organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-[(di­chloro­methane)sulfon­yl]pyridine

aCollege of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Shanghai, People's Republic of China
*Correspondence e-mail: ya.li@sues.edu.cn

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 13 November 2014; accepted 17 November 2014; online 21 November 2014)

The asymmetric unit of the title compound, C6H5Cl2NO2S, contains two mol­ecules with similar conformations (r.m.s. overlay fit for the non-H atoms = 0.067 Å). Atoms attached to the pendent Csp3—S bond are arranged in a staggered conformation with one of the Cl atoms anti to the C atom in the aromatic ring [C—S—C—Cl torsion angles = 178.41 (11) and −176.70 (13)°]. In the crystal, mol­ecules are linked by C—H⋯N and C—H⋯O hydrogen bonds, generating a three-dimensional network, and weak aromatic ππ stacking is also observed [centroid–centroid separation = 3.8902 (17) Å].

1. Related literature

For the biological activity of sulfone derivatives, see: Chen et al. (2012[Chen, X., Hussain, S., Parveen, S., Zhang, S., Yang, Y. & Zhu, C. (2012). CMC, 19, 3578-3604.]); Drews (2000[Drews, J. (2000). Science, 287, 1960-1964.]); Raja et al. (2009[Raja, S. N., Surber, B. W., Du, J. & Cross, J. L. (2009). J. Label Compd Radiopharm., 52, 98-102.]). For the uses of halomethyl sulfone derivatives in organic synthesis, see: Li & Hu (2005[Li, Y. & Hu, J. (2005). Angew. Chem. Int. Ed. 44, 5882-5886.]); Prakash et al. (2013[Prakash, G. K. S., Ni, C., Wang, F., Zhang, Z., Haiges, R. & Olah, G. A. (2013). Angew. Chem. Int. Ed. 52, 10835-10839.]); Zhao et al. (2010[Zhao, Y., Huang, W., Zhu, L. & Hu, J. (2010). Org. Lett. 12, 1444-1447.]). For the synthesis of the starting material, see: Kamiyama et al. (1988[Kamiyama, T., Enomoto, S. & Inoue, M. (1988). Chem. Pharm. Bull. 36, 2652-2653.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C6H5Cl2NO2S

  • Mr = 226.07

  • Monoclinic, P 21 /n

  • a = 9.9647 (10) Å

  • b = 12.2131 (11) Å

  • c = 15.7158 (15) Å

  • β = 108.483 (1)°

  • V = 1814.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.21 × 0.16 × 0.12 mm

2.2. Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.615, Tmax = 0.746

  • 10817 measured reflections

  • 3570 independent reflections

  • 2907 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.102

  • S = 1.03

  • 3570 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N2i 0.98 2.37 3.321 (3) 163
C5—H5⋯O3ii 0.93 2.64 3.220 (3) 121
C6—H6⋯O3ii 0.93 2.54 3.177 (3) 126
C7—H7⋯N1i 0.98 2.36 3.303 (3) 162
C11—H11⋯O1iii 0.93 2.64 3.292 (3) 128
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Sulfonyl groups are well-known for imparting biological activities to a lot of natural and unnatural molecules (Chen, et al., 2012; Drews, 2000; Raja, et al., 2009). Besides, halo­methyl sulfones have been widely used in the preparation of a wide variety of halogenated compounds (Li & Hu, 2005; Prakash, et al., 2013; Zhao, et al., 2010). Here, we report the crystal structure of 2-(di­chloro­methyl­sulfonyl)­pyridine, the title compound, which may find potential use in the synthesis of inter­esting chlorinated compounds.

Experimental top

A mixture of sodium pyridine-2-sulfinate (660 mg, 4.0 mmol), chloro­form (10.0 ml) and 1N KOH (5.0 ml) was refluxed over 5h. Then the orgainc layer was separated and dried over anhydrous MgSO4. Evaporation of the solvent under vacuum, followed by flash chromatography, gave the title compound (white solid, 560 mg, 62 %). The obtained powder was recrystalized from ethyl acetate/hexane­(1:10) solution to give colourless prisms.

Refinement top

The H atoms of the pyridine group were placed at calculated positions and treated as riding on the parent atoms, with Uiso(H) = 1.2Ueq(C). The di­chloro­methyl H atom was placed at calculated position with Uiso(H) = 1.2Ueq(C).

Related literature top

For the biological activity of sulfone derivatives, see: Chen et al. (2012); Drews (2000); Raja et al. (2009). For the uses of halomethyl sulfone derivatives in organic synthesis, see: Li & Hu (2005); Prakash et al. (2013); Zhao et al. (2010). For the synthesis of the starting material, see: Kamiyama et al. (1988).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Molecular structure of the title compound. The displacement ellipsoids are drawn at the 50% probability level.
2-[(Dichloromethane)sulfonyl]pyridine top
Crystal data top
C6H5Cl2NO2SF(000) = 912
Mr = 226.07Dx = 1.656 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.9647 (10) ÅCell parameters from 4116 reflections
b = 12.2131 (11) Åθ = 4.3–54.4°
c = 15.7158 (15) ŵ = 0.90 mm1
β = 108.483 (1)°T = 293 K
V = 1814.0 (3) Å3Prism, colorless
Z = 80.21 × 0.16 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
2907 reflections with I > 2σ(I)
phi and ω scansRint = 0.034
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
θmax = 26.0°, θmin = 2.2°
Tmin = 0.615, Tmax = 0.746h = 1212
10817 measured reflectionsk = 1513
3570 independent reflectionsl = 1914
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.048P)2 + 0.7592P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.102(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.37 e Å3
3570 reflectionsΔρmin = 0.37 e Å3
218 parametersExtinction correction: SHELXL2013 (Sheldrick, 2013), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0286 (15)
Crystal data top
C6H5Cl2NO2SV = 1814.0 (3) Å3
Mr = 226.07Z = 8
Monoclinic, P21/nMo Kα radiation
a = 9.9647 (10) ŵ = 0.90 mm1
b = 12.2131 (11) ÅT = 293 K
c = 15.7158 (15) Å0.21 × 0.16 × 0.12 mm
β = 108.483 (1)°
Data collection top
Bruker SMART CCD
diffractometer
3570 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2907 reflections with I > 2σ(I)
Tmin = 0.615, Tmax = 0.746Rint = 0.034
10817 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.37 e Å3
3570 reflectionsΔρmin = 0.37 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22031 (6)0.33604 (5)0.12351 (4)0.04809 (18)
S20.34445 (7)0.72345 (5)0.63426 (4)0.05073 (19)
Cl10.13628 (8)0.50108 (5)0.23115 (5)0.0676 (2)
Cl20.16196 (8)0.27131 (5)0.28379 (5)0.0647 (2)
Cl30.19229 (9)0.60561 (8)0.73732 (6)0.0850 (3)
Cl40.32582 (10)0.81316 (7)0.79958 (5)0.0874 (3)
N10.4188 (2)0.47686 (16)0.13024 (13)0.0499 (5)
N20.4604 (2)0.53408 (16)0.62759 (13)0.0517 (5)
O10.0757 (2)0.32158 (16)0.07175 (13)0.0733 (6)
O20.3169 (2)0.24747 (14)0.13497 (12)0.0672 (5)
O30.2167 (2)0.77708 (15)0.58491 (13)0.0734 (6)
O40.4775 (2)0.77492 (15)0.64783 (14)0.0699 (5)
C10.2303 (2)0.37906 (17)0.23599 (15)0.0447 (5)
H10.32960.39100.27130.054*
C20.2870 (2)0.45238 (18)0.08275 (14)0.0429 (5)
C30.2047 (3)0.5082 (2)0.00872 (16)0.0529 (6)
H30.11260.48640.02200.064*
C40.2646 (3)0.5977 (2)0.01787 (17)0.0592 (6)
H40.21350.63850.06750.071*
C50.4002 (3)0.6258 (2)0.02950 (19)0.0607 (7)
H50.44250.68610.01230.073*
C60.4741 (3)0.5646 (2)0.10274 (18)0.0578 (6)
H60.56630.58510.13450.069*
C70.3368 (3)0.6905 (2)0.74546 (16)0.0523 (6)
H70.42390.65240.77920.063*
C80.3445 (2)0.59091 (18)0.58779 (15)0.0454 (5)
C90.2333 (3)0.5566 (2)0.51689 (17)0.0596 (6)
H90.15500.60100.49160.072*
C100.2428 (3)0.4520 (2)0.48428 (19)0.0691 (8)
H100.16950.42380.43670.083*
C110.3620 (3)0.3912 (2)0.52340 (19)0.0648 (7)
H110.37180.32170.50190.078*
C120.4667 (3)0.4344 (2)0.59470 (19)0.0612 (7)
H120.54630.39180.62150.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0590 (4)0.0370 (3)0.0447 (3)0.0097 (2)0.0115 (3)0.0018 (2)
S20.0659 (4)0.0382 (3)0.0499 (3)0.0138 (3)0.0209 (3)0.0044 (2)
Cl10.0791 (5)0.0434 (3)0.0909 (5)0.0082 (3)0.0420 (4)0.0000 (3)
Cl20.0849 (5)0.0483 (4)0.0719 (4)0.0087 (3)0.0407 (4)0.0051 (3)
Cl30.0800 (5)0.1064 (7)0.0806 (5)0.0173 (5)0.0426 (4)0.0035 (5)
Cl40.1221 (7)0.0714 (5)0.0727 (5)0.0256 (5)0.0367 (5)0.0173 (4)
N10.0482 (11)0.0488 (11)0.0503 (11)0.0034 (9)0.0123 (9)0.0050 (9)
N20.0576 (12)0.0422 (10)0.0543 (11)0.0135 (9)0.0164 (9)0.0040 (9)
O10.0736 (13)0.0696 (12)0.0613 (11)0.0329 (10)0.0005 (10)0.0030 (9)
O20.1029 (15)0.0415 (9)0.0640 (11)0.0094 (9)0.0362 (11)0.0002 (8)
O30.0935 (14)0.0607 (11)0.0617 (11)0.0395 (10)0.0183 (10)0.0112 (9)
O40.0863 (14)0.0513 (10)0.0810 (13)0.0130 (9)0.0390 (11)0.0032 (9)
C10.0474 (12)0.0372 (11)0.0512 (13)0.0037 (9)0.0182 (10)0.0011 (9)
C20.0505 (13)0.0383 (11)0.0400 (11)0.0032 (9)0.0145 (10)0.0009 (9)
C30.0541 (14)0.0567 (14)0.0444 (12)0.0023 (11)0.0104 (11)0.0039 (11)
C40.0749 (18)0.0531 (14)0.0522 (14)0.0128 (13)0.0240 (13)0.0148 (11)
C50.0749 (18)0.0466 (13)0.0696 (17)0.0037 (12)0.0357 (15)0.0081 (12)
C60.0539 (14)0.0545 (14)0.0655 (16)0.0086 (12)0.0198 (12)0.0043 (12)
C70.0574 (14)0.0522 (13)0.0493 (13)0.0141 (11)0.0195 (11)0.0013 (11)
C80.0556 (13)0.0390 (11)0.0437 (12)0.0071 (10)0.0187 (10)0.0023 (9)
C90.0640 (16)0.0594 (15)0.0512 (14)0.0108 (12)0.0124 (12)0.0016 (12)
C100.083 (2)0.0644 (17)0.0554 (15)0.0077 (15)0.0154 (14)0.0098 (13)
C110.093 (2)0.0406 (13)0.0681 (17)0.0037 (13)0.0359 (16)0.0039 (12)
C120.0751 (18)0.0419 (13)0.0687 (17)0.0158 (12)0.0259 (14)0.0032 (12)
Geometric parameters (Å, º) top
S1—O21.4212 (19)C2—C31.373 (3)
S1—O11.4235 (19)C3—C41.372 (4)
S1—C21.772 (2)C3—H30.9300
S1—C11.816 (2)C4—C51.364 (4)
S2—O41.421 (2)C4—H40.9300
S2—O31.4231 (19)C5—C61.374 (4)
S2—C81.776 (2)C5—H50.9300
S2—C71.818 (2)C6—H60.9300
Cl1—C11.749 (2)C7—H70.9800
Cl2—C11.756 (2)C8—C91.364 (3)
Cl3—C71.746 (3)C9—C101.390 (4)
Cl4—C71.743 (2)C9—H90.9300
N1—C21.323 (3)C10—C111.370 (4)
N1—C61.338 (3)C10—H100.9300
N2—C81.323 (3)C11—C121.371 (4)
N2—C121.332 (3)C11—H110.9300
C1—H10.9800C12—H120.9300
O2—S1—O1120.03 (13)C3—C4—H4120.5
O2—S1—C2109.84 (11)C4—C5—C6119.7 (2)
O1—S1—C2108.69 (11)C4—C5—H5120.2
O2—S1—C1105.72 (10)C6—C5—H5120.2
O1—S1—C1108.98 (12)N1—C6—C5122.7 (2)
C2—S1—C1102.05 (10)N1—C6—H6118.6
O4—S2—O3120.59 (13)C5—C6—H6118.6
O4—S2—C8110.07 (11)Cl4—C7—Cl3111.61 (13)
O3—S2—C8108.19 (12)Cl4—C7—S2107.87 (13)
O4—S2—C7105.97 (12)Cl3—C7—S2110.24 (13)
O3—S2—C7108.84 (12)Cl4—C7—H7109.0
C8—S2—C7101.49 (11)Cl3—C7—H7109.0
C2—N1—C6115.8 (2)S2—C7—H7109.0
C8—N2—C12116.0 (2)N2—C8—C9125.9 (2)
Cl1—C1—Cl2112.46 (13)N2—C8—S2113.44 (17)
Cl1—C1—S1109.92 (12)C9—C8—S2120.67 (18)
Cl2—C1—S1106.89 (11)C8—C9—C10116.8 (2)
Cl1—C1—H1109.2C8—C9—H9121.6
Cl2—C1—H1109.2C10—C9—H9121.6
S1—C1—H1109.2C11—C10—C9118.9 (3)
N1—C2—C3125.8 (2)C11—C10—H10120.6
N1—C2—S1113.34 (16)C9—C10—H10120.6
C3—C2—S1120.84 (18)C10—C11—C12119.0 (2)
C4—C3—C2116.9 (2)C10—C11—H11120.5
C4—C3—H3121.5C12—C11—H11120.5
C2—C3—H3121.5N2—C12—C11123.4 (2)
C5—C4—C3119.1 (2)N2—C12—H12118.3
C5—C4—H4120.5C11—C12—H12118.3
O2—S1—C1—Cl1170.96 (12)O4—S2—C7—Cl468.31 (15)
O1—S1—C1—Cl158.75 (15)O3—S2—C7—Cl462.76 (16)
C2—S1—C1—Cl156.09 (14)C8—S2—C7—Cl4176.70 (13)
O2—S1—C1—Cl266.71 (14)O4—S2—C7—Cl3169.59 (13)
O1—S1—C1—Cl263.58 (14)O3—S2—C7—Cl359.34 (16)
C2—S1—C1—Cl2178.41 (11)C8—S2—C7—Cl354.61 (15)
C6—N1—C2—C30.5 (4)C12—N2—C8—C90.3 (4)
C6—N1—C2—S1179.51 (18)C12—N2—C8—S2179.28 (19)
O2—S1—C2—N150.8 (2)O4—S2—C8—N245.1 (2)
O1—S1—C2—N1176.04 (17)O3—S2—C8—N2178.72 (18)
C1—S1—C2—N161.00 (19)C7—S2—C8—N266.86 (19)
O2—S1—C2—C3129.1 (2)O4—S2—C8—C9134.0 (2)
O1—S1—C2—C34.0 (2)O3—S2—C8—C90.3 (2)
C1—S1—C2—C3119.0 (2)C7—S2—C8—C9114.1 (2)
N1—C2—C3—C40.4 (4)N2—C8—C9—C100.6 (4)
S1—C2—C3—C4179.66 (18)S2—C8—C9—C10179.4 (2)
C2—C3—C4—C50.2 (4)C8—C9—C10—C111.1 (4)
C3—C4—C5—C60.1 (4)C9—C10—C11—C121.5 (4)
C2—N1—C6—C50.5 (4)C8—N2—C12—C110.7 (4)
C4—C5—C6—N10.3 (4)C10—C11—C12—N21.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.982.373.321 (3)163
C5—H5···O3ii0.932.643.220 (3)121
C6—H6···O3ii0.932.543.177 (3)126
C7—H7···N1i0.982.363.303 (3)162
C11—H11···O1iii0.932.643.292 (3)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···N2i0.982.373.321 (3)163
C5—H5···O3ii0.932.643.220 (3)121
C6—H6···O3ii0.932.543.177 (3)126
C7—H7···N1i0.982.363.303 (3)162
C11—H11···O1iii0.932.643.292 (3)128
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+3/2, z1/2; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

Financial support from the Innovation Program of the Shanghai University Students (cs1304009) is gratefully acknowledged.

References

First citationBruker (2007). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X., Hussain, S., Parveen, S., Zhang, S., Yang, Y. & Zhu, C. (2012). CMC, 19, 3578–3604.  CrossRef CAS Google Scholar
First citationDrews, J. (2000). Science, 287, 1960–1964.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKamiyama, T., Enomoto, S. & Inoue, M. (1988). Chem. Pharm. Bull. 36, 2652–2653.  CrossRef CAS Google Scholar
First citationLi, Y. & Hu, J. (2005). Angew. Chem. Int. Ed. 44, 5882–5886.  Web of Science CSD CrossRef CAS Google Scholar
First citationPrakash, G. K. S., Ni, C., Wang, F., Zhang, Z., Haiges, R. & Olah, G. A. (2013). Angew. Chem. Int. Ed. 52, 10835–10839.  Web of Science CSD CrossRef CAS Google Scholar
First citationRaja, S. N., Surber, B. W., Du, J. & Cross, J. L. (2009). J. Label Compd Radiopharm., 52, 98–102.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Y., Huang, W., Zhu, L. & Hu, J. (2010). Org. Lett. 12, 1444–1447.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds