organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of ethyl 4-[(1H-pyrazol-1-yl)meth­yl]benzoate

aInstitute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fchg042@163.com

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 15 November 2014; accepted 16 November 2014; online 26 November 2014)

In the title mol­ecule, C13H14N2O2, the dihedral angle between the pyrazole and benzene ring mean planes is 76.06 (11)°, and the conformation of the ethyl side chain is anti [C—O—C—C = −175.4 (3)°]. In the crystal, the only directional inter­actions are very weak C—H ⋯π inter­actions involving both the pyrazole and benzene rings, leading to the formation of a three-dimensional network.

1. Related literature

For a related structure, see: Dong et al. (2011[Dong, G.-Y., Liu, T.-F., Jiao, C.-H., Deng, X.-C. & Shi, X.-G. (2011). Acta Cryst. E67, o1685.]). For background to the properties of pyrazole derivatives, see: Adnan & Tarek (2004[Adnan, A. B. & Tarek, A. Z. (2004). Bioorg. Med. Chem. 12, 1935-1945.]); Ashraf et al. (2003[Ashraf, H. A., Amal, A. H. E. & Ghaneya, S. H. (2003). Chem. Pharm. Bull. 51, 838-844.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H14N2O2

  • Mr = 230.26

  • Triclinic, [P \overline 1]

  • a = 8.1338 (12) Å

  • b = 8.1961 (9) Å

  • c = 10.7933 (11) Å

  • α = 74.013 (9)°

  • β = 83.308 (10)°

  • γ = 64.734 (13)°

  • V = 625.54 (13) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

2.2. Data collection

  • Agilent SuperNova (Single source at offset, Eos) diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlisRED. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.982, Tmax = 0.985

  • 4295 measured reflections

  • 2197 independent reflections

  • 1639 reflections with I > 2σ(I)

  • Rint = 0.032

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.201

  • S = 1.15

  • 2197 reflections

  • 155 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯Cg2i 0.93 2.94 3.670 (4) 137
C4—H4ACg1ii 0.97 3.00 3.600 (3) 122
C12—H12ACg2iii 0.97 2.82 3.689 (4) 150
Symmetry codes: (i) x-1, y, z; (ii) -x, -y, -z; (iii) -x, -y+1, -z+1.

Data collection: FRAMBO (Bruker, 2004[Bruker (2004). FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyrazole and its derivatives are an important class of N-heterocyclic compounds because they exhibit a broad spectrum of pharmacological activities such as antifungal (Adnan & Tarek, 2004), antitumor and antiangiogenic activities (Ashraf et al., 2003). As part of pyrazole derivatives, the crystal structure of 1, 4-bis[(1H-pyrazol-1-yl)methyl]benzene has been determined (Dong et al., 2011). As part of this ongoing search for new pyrazole compounds, the title compound was synthesized and its crystal structure is reported herein. In the title compound (Fig. 1), bond lengths and angles fall in normal ranges. The dihedral angle between the pyrazole ring (N1/N2/C1—C3) and the phenyl ring (C5—C10) is 76.06 (11) °. In the crystal, there exists weak C–H···π contacts.

Related literature top

For a related structure, see: Dong et al. (2011). For background to the properties of pyrazole derivatives, see: Adnan & Tarek (2004); Ashraf et al. (2003).

Experimental top

In a 250 ml four-necked round-bottom flask equipped with a mechanical stirrer, pyrazole (0.680 g 10 mmol), potassium carbonate (2.073 g 15 mmol) and 1-(4-(bromomethyl)phenyl)-1-hydroxypentan-2-one (2.712 g, 10 mmol) were cautiously dissolved in acetone (100 ml). The solution was heated at 65 °C for 6 h, then the mixture was filtered off was removed by rotatory evaporator at 35 °C and the crude product was obtained 1.815 g (66.1%). Colourless blocks of the title compound were obtained from ethanol by slow evaporation.

Refinement top

H-atoms were placed in calculated positions and refined constrained to ride on their parent atoms, with C—H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the methylene.

Computing details top

Data collection: FRAMBO (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.

View of the packing diagram of the title compound along the b axis.
Ethyl 4-[(1H-pyrazol-1-yl)methyl]benzoate top
Crystal data top
C13H14N2O2Z = 2
Mr = 230.26F(000) = 244
Triclinic, P1Dx = 1.222 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1338 (12) ÅCell parameters from 1485 reflections
b = 8.1961 (9) Åθ = 4.3–28.2°
c = 10.7933 (11) ŵ = 0.08 mm1
α = 74.013 (9)°T = 293 K
β = 83.308 (10)°Block, colourless
γ = 64.734 (13)°0.22 × 0.20 × 0.18 mm
V = 625.54 (13) Å3
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
2197 independent reflections
Radiation source: fine-focus sealed tube1639 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
phi and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
h = 99
Tmin = 0.982, Tmax = 0.985k = 99
4295 measured reflectionsl = 128
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.201H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.079P)2 + 0.2197P]
where P = (Fo2 + 2Fc2)/3
2197 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C13H14N2O2γ = 64.734 (13)°
Mr = 230.26V = 625.54 (13) Å3
Triclinic, P1Z = 2
a = 8.1338 (12) ÅMo Kα radiation
b = 8.1961 (9) ŵ = 0.08 mm1
c = 10.7933 (11) ÅT = 293 K
α = 74.013 (9)°0.22 × 0.20 × 0.18 mm
β = 83.308 (10)°
Data collection top
Agilent SuperNova (Single source at offset, Eos)
diffractometer
2197 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Agilent, 2012)
1639 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.985Rint = 0.032
4295 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.201H-atom parameters constrained
S = 1.15Δρmax = 0.18 e Å3
2197 reflectionsΔρmin = 0.23 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3321 (5)0.2354 (4)0.0922 (3)0.0772 (9)
H10.44120.32190.05160.093*
C20.3185 (4)0.0903 (5)0.1964 (3)0.0787 (9)
H20.41190.06060.23940.094*
C30.1386 (4)0.0001 (4)0.2228 (3)0.0718 (9)
H30.08410.10680.28850.086*
C40.1384 (4)0.0519 (4)0.1369 (3)0.0653 (8)
H4A0.17660.08610.04860.078*
H4B0.20910.08050.17120.078*
C50.1753 (3)0.1603 (4)0.2163 (2)0.0543 (7)
C60.2157 (4)0.0834 (4)0.3464 (3)0.0610 (7)
H60.22690.03740.38420.073*
C70.2396 (4)0.1856 (4)0.4205 (2)0.0584 (7)
H70.26710.13260.50770.070*
C80.2227 (3)0.3657 (3)0.3656 (2)0.0505 (6)
C90.1870 (4)0.4413 (4)0.2343 (3)0.0573 (7)
H90.17840.56110.19590.069*
C100.1643 (4)0.3379 (4)0.1609 (3)0.0588 (7)
H100.14130.38880.07310.071*
C110.2393 (4)0.4838 (4)0.4420 (3)0.0561 (7)
C120.2906 (4)0.5017 (5)0.6500 (3)0.0726 (9)
H12A0.17470.60500.65520.087*
H12B0.38050.55120.61640.087*
C130.3460 (6)0.3720 (6)0.7790 (4)0.1028 (13)
H13A0.25740.32190.81030.154*
H13B0.35440.43780.83740.154*
H13C0.46220.27220.77290.154*
N10.0526 (3)0.0895 (3)0.13866 (19)0.0554 (6)
N20.1716 (4)0.2383 (3)0.0558 (2)0.0741 (8)
O10.2758 (3)0.3958 (3)0.56635 (18)0.0672 (6)
O20.2213 (3)0.6418 (3)0.3986 (2)0.0823 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.075 (2)0.072 (2)0.083 (2)0.0205 (17)0.0233 (17)0.0225 (17)
C20.070 (2)0.088 (2)0.079 (2)0.0365 (18)0.0043 (16)0.0178 (18)
C30.078 (2)0.075 (2)0.0547 (17)0.0352 (17)0.0020 (14)0.0029 (15)
C40.0684 (18)0.083 (2)0.0557 (17)0.0358 (16)0.0119 (13)0.0318 (15)
C50.0541 (15)0.0664 (17)0.0469 (15)0.0276 (13)0.0101 (11)0.0209 (12)
C60.0804 (19)0.0549 (16)0.0506 (16)0.0330 (14)0.0032 (13)0.0109 (12)
C70.0788 (19)0.0601 (16)0.0391 (14)0.0336 (14)0.0003 (12)0.0086 (12)
C80.0534 (14)0.0530 (14)0.0456 (14)0.0235 (12)0.0016 (11)0.0114 (11)
C90.0660 (17)0.0557 (15)0.0489 (15)0.0289 (13)0.0030 (12)0.0035 (12)
C100.0630 (17)0.0721 (18)0.0404 (14)0.0305 (14)0.0011 (11)0.0090 (13)
C110.0593 (16)0.0558 (16)0.0552 (16)0.0262 (13)0.0016 (12)0.0124 (13)
C120.079 (2)0.082 (2)0.072 (2)0.0358 (17)0.0023 (15)0.0388 (17)
C130.131 (3)0.105 (3)0.070 (2)0.031 (2)0.027 (2)0.039 (2)
N10.0692 (14)0.0607 (13)0.0401 (12)0.0296 (11)0.0015 (10)0.0136 (10)
N20.100 (2)0.0673 (16)0.0533 (14)0.0374 (14)0.0200 (13)0.0007 (12)
O10.0917 (15)0.0665 (12)0.0502 (12)0.0353 (11)0.0060 (10)0.0181 (9)
O20.1173 (19)0.0621 (13)0.0756 (15)0.0452 (13)0.0147 (13)0.0102 (11)
Geometric parameters (Å, º) top
C1—N21.327 (4)C7—H70.9300
C1—C21.367 (5)C8—C91.391 (3)
C1—H10.9300C8—C111.487 (4)
C2—C31.351 (4)C9—C101.385 (4)
C2—H20.9300C9—H90.9300
C3—N11.333 (4)C10—H100.9300
C3—H30.9300C11—O21.200 (3)
C4—N11.448 (3)C11—O11.336 (3)
C4—C51.524 (4)C12—O11.460 (3)
C4—H4A0.9700C12—C131.481 (5)
C4—H4B0.9700C12—H12A0.9700
C5—C101.381 (4)C12—H12B0.9700
C5—C61.385 (4)C13—H13A0.9600
C6—C71.386 (4)C13—H13B0.9600
C6—H60.9300C13—H13C0.9600
C7—C81.384 (4)N1—N21.348 (3)
N2—C1—C2112.2 (3)C10—C9—C8119.9 (2)
N2—C1—H1123.9C10—C9—H9120.1
C2—C1—H1123.9C8—C9—H9120.1
C3—C2—C1104.4 (3)C5—C10—C9120.9 (2)
C3—C2—H2127.8C5—C10—H10119.5
C1—C2—H2127.8C9—C10—H10119.5
N1—C3—C2108.4 (3)O2—C11—O1122.7 (3)
N1—C3—H3125.8O2—C11—C8124.4 (3)
C2—C3—H3125.8O1—C11—C8112.9 (2)
N1—C4—C5111.3 (2)O1—C12—C13107.1 (3)
N1—C4—H4A109.4O1—C12—H12A110.3
C5—C4—H4A109.4C13—C12—H12A110.3
N1—C4—H4B109.4O1—C12—H12B110.3
C5—C4—H4B109.4C13—C12—H12B110.3
H4A—C4—H4B108.0H12A—C12—H12B108.5
C10—C5—C6119.0 (2)C12—C13—H13A109.5
C10—C5—C4120.7 (2)C12—C13—H13B109.5
C6—C5—C4120.3 (2)H13A—C13—H13B109.5
C5—C6—C7120.4 (2)C12—C13—H13C109.5
C5—C6—H6119.8H13A—C13—H13C109.5
C7—C6—H6119.8H13B—C13—H13C109.5
C8—C7—C6120.4 (2)C3—N1—N2110.7 (3)
C8—C7—H7119.8C3—N1—C4127.7 (2)
C6—C7—H7119.8N2—N1—C4121.4 (2)
C7—C8—C9119.2 (2)C1—N2—N1104.3 (2)
C7—C8—C11122.5 (2)C11—O1—C12117.0 (2)
C9—C8—C11118.3 (2)
N2—C1—C2—C30.8 (4)C7—C8—C11—O2178.2 (3)
C1—C2—C3—N10.6 (4)C9—C8—C11—O21.1 (4)
N1—C4—C5—C1088.7 (3)C7—C8—C11—O11.5 (4)
N1—C4—C5—C689.5 (3)C9—C8—C11—O1179.2 (2)
C10—C5—C6—C71.8 (4)C2—C3—N1—N20.3 (4)
C4—C5—C6—C7176.5 (2)C2—C3—N1—C4174.4 (3)
C5—C6—C7—C80.2 (4)C5—C4—N1—C389.3 (4)
C6—C7—C8—C92.0 (4)C5—C4—N1—N284.9 (3)
C6—C7—C8—C11177.3 (2)C2—C1—N2—N10.6 (4)
C7—C8—C9—C101.6 (4)C3—N1—N2—C10.2 (3)
C11—C8—C9—C10177.7 (2)C4—N1—N2—C1175.3 (2)
C6—C5—C10—C92.1 (4)O2—C11—O1—C121.0 (4)
C4—C5—C10—C9176.1 (2)C8—C11—O1—C12178.7 (2)
C8—C9—C10—C50.4 (4)C13—C12—O1—C11175.4 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.943.670 (4)137
C4—H4A···Cg1ii0.973.003.600 (3)122
C12—H12A···Cg2iii0.972.823.689 (4)150
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the N1/N2/C1–C3 and C5–C10 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg2i0.932.943.670 (4)137
C4—H4A···Cg1ii0.973.003.600 (3)122
C12—H12A···Cg2iii0.972.823.689 (4)150
Symmetry codes: (i) x1, y, z; (ii) x, y, z; (iii) x, y+1, z+1.
 

Acknowledgements

We are grateful for financial support from the National Natural Science Foundation of China (No. 81302644) and Jiangsu Ainaji Neo Energy Science & Technology Co. Ltd (No. 8507040091).

References

First citationAdnan, A. B. & Tarek, A. Z. (2004). Bioorg. Med. Chem. 12, 1935–1945.  Web of Science PubMed Google Scholar
First citationAgilent (2012). CrysAlisRED. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAshraf, H. A., Amal, A. H. E. & Ghaneya, S. H. (2003). Chem. Pharm. Bull. 51, 838–844.  Web of Science PubMed Google Scholar
First citationBruker (2004). FRAMBO and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDong, G.-Y., Liu, T.-F., Jiao, C.-H., Deng, X.-C. & Shi, X.-G. (2011). Acta Cryst. E67, o1685.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds