organic compounds
of 4-methoxyquinazoline
aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk
The title compound, C9H8N2O, is almost planar, with the C atom of the methoxy group deviating from the mean plane of the quinazoline ring system (r.m.s. deviation = 0.011 Å) by 0.068 (4) Å. In the crystal, molecules form π–π stacks parallel to the b-axis direction [centroid–centroid separation = 3.5140 (18) Å], leading to a herringbone packing arrangement.
Keywords: crystal structure; 4-methoxyquinazoline; quinazoline derivatives; π–π stacks; herringbone packing.
CCDC reference: 1034363
1. Related literature
For the synthesis of quinazoline derivatives, see: Bogert & May (1909); Smith et al. (2005); Wang et al. (2010); Yang et al. (2010); Han et al. (2012). For the crystal structures of related compounds, see Alshammari et al. (2014); Derabli et al. (2013); Gao et al. (2012); Huang & Tan (2012); Jia et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: CrysAlis PRO (Agilent, 2014); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).
Supporting information
CCDC reference: 1034363
10.1107/S1600536814025082/hb7317sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814025082/hb7317Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814025082/hb7317Isup3.cml
Copper-catalyzed processes offer convenient approaches to various quinazoline derivatives starting from (2-bromophenyl)methylamines, 2-aminobenzylamines or 2-bromobenzonitriles (Wang et al., 2010; Yang et al., 2010; Han et al., 2012). For ring substitution and modification of 4-methoxyquinazolines, see: Smith et al. (2005). 4-Methoxyquinazoline was synthesized in 81% yield from reaction of quinazoline-4(3H)-thione with iodomethane in aqueous methanol containing potassium hydroxide at room temperature for 24 h (Bogert & May, 1909). For the X-ray structures for related compounds, see Alshammari et al. (2014); Derabli et al. (2013); Gao et al. (2012); Huang & Tan (2012); Jia et al. (2011).
The π-π stacks parallel to the b-axis leading to a herring-bone pattern in the (Fig. 2).
consists of one molecule of C9H8N2O (Fig. 1). The molecule is almost planar apart from the methyl hydrogen atoms, with C9 deviating from the least squares plane of the quinazoline group by 0.068 (4)Å. The molecules formTo a solution of quinazoline-4(3H)-thione (4.9 g, 30.2 mmol) in a 1:1 mixture of methanol and water (50 ml) containing potassium hydroxide (3.0 g), was added iodomethane (5.7 g, 40.1 mmol) at room temperature. The reaction mixture was stirred for 24 h, then methanol was removed under reduced pressure and the remaining aqueous layer was extracted with diethyl ether (2 × 20 ml). The organic layer was separated, washed with water (2 × 10 ml), dried (MgSO4), and evaporated under reduced pressure. The residue obtained was purified by δ p.p.m.): 8.77 (s, 1 H, H-2), 8.08 (dd, J = 1, 8 Hz, 1 H, H-8), 7.88 (dd, J = 1,8 Hz, 1 H, H-5), 7.76 (app. dt, J = 1, 8 Hz, 1 H, H-7), 7.50 (app. t, J = 8 Hz, 1 H, H-6), 4.13 (s, 3 H, OCH3). 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 167.4 (s, C-4), 154.6 (d, C-2), 151.1 (s, C-8a), 133.8 (d, C-7), 128.0 (d, C-8), 127.3 (d, C-5), 123.8 (d, C-6), 116.9 (s, C-4a), 54.6 (q, OCH3). EI–MS (m/z, %): 160 (M+, 68), 131 (32), 130 (30), 103 (100), 90 (22), 76 (28), 63 (21). CI–MS (m/z, %): 161 (MH+, 100). HRMS (CI): calculated for C9H9N2O [MH] 161.0709; found, 161.0708.
(silica gel, diethyl ether–hexane, 1:1) to give 4-methoxyquinazoline (3.9 g, 24.4 mmol, 81%) as a white solid. Crystallization from a mixture of ethyl acetate and diethyl ether (1:3 by volume) gave the title compound as colorless needles. mp 34–35°C [lit. 35.4°C; Bogert & May, (1909)]. 1H NMR (400 MHz, CDCl3,Data collection: CrysAlis PRO (Agilent, 2014); cell
CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).Fig. 1. The title molecule showing 50% probability displacement ellipsoids. Fig. 2. Crystal packing viewed down the a axis. |
C9H8N2O | F(000) = 168 |
Mr = 160.17 | Dx = 1.389 Mg m−3 |
Monoclinic, P21 | Cu Kα radiation, λ = 1.54184 Å |
a = 6.9590 (6) Å | Cell parameters from 1311 reflections |
b = 4.0517 (3) Å | θ = 3.3–67.7° |
c = 13.5858 (12) Å | µ = 0.77 mm−1 |
β = 91.754 (8)° | T = 150 K |
V = 382.88 (6) Å3 | Needle, colourless |
Z = 2 | 0.57 × 0.12 × 0.08 mm |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1311 reflections with I > 2σ(I) |
ω scans | Rint = 0.040 |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | θmax = 74.6°, θmin = 3.3° |
Tmin = 0.641, Tmax = 0.895 | h = −8→8 |
2166 measured reflections | k = −4→5 |
1435 independent reflections | l = −11→16 |
Refinement on F2 | 1 restraint |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.159 | w = 1/[σ2(Fo2) + (0.110P)2 + 0.0483P] where P = (Fo2 + 2Fc2)/3 |
S = 1.08 | (Δ/σ)max < 0.001 |
1435 reflections | Δρmax = 0.24 e Å−3 |
110 parameters | Δρmin = −0.23 e Å−3 |
C9H8N2O | V = 382.88 (6) Å3 |
Mr = 160.17 | Z = 2 |
Monoclinic, P21 | Cu Kα radiation |
a = 6.9590 (6) Å | µ = 0.77 mm−1 |
b = 4.0517 (3) Å | T = 150 K |
c = 13.5858 (12) Å | 0.57 × 0.12 × 0.08 mm |
β = 91.754 (8)° |
Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer | 1435 independent reflections |
Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014) | 1311 reflections with I > 2σ(I) |
Tmin = 0.641, Tmax = 0.895 | Rint = 0.040 |
2166 measured reflections |
R[F2 > 2σ(F2)] = 0.054 | 1 restraint |
wR(F2) = 0.159 | H-atom parameters constrained |
S = 1.08 | Δρmax = 0.24 e Å−3 |
1435 reflections | Δρmin = −0.23 e Å−3 |
110 parameters |
Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | −0.1179 (5) | 0.8736 (9) | 0.7198 (2) | 0.0403 (8) | |
H1 | −0.2391 | 0.7831 | 0.7078 | 0.048* | |
C2 | 0.1829 (4) | 0.9515 (7) | 0.6650 (2) | 0.0330 (7) | |
C3 | 0.2338 (4) | 1.1283 (7) | 0.7527 (2) | 0.0330 (7) | |
C4 | 0.0855 (4) | 1.1608 (7) | 0.8208 (2) | 0.0349 (7) | |
C5 | 0.1265 (5) | 1.3290 (8) | 0.9096 (3) | 0.0426 (8) | |
H5 | 0.0308 | 1.3526 | 0.9554 | 0.051* | |
C6 | 0.3034 (5) | 1.4570 (8) | 0.9292 (2) | 0.0431 (8) | |
H6 | 0.3276 | 1.5675 | 0.9883 | 0.052* | |
C7 | 0.4520 (5) | 1.4246 (10) | 0.8608 (3) | 0.0411 (7) | |
H7 | 0.5731 | 1.5127 | 0.8751 | 0.049* | |
C8 | 0.4169 (5) | 1.2640 (7) | 0.7739 (2) | 0.0364 (7) | |
H8 | 0.5138 | 1.2440 | 0.7287 | 0.044* | |
C9 | 0.2674 (5) | 0.7530 (9) | 0.5079 (3) | 0.0433 (8) | |
H9A | 0.1669 | 0.8757 | 0.4745 | 0.065* | |
H9B | 0.2226 | 0.5340 | 0.5215 | 0.065* | |
H9C | 0.3771 | 0.7410 | 0.4669 | 0.065* | |
N1 | −0.0945 (4) | 1.0312 (7) | 0.8028 (2) | 0.0412 (7) | |
N2 | 0.0121 (4) | 0.8237 (6) | 0.6479 (2) | 0.0378 (7) | |
O1 | 0.3208 (3) | 0.9159 (6) | 0.59930 (16) | 0.0381 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0293 (13) | 0.0351 (16) | 0.0562 (19) | −0.0019 (13) | −0.0033 (12) | 0.0037 (15) |
C2 | 0.0334 (14) | 0.0278 (15) | 0.0374 (15) | 0.0007 (13) | −0.0059 (11) | 0.0054 (12) |
C3 | 0.0310 (14) | 0.0268 (14) | 0.0408 (15) | 0.0051 (11) | −0.0036 (12) | 0.0073 (12) |
C4 | 0.0356 (16) | 0.0283 (15) | 0.0405 (16) | 0.0033 (13) | −0.0020 (12) | 0.0071 (13) |
C5 | 0.0473 (18) | 0.0386 (17) | 0.0423 (18) | 0.0053 (15) | 0.0052 (14) | 0.0023 (15) |
C6 | 0.0528 (19) | 0.0364 (18) | 0.0396 (17) | 0.0030 (15) | −0.0075 (14) | −0.0008 (14) |
C7 | 0.0367 (14) | 0.0373 (16) | 0.0486 (17) | 0.0006 (14) | −0.0104 (12) | 0.0020 (14) |
C8 | 0.0327 (14) | 0.0346 (16) | 0.0416 (18) | 0.0033 (13) | −0.0051 (12) | 0.0057 (14) |
C9 | 0.0445 (17) | 0.0437 (18) | 0.0414 (17) | 0.0051 (16) | −0.0052 (13) | −0.0020 (14) |
N1 | 0.0336 (13) | 0.0372 (14) | 0.0528 (17) | −0.0001 (11) | 0.0023 (11) | 0.0013 (13) |
N2 | 0.0346 (13) | 0.0336 (14) | 0.0446 (14) | −0.0001 (10) | −0.0084 (11) | 0.0044 (11) |
O1 | 0.0346 (10) | 0.0430 (13) | 0.0367 (11) | −0.0004 (11) | −0.0016 (8) | −0.0004 (10) |
C1—N1 | 1.302 (4) | C5—H5 | 0.9300 |
C1—N2 | 1.366 (4) | C6—C7 | 1.417 (5) |
C1—H1 | 0.9300 | C6—H6 | 0.9300 |
C2—N2 | 1.311 (4) | C7—C8 | 1.363 (5) |
C2—O1 | 1.338 (4) | C7—H7 | 0.9300 |
C2—C3 | 1.425 (4) | C8—H8 | 0.9300 |
C3—C8 | 1.409 (4) | C9—O1 | 1.445 (4) |
C3—C4 | 1.413 (4) | C9—H9A | 0.9600 |
C4—N1 | 1.373 (4) | C9—H9B | 0.9600 |
C4—C5 | 1.407 (5) | C9—H9C | 0.9600 |
C5—C6 | 1.355 (5) | ||
N1—C1—N2 | 128.6 (3) | C7—C6—H6 | 119.6 |
N1—C1—H1 | 115.7 | C8—C7—C6 | 119.8 (3) |
N2—C1—H1 | 115.7 | C8—C7—H7 | 120.1 |
N2—C2—O1 | 120.3 (3) | C6—C7—H7 | 120.1 |
N2—C2—C3 | 123.2 (3) | C7—C8—C3 | 120.0 (3) |
O1—C2—C3 | 116.5 (2) | C7—C8—H8 | 120.0 |
C8—C3—C4 | 120.2 (3) | C3—C8—H8 | 120.0 |
C8—C3—C2 | 124.6 (3) | O1—C9—H9A | 109.5 |
C4—C3—C2 | 115.2 (3) | O1—C9—H9B | 109.5 |
N1—C4—C5 | 119.8 (3) | H9A—C9—H9B | 109.5 |
N1—C4—C3 | 121.9 (3) | O1—C9—H9C | 109.5 |
C5—C4—C3 | 118.2 (3) | H9A—C9—H9C | 109.5 |
C6—C5—C4 | 120.9 (3) | H9B—C9—H9C | 109.5 |
C6—C5—H5 | 119.6 | C1—N1—C4 | 115.5 (3) |
C4—C5—H5 | 119.6 | C2—N2—C1 | 115.6 (3) |
C5—C6—C7 | 120.8 (3) | C2—O1—C9 | 116.9 (2) |
C5—C6—H6 | 119.6 |
Experimental details
Crystal data | |
Chemical formula | C9H8N2O |
Mr | 160.17 |
Crystal system, space group | Monoclinic, P21 |
Temperature (K) | 150 |
a, b, c (Å) | 6.9590 (6), 4.0517 (3), 13.5858 (12) |
β (°) | 91.754 (8) |
V (Å3) | 382.88 (6) |
Z | 2 |
Radiation type | Cu Kα |
µ (mm−1) | 0.77 |
Crystal size (mm) | 0.57 × 0.12 × 0.08 |
Data collection | |
Diffractometer | Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer |
Absorption correction | Gaussian (CrysAlis PRO; Agilent, 2014) |
Tmin, Tmax | 0.641, 0.895 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2166, 1435, 1311 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.159, 1.08 |
No. of reflections | 1435 |
No. of parameters | 110 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.24, −0.23 |
Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).
Acknowledgements
This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under the research project 2013/01/134.
References
Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England. Google Scholar
Alshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014). Acta Cryst. E70, o871. CSD CrossRef IUCr Journals Google Scholar
Bogert, M. T. & May, C. R. (1909). J. Am. Chem. Soc. 31, 507–513. CrossRef CAS Google Scholar
Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA. Google Scholar
Derabli, C., Boulcina, R., Bouacida, S., Merazig, H. & Debache, A. (2013). Acta Cryst. E69, o1653–o1654. CSD CrossRef CAS IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Gao, F., Hu, Y.-F. & Wang, J.-L. (2012). Acta Cryst. E68, o740. CSD CrossRef IUCr Journals Google Scholar
Han, B., Yang, X.-L., Wang, C., Bai, Y.-W., Pan, T.-C., Chen, X. & Yu, W. (2012). J. Org. Chem. 77, 1136–1142. Web of Science CrossRef CAS PubMed Google Scholar
Huang, W. & Tan, A. (2012). Acta Cryst. E68, o1149. CSD CrossRef IUCr Journals Google Scholar
Jia, J., Wang, G. & Lu, D. (2011). Acta Cryst. E67, o229. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005). J. Sulfur Chem. 26, 121–129. CrossRef CAS Google Scholar
Wang, C., Li, S., Liu, H., Jiang, Y. & Fu, H. (2010). J. Org. Chem. 75, 7936–7938. Web of Science CrossRef CAS PubMed Google Scholar
Yang, X., Lin, H., Qiao, R., Jiang, Y. & Zhao, Y. (2010). Synlett, 106–106. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.