, thereby forming a three-dimensional network.

1. Related literature

For pharmacological activities of indazole derivatives, see: Cerecetto et al. (2005[Cerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869-878.]); Jennings & Tennant (2007[Jennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829-1838.]); Sun et al. (1997[Sun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627-5629.]). For innovative methods in their synthesis, see: Paul et al. (2014[Paul, S., Panda, S. & Manna, D. (2014). Tetrahedron Lett. 55, 2480-2483.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H17N3O3

  • Mr = 323.35

  • Triclinic, [P \overline 1]

  • a = 6.7708 (11) Å

  • b = 10.5761 (17) Å

  • c = 11.9643 (17) Å

  • α = 88.239 (9)°

  • β = 81.123 (9)°

  • γ = 79.140 (9)°

  • V = 831.3 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.39 × 0.34 × 0.29 mm

2.2. Data collection

  • Bruker X8 APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.685, Tmax = 0.746

  • 11752 measured reflections

  • 3929 independent reflections

  • 2930 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.131

  • S = 1.04

  • 3929 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3N⋯O3 0.91 1.77 2.5567 (15) 143
N3—H3N⋯O3i 0.91 2.51 3.0612 (16) 120
C6—H6⋯O1ii 0.93 2.54 3.3554 (19) 146
C8—H8A⋯O1ii 0.97 2.53 3.495 (2) 173
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pharmacologically active indazole and its derivatives are widely used as drug in treating various human diseases including cancer, inflammation, cardiovascular, and others (Cerecetto, et al., 2005; Jennings & Tennant, 2007; Sun, et al., 1997). This has incited researchers to develop innovative methods in their synthesis (Paul, et al., 2014).

The two fused five- and six-membered rings (N1/N2/C1 to C7), part of the molecule of the title compound, are almost planar, with the maximum deviation of 0.012 (1) Å arising from atom N1. The fused rings system is nearly perpendicular to the allyl group (C8 C9 C10) as shown in Fig. 1 (torsion angle C9 C8 N1 C7 = 88.9 (2)°). Moreover, the dihedral angle between the indazole system and the plan through the atoms forming the pyran-2 ring (C12 to C16O) is 54.03 (6)°.

In the crystal, molecules are connected through N—H···O hydrogen bonds in the way to build dimers which are linked by weak C—H···O contacts, forming a three-dimensional network as shown in Fig.2 and Table 2.

Related literature top

For pharmacological activities of indazole derivatives, see: Cerecetto et al. (2005); Jennings & Tennant (2007); Sun et al. (1997). For innovative methods in their synthesis, see: Paul et al. (2014).

Experimental top

1-Allyl-6-nitroindazole (1.0 mmol) was added to a mixture of indium powder (450 mg, 3.91 mmol), and acetic acid (1.12 ml, 10 mmol) in THF (2 ml), followed by the addition of 4-hydroxy-6-methyl-2-pyrone (1.0 mmol) in THF (3 ml). The reaction mixture was stirred at 353 K. After the reaction was completed, the reaction mixture was diluted with ethyl acetate (30 ml), filtered through Celite, poured into 10% K2CO3 (25 ml), and then extracted with ethyl acetate (30 ml x 3). The combined organic extracts were dried over MgSO4, filtered, and concentrated. The resulting residue was purified by flash chromatography (eluted with Ethyl acetate: Hexane 4:6). The title compound was recrystallized from the solvent mixture ethyl acetate/hexane to yield yellow blocks (yield: 85%, m.p.: 392 K).

Refinement top

H atoms were located in a difference map and treated as riding with C–H = 0.96 Å, C–H = 0.97 Å, C–H = 0.93 Å, and N–H = 0.90 Å for methyl, methylene, aromatic CH and NH respectively. All hydrogen with Uiso(H) = 1.2 Ueq (methylene,aromatic, NH) and Uiso(H) = 1.5 Ueq for methyl.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
Figure 1 Molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2 Partial crystal packing for the title compound showing N3—H3N···O3, C6—H6···O1 and C8—H8A···O1 hydrogen bonds as dashed lines.
3-{1-[(1-Allyl-1H-indazol-6-yl)amino]ethylidene}-6-methyl-2H-pyran-2,4(3H)-dione top
Crystal data top
C18H17N3O3Z = 2
Mr = 323.35F(000) = 340
Triclinic, P1Dx = 1.292 Mg m3
Hall symbol: -P 1Melting point: 392 K
a = 6.7708 (11) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5761 (17) ÅCell parameters from 3929 reflections
c = 11.9643 (17) Åθ = 2.6–27.9°
α = 88.239 (9)°µ = 0.09 mm1
β = 81.123 (9)°T = 296 K
γ = 79.140 (9)°Block, yellow
V = 831.3 (2) Å30.39 × 0.34 × 0.29 mm
Data collection top
Bruker X8 APEX CCD
diffractometer
3929 independent reflections
Radiation source: fine-focus sealed tube2930 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.9°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 88
Tmin = 0.685, Tmax = 0.746k = 1213
11752 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0634P)2 + 0.1441P]
where P = (Fo2 + 2Fc2)/3
3929 reflections(Δ/σ)max < 0.001
217 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H17N3O3γ = 79.140 (9)°
Mr = 323.35V = 831.3 (2) Å3
Triclinic, P1Z = 2
a = 6.7708 (11) ÅMo Kα radiation
b = 10.5761 (17) ŵ = 0.09 mm1
c = 11.9643 (17) ÅT = 296 K
α = 88.239 (9)°0.39 × 0.34 × 0.29 mm
β = 81.123 (9)°
Data collection top
Bruker X8 APEX CCD
diffractometer
3929 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2930 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.027
11752 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.131H-atom parameters constrained
S = 1.04Δρmax = 0.19 e Å3
3929 reflectionsΔρmin = 0.19 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2126 (2)0.27561 (17)0.19077 (14)0.0535 (4)
H10.33150.24950.17920.064*
C20.1187 (2)0.24555 (13)0.28909 (11)0.0394 (3)
C30.1571 (2)0.17674 (15)0.38933 (12)0.0453 (4)
H30.27040.13750.40400.054*
C40.0230 (2)0.16880 (14)0.46546 (11)0.0419 (3)
H40.04540.12300.53240.050*
C50.14799 (19)0.22876 (12)0.44391 (10)0.0327 (3)
C60.1916 (2)0.29707 (12)0.34631 (10)0.0347 (3)
H60.30540.33580.33230.042*
C70.0533 (2)0.30446 (12)0.26930 (10)0.0352 (3)
C80.2094 (3)0.42381 (18)0.10121 (14)0.0664 (5)
H8A0.28180.45940.15290.080*
H8B0.14640.49430.05720.080*
C90.3587 (4)0.3318 (3)0.02309 (16)0.0820 (7)
H90.46070.36520.02270.098*
C100.3598 (3)0.2112 (3)0.01307 (18)0.0866 (7)
H10A0.26090.17330.05700.104*
H10B0.45950.16160.03820.104*
C110.3460 (2)0.29146 (12)0.58397 (10)0.0349 (3)
C120.4993 (2)0.24657 (12)0.65330 (10)0.0341 (3)
C130.5675 (2)0.11088 (13)0.66967 (10)0.0359 (3)
C140.7230 (2)0.07406 (14)0.74087 (11)0.0429 (3)
H140.76460.01260.75680.051*
C150.8078 (2)0.16072 (16)0.78399 (12)0.0474 (4)
C160.5936 (3)0.33761 (15)0.70210 (12)0.0482 (4)
C170.2422 (3)0.42837 (15)0.57937 (16)0.0671 (6)
H17A0.11400.43260.55320.101*
H17B0.32600.47530.52840.101*
H17C0.21970.46550.65350.101*
C180.9761 (3)0.1362 (2)0.85373 (18)0.0806 (6)
H18A0.93160.17960.92500.121*
H18C1.09180.16790.81450.121*
H18B1.01330.04540.86650.121*
N10.0511 (2)0.36448 (12)0.16653 (10)0.0472 (3)
N20.1112 (2)0.34456 (14)0.11844 (11)0.0574 (4)
N30.28794 (17)0.20639 (10)0.52426 (9)0.0350 (3)
H3N0.34430.12350.53790.042*
O10.5633 (3)0.45366 (11)0.69316 (13)0.0832 (5)
O20.74794 (18)0.28942 (11)0.76619 (9)0.0567 (3)
O30.50060 (18)0.02513 (9)0.62444 (9)0.0538 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0429 (9)0.0691 (11)0.0520 (9)0.0058 (8)0.0233 (7)0.0044 (8)
C20.0330 (7)0.0437 (8)0.0413 (7)0.0003 (6)0.0124 (5)0.0057 (6)
C30.0325 (7)0.0595 (9)0.0459 (8)0.0136 (6)0.0057 (6)0.0009 (7)
C40.0404 (8)0.0494 (8)0.0360 (7)0.0096 (6)0.0055 (6)0.0045 (6)
C50.0351 (7)0.0320 (6)0.0313 (6)0.0016 (5)0.0108 (5)0.0025 (5)
C60.0392 (7)0.0317 (6)0.0362 (6)0.0083 (5)0.0128 (5)0.0005 (5)
C70.0413 (7)0.0306 (6)0.0340 (6)0.0015 (5)0.0130 (5)0.0012 (5)
C80.1033 (15)0.0663 (11)0.0490 (9)0.0470 (11)0.0384 (10)0.0265 (8)
C90.0885 (15)0.130 (2)0.0434 (9)0.0647 (15)0.0069 (10)0.0047 (11)
C100.0708 (14)0.125 (2)0.0651 (12)0.0253 (14)0.0001 (10)0.0205 (13)
C110.0409 (7)0.0328 (7)0.0307 (6)0.0022 (5)0.0090 (5)0.0023 (5)
C120.0401 (7)0.0347 (7)0.0288 (6)0.0061 (5)0.0099 (5)0.0020 (5)
C130.0405 (7)0.0375 (7)0.0298 (6)0.0037 (6)0.0102 (5)0.0011 (5)
C140.0483 (8)0.0446 (8)0.0344 (6)0.0024 (6)0.0160 (6)0.0005 (6)
C150.0472 (9)0.0594 (9)0.0366 (7)0.0040 (7)0.0163 (6)0.0006 (6)
C160.0641 (10)0.0441 (8)0.0438 (8)0.0155 (7)0.0247 (7)0.0010 (6)
C170.0909 (14)0.0388 (8)0.0736 (11)0.0151 (8)0.0484 (10)0.0163 (8)
C180.0723 (13)0.1046 (16)0.0736 (12)0.0078 (12)0.0479 (11)0.0039 (11)
N10.0629 (8)0.0466 (7)0.0385 (6)0.0134 (6)0.0258 (6)0.0080 (5)
N20.0622 (9)0.0659 (9)0.0493 (7)0.0067 (7)0.0324 (7)0.0040 (6)
N30.0408 (6)0.0308 (5)0.0347 (5)0.0014 (5)0.0159 (5)0.0006 (4)
O10.1312 (13)0.0405 (7)0.1001 (10)0.0286 (7)0.0724 (10)0.0073 (6)
O20.0669 (7)0.0579 (7)0.0567 (6)0.0191 (6)0.0349 (6)0.0013 (5)
O30.0747 (8)0.0333 (5)0.0610 (7)0.0055 (5)0.0394 (6)0.0006 (4)
Geometric parameters (Å, º) top
C1—N21.311 (2)C11—N31.3166 (16)
C1—C21.4215 (19)C11—C121.4309 (18)
C1—H10.9300C11—C171.4890 (19)
C2—C31.399 (2)C12—C161.4339 (18)
C2—C71.407 (2)C12—C131.4394 (18)
C3—C41.3723 (19)C13—O31.2575 (16)
C3—H30.9300C13—C141.4447 (18)
C4—C51.408 (2)C14—C151.325 (2)
C4—H40.9300C14—H140.9300
C5—C61.3765 (18)C15—O21.3649 (19)
C5—N31.4355 (15)C15—C181.494 (2)
C6—C71.4022 (17)C16—O11.2099 (19)
C6—H60.9300C16—O21.4010 (18)
C7—N11.3672 (17)C17—H17A0.9600
C8—N11.456 (2)C17—H17B0.9600
C8—C91.495 (3)C17—H17C0.9600
C8—H8A0.9700C18—H18A0.9600
C8—H8B0.9700C18—H18C0.9600
C9—C101.284 (3)C18—H18B0.9600
C9—H90.9300N1—N21.3684 (18)
C10—H10A0.9300N3—H3N0.9090
C10—H10B0.9300
N2—C1—C2111.83 (14)C11—C12—C16119.56 (12)
N2—C1—H1124.1C11—C12—C13120.72 (11)
C2—C1—H1124.1C16—C12—C13119.64 (12)
C3—C2—C7119.78 (12)O3—C13—C12123.39 (12)
C3—C2—C1136.29 (14)O3—C13—C14119.55 (12)
C7—C2—C1103.93 (13)C12—C13—C14117.06 (12)
C4—C3—C2118.11 (13)C15—C14—C13121.62 (13)
C4—C3—H3120.9C15—C14—H14119.2
C2—C3—H3120.9C13—C14—H14119.2
C3—C4—C5121.11 (13)C14—C15—O2121.58 (13)
C3—C4—H4119.4C14—C15—C18127.34 (16)
C5—C4—H4119.4O2—C15—C18111.07 (14)
C6—C5—C4122.61 (12)O1—C16—O2113.34 (13)
C6—C5—N3120.24 (12)O1—C16—C12128.87 (14)
C4—C5—N3116.93 (11)O2—C16—C12117.75 (13)
C5—C6—C7115.68 (12)C11—C17—H17A109.5
C5—C6—H6122.2C11—C17—H17B109.5
C7—C6—H6122.2H17A—C17—H17B109.5
N1—C7—C6130.43 (13)C11—C17—H17C109.5
N1—C7—C2106.87 (12)H17A—C17—H17C109.5
C6—C7—C2122.70 (12)H17B—C17—H17C109.5
N1—C8—C9113.14 (15)C15—C18—H18A109.5
N1—C8—H8A109.0C15—C18—H18C109.5
C9—C8—H8A109.0H18A—C18—H18C109.5
N1—C8—H8B109.0C15—C18—H18B109.5
C9—C8—H8B109.0H18A—C18—H18B109.5
H8A—C8—H8B107.8H18C—C18—H18B109.5
C10—C9—C8126.33 (19)C7—N1—N2110.85 (13)
C10—C9—H9116.8C7—N1—C8128.13 (13)
C8—C9—H9116.8N2—N1—C8120.20 (12)
C9—C10—H10A120.0C1—N2—N1106.50 (12)
C9—C10—H10B120.0C11—N3—C5128.38 (11)
H10A—C10—H10B120.0C11—N3—H3N113.9
N3—C11—C12118.25 (11)C5—N3—H3N117.7
N3—C11—C17118.15 (12)C15—O2—C16122.25 (11)
C12—C11—C17123.55 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O30.911.772.5567 (15)143
N3—H3N···O3i0.912.513.0612 (16)120
C6—H6···O1ii0.932.543.3554 (19)146
C8—H8A···O1ii0.972.533.495 (2)173
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3N···O30.911.772.5567 (15)143
N3—H3N···O3i0.912.513.0612 (16)120
C6—H6···O1ii0.932.543.3554 (19)146
C8—H8A···O1ii0.972.533.495 (2)173
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Sultan Moulay Slimane, Beni-Mellal, Morocco, for financial support.

References

First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocáriz, C. O. (2005). Mini Rev. Med. Chem. 5, 869–878.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationJennings, A. & Tennant, M. (2007). J. Chem. Inf. Model. 47, 1829–1838.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPaul, S., Panda, S. & Manna, D. (2014). Tetrahedron Lett. 55, 2480–2483.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSun, J. H., Teleha, C. A., Yan, J. S., Rodgers, J. D. & Nugiel, D. A. (1997). J. Org. Chem. 62, 5627–5629.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds