organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 4-meth­­oxy­quinazoline

aCornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, PO Box 10219, Riyadh 11433, Saudi Arabia, bSchool of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, Wales, and cChemistry Department, College of Sciences and Humanities, Salman bin Abdulaziz University, PO Box 83, Al-Kharij 11942, Saudi Arabia
*Correspondence e-mail: gelhiti@ksu.edu.sa, kariukib@cardiff.ac.uk

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 November 2014; accepted 15 November 2014; online 21 November 2014)

The title compound, C9H8N2O, is almost planar, with the C atom of the meth­oxy group deviating from the mean plane of the quinazoline ring system (r.m.s. deviation = 0.011 Å) by 0.068 (4) Å. In the crystal, mol­ecules form ππ stacks parallel to the b-axis direction [centroid–centroid separation = 3.5140 (18) Å], leading to a herringbone packing arrangement.

1. Related literature

For the synthesis of quinazoline derivatives, see: Bogert & May (1909[Bogert, M. T. & May, C. R. (1909). J. Am. Chem. Soc. 31, 507-513.]); Smith et al. (2005[Smith, K., El-Hiti, G. A. & Hegazy, A. S. (2005). J. Sulfur Chem. 26, 121-129.]); Wang et al. (2010[Wang, C., Li, S., Liu, H., Jiang, Y. & Fu, H. (2010). J. Org. Chem. 75, 7936-7938.]); Yang et al. (2010[Yang, X., Lin, H., Qiao, R., Jiang, Y. & Zhao, Y. (2010). Synlett, 106-106.]); Han et al. (2012[Han, B., Yang, X.-L., Wang, C., Bai, Y.-W., Pan, T.-C., Chen, X. & Yu, W. (2012). J. Org. Chem. 77, 1136-1142.]). For the crystal structures of related compounds, see Alshammari et al. (2014[Alshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014). Acta Cryst. E70, o871.]); Derabli et al. (2013[Derabli, C., Boulcina, R., Bouacida, S., Merazig, H. & Debache, A. (2013). Acta Cryst. E69, o1653-o1654.]); Gao et al. (2012[Gao, F., Hu, Y.-F. & Wang, J.-L. (2012). Acta Cryst. E68, o740.]); Huang & Tan (2012[Huang, W. & Tan, A. (2012). Acta Cryst. E68, o1149.]); Jia et al. (2011[Jia, J., Wang, G. & Lu, D. (2011). Acta Cryst. E67, o229.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C9H8N2O

  • Mr = 160.17

  • Monoclinic, P 21

  • a = 6.9590 (6) Å

  • b = 4.0517 (3) Å

  • c = 13.5858 (12) Å

  • β = 91.754 (8)°

  • V = 382.88 (6) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.77 mm−1

  • T = 150 K

  • 0.57 × 0.12 × 0.08 mm

2.2. Data collection

  • Agilent SuperNova (Dual, Cu at zero, Atlas) diffractometer

  • Absorption correction: gaussian (CrysAlis PRO; Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.641, Tmax = 0.895

  • 2166 measured reflections

  • 1435 independent reflections

  • 1311 reflections with I > 2σ(I)

  • Rint = 0.040

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.159

  • S = 1.08

  • 1435 reflections

  • 110 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis PRO (Agilent, 2014[Agilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CHEMDRAW Ultra (Cambridge Soft, 2001[Cambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.]).

Supporting information


Structural commentary top

Copper-catalyzed processes offer convenient approaches to various quinazoline derivatives starting from (2-bromo­phenyl)­methyl­amines, 2-amino­benzyl­amines or 2-bromo­benzo­nitriles (Wang et al., 2010; Yang et al., 2010; Han et al., 2012). For ring substitution and modification of 4-meth­oxy­quinazolines, see: Smith et al. (2005). 4-Meth­oxy­quinazoline was synthesized in 81% yield from reaction of quinazoline-4(3H)-thione with iodo­methane in aqueous methanol containing potassium hydroxide at room temperature for 24 h (Bogert & May, 1909). For the X-ray structures for related compounds, see Alshammari et al. (2014); Derabli et al. (2013); Gao et al. (2012); Huang & Tan (2012); Jia et al. (2011).

The asymmetric unit consists of one molecule of C9H8N2O (Fig. 1). The molecule is almost planar apart from the methyl hydrogen atoms, with C9 deviating from the least squares plane of the quinazoline group by 0.068 (4)Å. The molecules form π-π stacks parallel to the b-axis leading to a herring-bone pattern in the crystal structure (Fig. 2).

Synthesis and crystallization top

To a solution of quinazoline-4(3H)-thione (4.9 g, 30.2 mmol) in a 1:1 mixture of methanol and water (50 ml) containing potassium hydroxide (3.0 g), was added iodo­methane (5.7 g, 40.1 mmol) at room temperature. The reaction mixture was stirred for 24 h, then methanol was removed under reduced pressure and the remaining aqueous layer was extracted with di­ethyl ether (2 × 20 ml). The organic layer was separated, washed with water (2 × 10 ml), dried (MgSO4), and evaporated under reduced pressure. The residue obtained was purified by column chromatography (silica gel, di­ethyl ether–hexane, 1:1) to give 4-meth­oxy­quinazoline (3.9 g, 24.4 mmol, 81%) as a white solid. Crystallization from a mixture of ethyl acetate and di­ethyl ether (1:3 by volume) gave the title compound as colorless needles. mp 34–35°C [lit. 35.4°C; Bogert & May, (1909)]. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 8.77 (s, 1 H, H-2), 8.08 (dd, J = 1, 8 Hz, 1 H, H-8), 7.88 (dd, J = 1,8 Hz, 1 H, H-5), 7.76 (app. dt, J = 1, 8 Hz, 1 H, H-7), 7.50 (app. t, J = 8 Hz, 1 H, H-6), 4.13 (s, 3 H, OCH3). 13C NMR (100 MHz, CDCl3, δ, p.p.m.): 167.4 (s, C-4), 154.6 (d, C-2), 151.1 (s, C-8a), 133.8 (d, C-7), 128.0 (d, C-8), 127.3 (d, C-5), 123.8 (d, C-6), 116.9 (s, C-4a), 54.6 (q, OCH3). EI–MS (m/z, %): 160 (M+, 68), 131 (32), 130 (30), 103 (100), 90 (22), 76 (28), 63 (21). CI–MS (m/z, %): 161 (MH+, 100). HRMS (CI): calculated for C9H9N2O [MH] 161.0709; found, 161.0708.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1.

Related literature top

For the synthesis of quinazoline derivatives, see: Bogert & May (1909); Smith et al. (2005); Wang et al. (2010); Yang et al. (2010); Han et al. (2012). For the crystal structures of related compounds, see Alshammari et al. (2014); Derabli et al. (2013); Gao et al. (2012); Huang & Tan (2012); Jia et al. (2011).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

Figures top
Fig. 1. The title molecule showing 50% probability displacement ellipsoids.

Fig. 2. Crystal packing viewed down the a axis.
4-Methoxyquinazoline top
Crystal data top
C9H8N2OF(000) = 168
Mr = 160.17Dx = 1.389 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
a = 6.9590 (6) ÅCell parameters from 1311 reflections
b = 4.0517 (3) Åθ = 3.3–67.7°
c = 13.5858 (12) ŵ = 0.77 mm1
β = 91.754 (8)°T = 150 K
V = 382.88 (6) Å3Needle, colourless
Z = 20.57 × 0.12 × 0.08 mm
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1311 reflections with I > 2σ(I)
ω scansRint = 0.040
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
θmax = 74.6°, θmin = 3.3°
Tmin = 0.641, Tmax = 0.895h = 88
2166 measured reflectionsk = 45
1435 independent reflectionsl = 1116
Refinement top
Refinement on F21 restraint
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.159 w = 1/[σ2(Fo2) + (0.110P)2 + 0.0483P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
1435 reflectionsΔρmax = 0.24 e Å3
110 parametersΔρmin = 0.23 e Å3
Crystal data top
C9H8N2OV = 382.88 (6) Å3
Mr = 160.17Z = 2
Monoclinic, P21Cu Kα radiation
a = 6.9590 (6) ŵ = 0.77 mm1
b = 4.0517 (3) ÅT = 150 K
c = 13.5858 (12) Å0.57 × 0.12 × 0.08 mm
β = 91.754 (8)°
Data collection top
Agilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
1435 independent reflections
Absorption correction: gaussian
(CrysAlis PRO; Agilent, 2014)
1311 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 0.895Rint = 0.040
2166 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0541 restraint
wR(F2) = 0.159H-atom parameters constrained
S = 1.08Δρmax = 0.24 e Å3
1435 reflectionsΔρmin = 0.23 e Å3
110 parameters
Special details top

Experimental. Absorption correction: CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014 CrysAlis171 .NET) (compiled Mar 27 2014,17:12:48) Numerical absorption correction based on gaussian integration over a multifaceted crystal model Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1179 (5)0.8736 (9)0.7198 (2)0.0403 (8)
H10.23910.78310.70780.048*
C20.1829 (4)0.9515 (7)0.6650 (2)0.0330 (7)
C30.2338 (4)1.1283 (7)0.7527 (2)0.0330 (7)
C40.0855 (4)1.1608 (7)0.8208 (2)0.0349 (7)
C50.1265 (5)1.3290 (8)0.9096 (3)0.0426 (8)
H50.03081.35260.95540.051*
C60.3034 (5)1.4570 (8)0.9292 (2)0.0431 (8)
H60.32761.56750.98830.052*
C70.4520 (5)1.4246 (10)0.8608 (3)0.0411 (7)
H70.57311.51270.87510.049*
C80.4169 (5)1.2640 (7)0.7739 (2)0.0364 (7)
H80.51381.24400.72870.044*
C90.2674 (5)0.7530 (9)0.5079 (3)0.0433 (8)
H9A0.16690.87570.47450.065*
H9B0.22260.53400.52150.065*
H9C0.37710.74100.46690.065*
N10.0945 (4)1.0312 (7)0.8028 (2)0.0412 (7)
N20.0121 (4)0.8237 (6)0.6479 (2)0.0378 (7)
O10.3208 (3)0.9159 (6)0.59930 (16)0.0381 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0293 (13)0.0351 (16)0.0562 (19)0.0019 (13)0.0033 (12)0.0037 (15)
C20.0334 (14)0.0278 (15)0.0374 (15)0.0007 (13)0.0059 (11)0.0054 (12)
C30.0310 (14)0.0268 (14)0.0408 (15)0.0051 (11)0.0036 (12)0.0073 (12)
C40.0356 (16)0.0283 (15)0.0405 (16)0.0033 (13)0.0020 (12)0.0071 (13)
C50.0473 (18)0.0386 (17)0.0423 (18)0.0053 (15)0.0052 (14)0.0023 (15)
C60.0528 (19)0.0364 (18)0.0396 (17)0.0030 (15)0.0075 (14)0.0008 (14)
C70.0367 (14)0.0373 (16)0.0486 (17)0.0006 (14)0.0104 (12)0.0020 (14)
C80.0327 (14)0.0346 (16)0.0416 (18)0.0033 (13)0.0051 (12)0.0057 (14)
C90.0445 (17)0.0437 (18)0.0414 (17)0.0051 (16)0.0052 (13)0.0020 (14)
N10.0336 (13)0.0372 (14)0.0528 (17)0.0001 (11)0.0023 (11)0.0013 (13)
N20.0346 (13)0.0336 (14)0.0446 (14)0.0001 (10)0.0084 (11)0.0044 (11)
O10.0346 (10)0.0430 (13)0.0367 (11)0.0004 (11)0.0016 (8)0.0004 (10)
Geometric parameters (Å, º) top
C1—N11.302 (4)C5—H50.9300
C1—N21.366 (4)C6—C71.417 (5)
C1—H10.9300C6—H60.9300
C2—N21.311 (4)C7—C81.363 (5)
C2—O11.338 (4)C7—H70.9300
C2—C31.425 (4)C8—H80.9300
C3—C81.409 (4)C9—O11.445 (4)
C3—C41.413 (4)C9—H9A0.9600
C4—N11.373 (4)C9—H9B0.9600
C4—C51.407 (5)C9—H9C0.9600
C5—C61.355 (5)
N1—C1—N2128.6 (3)C7—C6—H6119.6
N1—C1—H1115.7C8—C7—C6119.8 (3)
N2—C1—H1115.7C8—C7—H7120.1
N2—C2—O1120.3 (3)C6—C7—H7120.1
N2—C2—C3123.2 (3)C7—C8—C3120.0 (3)
O1—C2—C3116.5 (2)C7—C8—H8120.0
C8—C3—C4120.2 (3)C3—C8—H8120.0
C8—C3—C2124.6 (3)O1—C9—H9A109.5
C4—C3—C2115.2 (3)O1—C9—H9B109.5
N1—C4—C5119.8 (3)H9A—C9—H9B109.5
N1—C4—C3121.9 (3)O1—C9—H9C109.5
C5—C4—C3118.2 (3)H9A—C9—H9C109.5
C6—C5—C4120.9 (3)H9B—C9—H9C109.5
C6—C5—H5119.6C1—N1—C4115.5 (3)
C4—C5—H5119.6C2—N2—C1115.6 (3)
C5—C6—C7120.8 (3)C2—O1—C9116.9 (2)
C5—C6—H6119.6

Experimental details

Crystal data
Chemical formulaC9H8N2O
Mr160.17
Crystal system, space groupMonoclinic, P21
Temperature (K)150
a, b, c (Å)6.9590 (6), 4.0517 (3), 13.5858 (12)
β (°) 91.754 (8)
V3)382.88 (6)
Z2
Radiation typeCu Kα
µ (mm1)0.77
Crystal size (mm)0.57 × 0.12 × 0.08
Data collection
DiffractometerAgilent SuperNova (Dual, Cu at zero, Atlas)
diffractometer
Absorption correctionGaussian
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.641, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
2166, 1435, 1311
Rint0.040
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.159, 1.08
No. of reflections1435
No. of parameters110
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.23

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012) and CHEMDRAW Ultra (Cambridge Soft, 2001).

 

Acknowledgements

This project was supported by the Deanship of Scientific Research at Salman bin Abdulaziz University under the research project 2013/01/134.

References

First citationAgilent (2014). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAlshammari, M. B., Smith, K., Hegazy, A. S., Kariuki, B. M. & El-Hiti, G. A. (2014). Acta Cryst. E70, o871.  CSD CrossRef IUCr Journals Google Scholar
First citationBogert, M. T. & May, C. R. (1909). J. Am. Chem. Soc. 31, 507–513.  CrossRef CAS Google Scholar
First citationCambridge Soft (2001). CHEMDRAW Ultra. Cambridge Soft Corporation, Cambridge, Massachusetts, USA.  Google Scholar
First citationDerabli, C., Boulcina, R., Bouacida, S., Merazig, H. & Debache, A. (2013). Acta Cryst. E69, o1653–o1654.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGao, F., Hu, Y.-F. & Wang, J.-L. (2012). Acta Cryst. E68, o740.  CSD CrossRef IUCr Journals Google Scholar
First citationHan, B., Yang, X.-L., Wang, C., Bai, Y.-W., Pan, T.-C., Chen, X. & Yu, W. (2012). J. Org. Chem. 77, 1136–1142.  Web of Science CrossRef CAS PubMed Google Scholar
First citationHuang, W. & Tan, A. (2012). Acta Cryst. E68, o1149.  CSD CrossRef IUCr Journals Google Scholar
First citationJia, J., Wang, G. & Lu, D. (2011). Acta Cryst. E67, o229.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, K., El-Hiti, G. A. & Hegazy, A. S. (2005). J. Sulfur Chem. 26, 121–129.  CrossRef CAS Google Scholar
First citationWang, C., Li, S., Liu, H., Jiang, Y. & Fu, H. (2010). J. Org. Chem. 75, 7936–7938.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYang, X., Lin, H., Qiao, R., Jiang, Y. & Zhao, Y. (2010). Synlett, 106–106.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds