organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 2-phenyl­ethyl­amin­ium 4-nitro­phenolate monohydrate

aDepartment of Applied Physics, Sri Venkateswara College of Engineering, Chennai 602 117, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: mohan66@hotmail.com, chakkaravarthi_2005@yahoo.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 November 2014; accepted 18 November 2014; online 21 November 2014)

In the title hydrated mol­ecular salt, C8H12N+·C6H4NO3·H2O, the conformation of the side chain in the cation is anti [C—C—C—N = 179.62 (12)°] and the dihedral angle between the aromatic ring and the nitro group in the anion is 3.34 (11)°. In the crystal, the components are linked by O—H⋯O and N—H⋯O hydrogen bonds, generating (10-1) sheets, which feature R44(21) loops. The sheets inter­act by weak aromatic ππ stacking inter­actions [centroid–centroid distance = 3.896 (3) Å], forming a three-dimensional network.

1. Related literature

For related structures, see: Kanagathara et al. (2012[Kanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.]); Lejon et al. (2006[Lejon, T., Ingebrigtsen, T. & Hansen, L. K. (2006). Acta Cryst. E62, o701-o702.]); Sankar et al. (2014[Sankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o450.]); Smith et al. (2003[Smith, G., Wermuth, U. D. & White, J. M. (2003). Acta Cryst. E59, o1977-o1979.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C8H12N+·C6H4NO3·H2O

  • Mr = 278.30

  • Monoclinic, C 2/c

  • a = 30.381 (5) Å

  • b = 6.100 (4) Å

  • c = 21.357 (5) Å

  • β = 131.876 (5)°

  • V = 2947 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 295 K

  • 0.26 × 0.24 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.976, Tmax = 0.982

  • 14174 measured reflections

  • 3675 independent reflections

  • 2748 reflections with I > 2σ(I)

  • Rint = 0.021

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.124

  • S = 1.03

  • 3675 reflections

  • 200 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.90 (1) 1.81 (1) 2.7108 (17) 176 (18)
O4—H4B⋯O1 0.84 (1) 1.90 (1) 2.7262 (18) 173 (2)
N1—H1B⋯O2i 0.90 (1) 2.11 (1) 2.8937 (17) 145 (15)
N1—H1C⋯O4ii 0.91 (1) 1.84 (1) 2.742 (2) 172 (18)
O4—H4A⋯O1iii 0.83 (1) 1.93 (1) 2.7574 (16) 175 (2)
Symmetry codes: (i) -x, -y+2, -z; (ii) x, y-1, z; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Structural commentary top

The geometric parameters of the title compound (I) (Fig.1) are comparable with the reported similar structures (Kanagathara et al., 2012; Sankar et al., 2014; Lejon et al., 2006; Smith et al., 2003). The cation is protonated at N1 atom. The dihedral angle between the two benzene rings (C1—C6) and (C9—C14) is 3.71 (11)°. In the anion, the nitro group (N2/O2/O3) is twisted at an angle of 3.34 (11)° with the benzene ring (C9—C14).

Supra­molecular features top

In the molecular structure, weak N—H···O and O—H···O hydrogen bonds link the cation, anion and water molecule which generates S(6) graph set motif. In the crystal structure, N—H···O and O—H···O hydrogen bonds link the anions, cations and water molecules into sheets, parallel to ac plane and further theses sheets are linked by O—H···O hydrogen bonds along [0 1 0] (Table 2 & Fig. 2). The N—H···O hydrogen bonds generates R44(21) graph-set motif (Fig. 2).

The crystal structure also features weak C—H···π (Table 2) and ππ [Cg2···Cg2i distance = 3.896 (3)Å; (i) -x,2-y,-z; Cg2 is the centroid of the C9—C14 ring] inter­actions to form a three dimensional network.

Synthesis and crystallization top

2-Phenyl­ethyl­amine (1.26 g) and 4-nitro­phenol (1.39 g) were disssolved in methanol and colourless blocks of the title compound were grown by slow evaporation.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. The C-bound H atoms were positioned geometrically and refined using riding model, with C—H = 0.93 and 0.97 Å for CHaromatic and CH2, respectively with Uiso(H) = 1.2Ueq(C). The H atoms bound to O and N atoms were found in a difference map and refined isotropically, with Uiso(H) = 1.5Ueq(O) and distance restraints: O—H = 0.82 (1)Å and N—H = 0.88 (1)Å. The components of the anisotropic displacement parameters in the direction of the bond between C3 and C4 were restrained to be equal within an effective standard deviation of 0.001 using the DELU command in SHELXL97 (Sheldrick, 2008).

Related literature top

For related structures, see: Kanagathara et al. (2012); Lejon et al. (2006); Sankar et al. (2014); Smith et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.

Fig. 2. The packing of (I), viewed down b axis. Intermolecular Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted.
2-Phenylethylaminium 4-nitrophenol monohydrate top
Crystal data top
C8H12N+·C6H4NO3·H2OF(000) = 1184
Mr = 278.30Dx = 1.254 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 359 reflections
a = 30.381 (5) Åθ = 1.8–28.4°
b = 6.100 (4) ŵ = 0.09 mm1
c = 21.357 (5) ÅT = 295 K
β = 131.876 (5)°Block, colourless
V = 2947 (2) Å30.26 × 0.24 × 0.20 mm
Z = 8
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3675 independent reflections
Radiation source: fine-focus sealed tube2748 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω and ϕ scanθmax = 28.4°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3840
Tmin = 0.976, Tmax = 0.982k = 78
14174 measured reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.124 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.954P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3675 reflectionsΔρmax = 0.21 e Å3
200 parametersΔρmin = 0.19 e Å3
6 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0031 (5)
Crystal data top
C8H12N+·C6H4NO3·H2OV = 2947 (2) Å3
Mr = 278.30Z = 8
Monoclinic, C2/cMo Kα radiation
a = 30.381 (5) ŵ = 0.09 mm1
b = 6.100 (4) ÅT = 295 K
c = 21.357 (5) Å0.26 × 0.24 × 0.20 mm
β = 131.876 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3675 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2748 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.021
14174 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0436 restraints
wR(F2) = 0.124H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
3675 reflectionsΔρmin = 0.19 e Å3
200 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.32367 (5)0.9073 (2)0.49756 (8)0.0480 (3)
C20.31910 (8)1.1138 (3)0.51903 (11)0.0709 (4)
H20.28851.20630.47770.085*
C30.35989 (10)1.1848 (3)0.60213 (13)0.0850 (5)
H30.35641.32440.61590.102*
C40.40509 (9)1.0511 (4)0.66371 (11)0.0837 (5)
H40.43221.09900.71920.100*
C50.41005 (7)0.8477 (4)0.64310 (10)0.0770 (5)
H50.44070.75600.68460.092*
C60.36972 (6)0.7765 (3)0.56068 (9)0.0579 (3)
H60.37380.63690.54760.070*
C70.28038 (6)0.8233 (3)0.40816 (8)0.0578 (3)
H7A0.27830.92730.37190.069*
H7B0.29490.68560.40520.069*
C80.21941 (6)0.7889 (3)0.37618 (9)0.0606 (4)
H8A0.22140.68900.41330.073*
H8B0.20390.92760.37630.073*
C90.12653 (5)1.0077 (2)0.10944 (7)0.0446 (3)
C100.10095 (6)0.8472 (2)0.04638 (8)0.0530 (3)
H100.11910.71100.06010.064*
C110.04981 (6)0.8868 (2)0.03490 (8)0.0567 (3)
H110.03340.77820.07560.068*
C120.02310 (5)1.0891 (2)0.05554 (7)0.0498 (3)
C130.04662 (5)1.2508 (2)0.00428 (8)0.0521 (3)
H130.02811.38670.01050.062*
C140.09722 (6)1.2110 (2)0.08547 (8)0.0515 (3)
H140.11261.32030.12570.062*
N10.17925 (5)0.6981 (2)0.28992 (7)0.0575 (3)
H1A0.1771 (8)0.784 (3)0.2537 (9)0.081 (5)*
H1B0.1421 (5)0.687 (3)0.2687 (10)0.079 (5)*
H1C0.1932 (8)0.567 (2)0.2897 (12)0.087 (6)*
N20.03040 (5)1.1357 (3)0.14047 (8)0.0693 (4)
O10.17576 (4)0.97214 (16)0.18676 (5)0.0576 (3)
O20.05190 (5)1.3215 (3)0.15745 (8)0.0901 (4)
O30.05367 (6)0.9919 (3)0.19366 (8)0.1055 (5)
O40.23008 (5)1.3211 (2)0.29355 (7)0.0714 (3)
H4A0.2588 (7)1.359 (4)0.2990 (14)0.107*
H4B0.2130 (9)1.221 (3)0.2576 (11)0.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0467 (6)0.0555 (7)0.0463 (6)0.0004 (5)0.0329 (6)0.0024 (5)
C20.0845 (11)0.0564 (9)0.0748 (10)0.0107 (8)0.0544 (10)0.0094 (7)
C30.1192 (15)0.0617 (10)0.0949 (12)0.0177 (8)0.0801 (11)0.0224 (8)
C40.0833 (11)0.1073 (15)0.0598 (9)0.0306 (9)0.0474 (9)0.0248 (8)
C50.0545 (8)0.1111 (14)0.0486 (8)0.0072 (9)0.0275 (7)0.0073 (9)
C60.0506 (7)0.0676 (9)0.0533 (8)0.0079 (6)0.0337 (7)0.0011 (6)
C70.0457 (7)0.0815 (10)0.0448 (7)0.0011 (7)0.0296 (6)0.0002 (6)
C80.0491 (7)0.0805 (10)0.0542 (8)0.0003 (7)0.0353 (7)0.0014 (7)
C90.0342 (5)0.0487 (7)0.0426 (6)0.0014 (5)0.0222 (5)0.0067 (5)
C100.0499 (7)0.0454 (7)0.0563 (7)0.0011 (5)0.0324 (6)0.0035 (6)
C110.0539 (7)0.0599 (8)0.0485 (7)0.0108 (6)0.0310 (6)0.0067 (6)
C120.0355 (5)0.0668 (8)0.0396 (6)0.0029 (5)0.0220 (5)0.0074 (6)
C130.0403 (6)0.0557 (7)0.0517 (7)0.0098 (5)0.0273 (6)0.0100 (6)
C140.0434 (6)0.0512 (7)0.0461 (7)0.0006 (5)0.0242 (6)0.0023 (5)
N10.0390 (6)0.0707 (8)0.0471 (6)0.0026 (5)0.0222 (5)0.0091 (6)
N20.0460 (6)0.1001 (11)0.0440 (6)0.0063 (7)0.0227 (6)0.0111 (7)
O10.0395 (5)0.0603 (6)0.0456 (5)0.0021 (4)0.0170 (4)0.0098 (4)
O20.0524 (6)0.1087 (10)0.0654 (7)0.0168 (6)0.0211 (6)0.0326 (7)
O30.0852 (9)0.1324 (13)0.0444 (6)0.0151 (9)0.0207 (6)0.0103 (7)
O40.0561 (6)0.0691 (7)0.0702 (7)0.0085 (5)0.0344 (6)0.0119 (5)
Geometric parameters (Å, º) top
C1—C61.3761 (19)C9—C101.4066 (19)
C1—C21.379 (2)C9—C141.4084 (19)
C1—C71.5116 (18)C10—C111.3729 (19)
C2—C31.392 (3)C10—H100.9300
C2—H20.9300C11—C121.378 (2)
C3—C41.367 (3)C11—H110.9300
C3—H30.9300C12—C131.377 (2)
C4—C51.358 (3)C12—N21.4410 (17)
C4—H40.9300C13—C141.3677 (18)
C5—C61.382 (2)C13—H130.9300
C5—H50.9300C14—H140.9300
C6—H60.9300N1—H1A0.901 (9)
C7—C81.5010 (19)N1—H1B0.895 (9)
C7—H7A0.9700N1—H1C0.908 (9)
C7—H7B0.9700N2—O31.220 (2)
C8—N11.4795 (19)N2—O21.235 (2)
C8—H8A0.9700O4—H4A0.834 (9)
C8—H8B0.9700O4—H4B0.836 (10)
C9—O11.3091 (14)
C6—C1—C2117.79 (14)H8A—C8—H8B108.0
C6—C1—C7119.94 (13)O1—C9—C10121.89 (12)
C2—C1—C7122.27 (13)O1—C9—C14121.15 (12)
C1—C2—C3120.45 (16)C10—C9—C14116.96 (11)
C1—C2—H2119.8C11—C10—C9121.59 (13)
C3—C2—H2119.8C11—C10—H10119.2
C4—C3—C2120.58 (17)C9—C10—H10119.2
C4—C3—H3119.7C10—C11—C12119.33 (13)
C2—C3—H3119.7C10—C11—H11120.3
C5—C4—C3119.38 (16)C12—C11—H11120.3
C5—C4—H4120.3C13—C12—C11120.97 (12)
C3—C4—H4120.3C13—C12—N2118.50 (13)
C4—C5—C6120.29 (17)C11—C12—N2120.53 (13)
C4—C5—H5119.9C14—C13—C12119.79 (13)
C6—C5—H5119.9C14—C13—H13120.1
C1—C6—C5121.51 (15)C12—C13—H13120.1
C1—C6—H6119.2C13—C14—C9121.35 (12)
C5—C6—H6119.2C13—C14—H14119.3
C8—C7—C1113.03 (10)C9—C14—H14119.3
C8—C7—H7A109.0C8—N1—H1A112.1 (12)
C1—C7—H7A109.0C8—N1—H1B111.8 (11)
C8—C7—H7B109.0H1A—N1—H1B105.3 (16)
C1—C7—H7B109.0C8—N1—H1C109.7 (12)
H7A—C7—H7B107.8H1A—N1—H1C106.2 (16)
N1—C8—C7111.13 (11)H1B—N1—H1C111.6 (17)
N1—C8—H8A109.4O3—N2—O2121.46 (14)
C7—C8—H8A109.4O3—N2—C12119.74 (16)
N1—C8—H8B109.4O2—N2—C12118.79 (14)
C7—C8—H8B109.4H4A—O4—H4B106 (2)
C6—C1—C2—C30.3 (2)C9—C10—C11—C120.6 (2)
C7—C1—C2—C3179.97 (14)C10—C11—C12—C130.67 (19)
C1—C2—C3—C40.0 (3)C10—C11—C12—N2179.62 (12)
C2—C3—C4—C50.2 (3)C11—C12—C13—C140.01 (19)
C3—C4—C5—C60.1 (3)N2—C12—C13—C14179.73 (11)
C2—C1—C6—C50.4 (2)C12—C13—C14—C90.8 (2)
C7—C1—C6—C5179.87 (13)O1—C9—C14—C13178.27 (12)
C4—C5—C6—C10.2 (2)C10—C9—C14—C130.82 (19)
C6—C1—C7—C8112.74 (15)C13—C12—N2—O3176.42 (14)
C2—C1—C7—C867.52 (18)C11—C12—N2—O33.3 (2)
C1—C7—C8—N1177.62 (13)C13—C12—N2—O23.03 (18)
O1—C9—C10—C11178.94 (12)C11—C12—N2—O2177.25 (13)
C14—C9—C10—C110.15 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.90 (1)1.81 (1)2.7108 (17)176 (18)
O4—H4B···O10.84 (1)1.90 (1)2.7262 (18)173 (2)
N1—H1B···O2i0.90 (1)2.11 (1)2.8937 (17)145 (15)
N1—H1C···O4ii0.91 (1)1.84 (1)2.742 (2)172 (18)
O4—H4A···O1iii0.83 (1)1.93 (1)2.7574 (16)175 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.901 (9)1.812 (10)2.7108 (17)176 (18)
O4—H4B···O10.836 (10)1.895 (10)2.7262 (18)173 (2)
N1—H1B···O2i0.895 (9)2.112 (12)2.8937 (17)145 (15)
N1—H1C···O4ii0.908 (9)1.839 (10)2.742 (2)172 (18)
O4—H4A···O1iii0.834 (9)1.926 (10)2.7574 (16)175 (2)
Symmetry codes: (i) x, y+2, z; (ii) x, y1, z; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the SAIF, IIT, Madras, for the data collection.

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKanagathara, N., Chakkaravarthi, G., Marchewka, M. K., Gunasekaran, S. & Anbalagan, G. (2012). Acta Cryst. E68, o2286.  CSD CrossRef IUCr Journals Google Scholar
First citationLejon, T., Ingebrigtsen, T. & Hansen, L. K. (2006). Acta Cryst. E62, o701–o702.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o450.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2003). Acta Cryst. E59, o1977–o1979.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds