organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1275-o1276

Crystal structure of methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-di­bromo-8-oxo-1-oxa­spiro­[4.5]deca-2,6,9-triene-3-car­boxyl­ate

aLaboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970, Campinas, SP, Brazil, bLaboratory of Single Crystal X-Ray Diffraction, Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970, Campinas, SP, Brazil, and cLaboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: aparicio@iqm.unicamp.br

Edited by P. C. Healy, Griffith University, Australia (Received 14 October 2014; accepted 11 November 2014; online 21 November 2014)

The title compound, C18H12Br2O6, was synthesized from Morita–Baylis–Hillman adducts. It incorporates the bromin­ated spiro-hexa­dienone moiety typically exhibited by compounds of this class that exhibit biological activity. Both the brominated cyclo­hexa­dienone and the central five-membered rings are nearly planar (r.m.s. deviations of 0.044 and 0.016 Å, respectively), being almost perpendicularly oriented [inter­planar angle = 89.47 (5)°]. With respect to the central five-membered ring, the brominated cyclo­hexa­dienone ring, the benzodioxol ring and the carboxyl­ate fragment make C—O—C—C, O—C—C—C and C—C—C—O dihedral angles of −122.11 (8), −27.20 (11) and −8.40 (12)°, respectively. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by non-classical C—H⋯O and C—H⋯Br hydrogen bonds resulting in a molecular packing in which the brominated rings are in a head-to-head orientation, forming well marked planes parallel to the b axis.

1. Related literature

For compounds that contain a spiro-hexa­dienone moiety in their structures, related biological activities and examples of brominated spiro-hexa­dienones, see: König & Wright (1993[König, G. M. & Wright, A. D. (1993). Heterocycles, 36, 1351-1358.]); Lou (2012[Lou, Y. (2012). Acta Cryst. E68, o1152.]); Sorek et al. (2009[Sorek, H., Rudi, A., Goldberg, I., Aknin, M. & Kashman, Y. (2009). J. Nat. Prod. 72, 784-786.]). For strategies for the synthesis of spiro-hexa­dienones from Morita–Baylis–Hillman aducts, see: Martins et al. (2014[Martins, L. J., Ferreira, B. V., Almeida, W. P., Lancellotti, M. & Coelho, F. (2014). Tetrahedron Lett. 55, 5264-5267.]); Barontini et al. (2013[Barontini, M., Proietti Silvestri, I., Nardi, V., Crisante, F., Pepe, G., Pari, L., Gallucci, F., Bovicelli, P. & Righi, G. (2013). Med. Chem. Res. 22, 674-680.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H12Br2O6

  • Mr = 484.10

  • Triclinic, [P \overline 1]

  • a = 8.1929 (13) Å

  • b = 8.4811 (14) Å

  • c = 12.761 (2) Å

  • α = 84.485 (4)°

  • β = 80.007 (5)°

  • γ = 78.077 (4)°

  • V = 852.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.79 mm−1

  • T = 100 K

  • 0.32 × 0.17 × 0.16 mm

2.2. Data collection

  • Bruker APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.309, Tmax = 0.515

  • 27788 measured reflections

  • 7098 independent reflections

  • 6288 reflections with I > 2σ(I)

  • Rint = 0.017

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.018

  • wR(F2) = 0.047

  • S = 1.02

  • 7098 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3⋯O5i 0.95 2.61 3.4272 (13) 144
C7—H7⋯O5 0.95 2.34 2.9441 (13) 121
C10—H10A⋯O1ii 0.99 2.55 3.3995 (13) 143
C12—H12A⋯Br1iii 0.99 2.96 3.9411 (12) 173
C12—H12A⋯O1iii 0.99 2.53 3.0852 (13) 116
C13—H13⋯O2iv 0.95 2.63 3.3909 (13) 137
C16—H16C⋯O5v 0.98 2.59 3.2434 (14) 124
C17—H17⋯Br1vi 0.95 3.03 3.9069 (11) 153
Symmetry codes: (i) -x+2, -y+2, -z+2; (ii) -x+2, -y+2, -z+1; (iii) x, y-1, z+1; (iv) -x+1, -y+2, -z+2; (v) -x+3, -y+1, -z+2; (vi) x, y-1, z.

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011[Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281-1284.]) and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003[Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283-1284.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Introduction top

Compounds containing a spiro-hexadienone moiety typically exhibit biological activity, also sharing a structural architecture observed in some natural products (König & Wright, 1993; Sorek et al., 2009). In view of the importance of this class of compounds, recent efforts resulted in a new synthetic strategy, which starts from Morita-Baylis-Hillman adducts as building blocks for organic synthesis (Martins et al., 2014). Based on this methodology, it was possible to obtain a brominated spiro-hexadienone which resulted, to our knowledge, in the first report of a halogenated spiro-hexadienone crystal structure.

Experimental top

Synthesis and crystallization top

\ Methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-di­bromo-8-oxo-1-oxa­spiro­[4.5]deca-2,6,9-\ triene-3-carboxyl­ate was prepared from a subset of β-ketoesters following the experimental protocol recently described by Barontini et al. (2013). A separable mixture of mono- and dibrominated (in majority) derivatives in good overall yields was obtained.

After chromatographic separation, the dibrominated compounds were easily transformed into halogenated spiro-hexadienones, in three steps procedure, starting with the Morita-Baylis-Hillman adducts.

Methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-di­bromo-8-oxo-1-oxa­spiro­[4.5]deca-2,6,9-\ triene-3-carboxyl­ate (48 mg, 0.1 mmoL) was dissolved in absolute chloro­form-D1 (1 mL), followed by stirring until total dissolution was achieved. The solution was kept in the freezer. After two weeks, the resulting material was filtered under vacuum, washed with small portions of cold chloro­form and dried in a desiccator to furnish pale yellow single crystals suitable for X-ray diffraction data collection.

Refinement top

The C-bound H atoms were positioned with idealized geometry and treated as riding atoms: phenyl, methyl and methyl­ene C—H bond lengths were 0.95, 0.98 and 0.99 Å, respectively. The isotropic displacement parameters values (Uiso(H)) were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other attached H atoms.

Results and discussion top

The title compound (Fig. 1) crystallized in the space group P1 assuming a conformational structure determined by non-classical intra­molecular C—H—O and inter­molecular C—H—O and C—H—Br bonding (Table 1, Fig. 2). The molecule contains one six-membered (brominated ciclohexadienone) and one central five-membered rings connected by a spiro-carbon C4. The mean plane of these planar rings, C1—C2—C4—C17—C18 (r.m.s.= 0.044 Å) and C4—C10—C11—C5—O2 (r.m.s. = 0.016 Å), are almost perpendicularly oriented, making a plane-plane angle of 90.53°. With respect to the central five-membered ring, the brominated spiro-hexadienone and the benzodioxol rings make dihedral angles C5—O2—C4—C3 = -122.11 (8)° and O2—C5—C6—C14 = -27.20 (11)°, respectively, while the dihedral angle with the carboxyl­ate fragment C10—C11—C15—O6 is -8.40 (12)°.

In the hexadienone ring of the title compound, the C2—C3, C17—C18 and C1—O1 bond lengths are 1.3351 (13), 1.3354 (13) and 1.2139 (11) Å, respectively, and the bond length between the spiro-carbon (C4) and the oxygen atom C4—O2 is 1.4684 (11) Å, similar to those reported for a related oxa­spiro structure (Lou, 2012). In the latter, the plane-plane angle between the mean planes of the six-membered and the central five-membered rings in the spiro-carbon is 96.06°, slightly different from that observed in the title compound (90.53°). Further comparison also reveals different orientations of the carboxyl­ate moiety, which makes a dihedral angle of 170.6 (1)° (C10—C11—C15—O5) in the title compound, with a corresponding angle equal to 11.3 (3)° in the related structure (Lou, 2012). This large difference is consistent with an observed C7—H7—O5 intra­molecular hydrogen bond (Table 1) in the title compound, which results in a favourable conformation of the carboxyl­ate group.

Related literature top

For compounds that contain a spiro-hexadienone moiety in their structures, related biological activities and examples of brominated spiro-hexadienones, see: König & Wright (1993); Lou (2012); Sorek et al. (2009). For strategies for the synthesis of spiro-hexadienones from Morita–Baylis–Hillman aducts, see: Martins et al. (2014); Barontini et al. (2013).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Crystal packing of the title compound, showing hydrogen bonding interactions.
2-(2H-1,3-Benzodioxol-5-yl)-7,9-dibromo-8-oxo-1-oxaspiro[4.5]deca-2,6,9-triene-3-carboxylate top
Crystal data top
C18H12Br2O6Z = 2
Mr = 484.10F(000) = 476
Triclinic, P1Dx = 1.885 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1929 (13) ÅCell parameters from 9887 reflections
b = 8.4811 (14) Åθ = 3.2–35.1°
c = 12.761 (2) ŵ = 4.79 mm1
α = 84.485 (4)°T = 100 K
β = 80.007 (5)°Block, pale yellow
γ = 78.077 (4)°0.32 × 0.17 × 0.16 mm
V = 852.7 (2) Å3
Data collection top
Bruker APEX CCD detector
diffractometer
7098 independent reflections
Radiation source: fine-focus sealed tube6288 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1Rint = 0.017
phi and ω scansθmax = 34.3°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
h = 1212
Tmin = 0.309, Tmax = 0.515k = 1313
27788 measured reflectionsl = 2020
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.2583P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
7098 reflectionsΔρmax = 0.57 e Å3
236 parametersΔρmin = 0.39 e Å3
Crystal data top
C18H12Br2O6γ = 78.077 (4)°
Mr = 484.10V = 852.7 (2) Å3
Triclinic, P1Z = 2
a = 8.1929 (13) ÅMo Kα radiation
b = 8.4811 (14) ŵ = 4.79 mm1
c = 12.761 (2) ÅT = 100 K
α = 84.485 (4)°0.32 × 0.17 × 0.16 mm
β = 80.007 (5)°
Data collection top
Bruker APEX CCD detector
diffractometer
7098 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2010)
6288 reflections with I > 2σ(I)
Tmin = 0.309, Tmax = 0.515Rint = 0.017
27788 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0180 restraints
wR(F2) = 0.047H-atom parameters constrained
S = 1.02Δρmax = 0.57 e Å3
7098 reflectionsΔρmin = 0.39 e Å3
236 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.81611 (2)1.44904 (2)0.62579 (2)0.01782 (3)
Br20.72560 (2)0.85491 (2)0.49155 (2)0.01638 (3)
O10.75814 (11)1.20677 (9)0.48397 (6)0.01915 (14)
O20.81234 (9)0.93071 (9)0.86474 (5)0.01450 (12)
O30.57197 (10)0.68379 (9)1.33065 (6)0.01608 (13)
O40.81596 (9)0.50402 (9)1.26861 (6)0.01609 (13)
O51.24024 (10)0.67487 (10)1.01728 (6)0.01916 (14)
O61.37041 (9)0.72220 (9)0.84968 (6)0.01529 (12)
C10.79228 (12)1.13898 (10)0.56785 (7)0.01214 (14)
C20.83286 (12)1.22429 (10)0.65381 (7)0.01222 (14)
C30.88062 (12)1.14902 (11)0.74351 (7)0.01357 (15)
H30.89631.21140.79770.016*
C40.91021 (12)0.96878 (11)0.76100 (7)0.01264 (15)
C50.91926 (12)0.83972 (10)0.92957 (7)0.01135 (14)
C60.82769 (11)0.79788 (10)1.03513 (7)0.01106 (14)
C70.88494 (12)0.65586 (11)1.09690 (7)0.01202 (14)
H70.98640.58281.07310.014*
C80.78592 (12)0.62914 (11)1.19325 (7)0.01182 (14)
C90.63896 (12)0.73620 (11)1.23042 (7)0.01254 (14)
C101.09810 (12)0.89627 (12)0.77135 (7)0.01504 (16)
H10A1.15010.81830.71640.018*
H10B1.16550.98200.76560.018*
C111.08297 (12)0.81321 (11)0.88176 (7)0.01190 (14)
C120.66357 (14)0.52054 (12)1.34563 (8)0.01708 (17)
H12A0.69120.50031.41880.020*
H12B0.59480.44221.33440.020*
C130.58111 (12)0.87530 (11)1.17181 (8)0.01435 (15)
H130.48090.94861.19750.017*
C140.67762 (12)0.90331 (11)1.07223 (7)0.01288 (15)
H140.64010.99651.02870.015*
C151.23289 (12)0.72953 (11)0.92621 (7)0.01239 (14)
C161.52864 (13)0.64225 (14)0.88280 (9)0.02125 (19)
H16A1.54180.68800.94780.032*
H16B1.62220.65800.82610.032*
H16C1.52910.52650.89690.032*
C170.85126 (12)0.88535 (11)0.68028 (7)0.01319 (15)
H170.85240.77280.69180.016*
C180.79718 (12)0.96291 (10)0.59287 (7)0.01170 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02471 (5)0.00997 (4)0.01954 (5)0.00466 (3)0.00492 (4)0.00072 (3)
Br20.02188 (5)0.01408 (4)0.01473 (4)0.00300 (3)0.00654 (3)0.00306 (3)
O10.0307 (4)0.0153 (3)0.0107 (3)0.0017 (3)0.0063 (3)0.0023 (2)
O20.0119 (3)0.0197 (3)0.0100 (3)0.0004 (2)0.0030 (2)0.0048 (2)
O30.0186 (3)0.0160 (3)0.0112 (3)0.0020 (2)0.0011 (2)0.0023 (2)
O40.0173 (3)0.0147 (3)0.0138 (3)0.0009 (2)0.0019 (2)0.0056 (2)
O50.0146 (3)0.0278 (4)0.0125 (3)0.0000 (3)0.0034 (2)0.0045 (3)
O60.0106 (3)0.0196 (3)0.0133 (3)0.0005 (2)0.0009 (2)0.0011 (2)
C10.0137 (4)0.0115 (3)0.0101 (3)0.0011 (3)0.0008 (3)0.0001 (3)
C20.0144 (4)0.0101 (3)0.0119 (4)0.0024 (3)0.0017 (3)0.0000 (3)
C30.0153 (4)0.0137 (3)0.0123 (4)0.0032 (3)0.0034 (3)0.0009 (3)
C40.0137 (4)0.0143 (3)0.0091 (3)0.0018 (3)0.0025 (3)0.0023 (3)
C50.0129 (4)0.0113 (3)0.0096 (3)0.0011 (3)0.0037 (3)0.0010 (3)
C60.0123 (4)0.0117 (3)0.0093 (3)0.0021 (3)0.0028 (3)0.0004 (3)
C70.0128 (4)0.0113 (3)0.0114 (3)0.0009 (3)0.0024 (3)0.0003 (3)
C80.0135 (4)0.0111 (3)0.0109 (3)0.0020 (3)0.0036 (3)0.0012 (3)
C90.0139 (4)0.0133 (3)0.0101 (3)0.0028 (3)0.0012 (3)0.0001 (3)
C100.0131 (4)0.0196 (4)0.0110 (4)0.0014 (3)0.0027 (3)0.0036 (3)
C110.0122 (4)0.0133 (3)0.0095 (3)0.0010 (3)0.0024 (3)0.0009 (3)
C120.0219 (5)0.0149 (4)0.0127 (4)0.0037 (3)0.0000 (3)0.0027 (3)
C130.0139 (4)0.0140 (4)0.0130 (4)0.0005 (3)0.0006 (3)0.0004 (3)
C140.0131 (4)0.0127 (3)0.0116 (4)0.0004 (3)0.0026 (3)0.0015 (3)
C150.0115 (4)0.0132 (3)0.0117 (4)0.0005 (3)0.0023 (3)0.0003 (3)
C160.0119 (4)0.0287 (5)0.0201 (5)0.0015 (4)0.0019 (3)0.0012 (4)
C170.0151 (4)0.0114 (3)0.0126 (4)0.0018 (3)0.0031 (3)0.0012 (3)
C180.0134 (4)0.0110 (3)0.0108 (3)0.0018 (3)0.0025 (3)0.0011 (3)
Geometric parameters (Å, º) top
Br1—C21.8863 (9)C6—C141.4001 (13)
Br2—C181.8887 (9)C6—C71.4158 (12)
O1—C11.2139 (11)C7—C81.3775 (13)
O2—C51.3772 (11)C7—H70.9500
O2—C41.4684 (11)C8—C91.3900 (13)
O3—C91.3721 (11)C9—C131.3777 (13)
O3—C121.4444 (12)C10—C111.5104 (13)
O4—C81.3746 (11)C10—H10A0.9900
O4—C121.4397 (13)C10—H10B0.9900
O5—C151.2158 (11)C11—C151.4623 (13)
O6—C151.3520 (11)C12—H12A0.9900
O6—C161.4459 (13)C12—H12B0.9900
C1—C21.4887 (13)C13—C141.4026 (13)
C1—C181.4904 (12)C13—H130.9500
C2—C31.3351 (13)C14—H140.9500
C3—C41.4985 (13)C16—H16A0.9800
C3—H30.9500C16—H16B0.9800
C4—C171.4996 (13)C16—H16C0.9800
C4—C101.5585 (14)C17—C181.3354 (13)
C5—C111.3563 (13)C17—H170.9500
C5—C61.4733 (12)
C5—O2—C4109.46 (7)C11—C10—H10A111.3
C9—O3—C12104.80 (7)C4—C10—H10A111.3
C8—O4—C12105.13 (7)C11—C10—H10B111.3
C15—O6—C16115.44 (8)C4—C10—H10B111.3
O1—C1—C2122.93 (8)H10A—C10—H10B109.2
O1—C1—C18122.50 (8)C5—C11—C15128.64 (8)
C2—C1—C18114.57 (8)C5—C11—C10110.13 (8)
C3—C2—C1123.31 (8)C15—C11—C10121.07 (8)
C3—C2—Br1121.81 (7)O4—C12—O3106.94 (7)
C1—C2—Br1114.87 (6)O4—C12—H12A110.3
C2—C3—C4121.73 (8)O3—C12—H12A110.3
C2—C3—H3119.1O4—C12—H12B110.3
C4—C3—H3119.1O3—C12—H12B110.3
O2—C4—C3107.32 (7)H12A—C12—H12B108.6
O2—C4—C17106.47 (7)C9—C13—C14116.62 (9)
C3—C4—C17114.33 (8)C9—C13—H13121.7
O2—C4—C10105.43 (7)C14—C13—H13121.7
C3—C4—C10111.56 (8)C6—C14—C13121.91 (8)
C17—C4—C10111.13 (8)C6—C14—H14119.0
C11—C5—O2112.55 (8)C13—C14—H14119.0
C11—C5—C6135.58 (8)O5—C15—O6122.92 (9)
O2—C5—C6111.85 (8)O5—C15—C11127.60 (9)
C14—C6—C7120.45 (8)O6—C15—C11109.47 (8)
C14—C6—C5117.27 (8)O6—C16—H16A109.5
C7—C6—C5122.27 (8)O6—C16—H16B109.5
C8—C7—C6116.53 (8)H16A—C16—H16B109.5
C8—C7—H7121.7O6—C16—H16C109.5
C6—C7—H7121.7H16A—C16—H16C109.5
O4—C8—C7127.79 (8)H16B—C16—H16C109.5
O4—C8—C9109.53 (8)C18—C17—C4122.64 (8)
C7—C8—C9122.61 (8)C18—C17—H17118.7
O3—C9—C13128.16 (9)C4—C17—H17118.7
O3—C9—C8109.94 (8)C17—C18—C1122.38 (8)
C13—C9—C8121.85 (8)C17—C18—Br2121.91 (7)
C11—C10—C4102.30 (7)C1—C18—Br2115.70 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.952.613.4272 (13)144
C7—H7···O50.952.342.9441 (13)121
C10—H10A···O1ii0.992.553.3995 (13)143
C12—H12A···Br1iii0.992.963.9411 (12)173
C12—H12A···O1iii0.992.533.0852 (13)116
C13—H13···O2iv0.952.633.3909 (13)137
C16—H16C···O5v0.982.593.2434 (14)124
C17—H17···Br1vi0.953.033.9069 (11)153
C14—H14···O20.952.362.6937 (12)100
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x, y1, z+1; (iv) x+1, y+2, z+2; (v) x+3, y+1, z+2; (vi) x, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3···O5i0.952.613.4272 (13)143.8
C7—H7···O50.952.342.9441 (13)120.7
C10—H10A···O1ii0.992.553.3995 (13)143.4
C12—H12A···Br1iii0.992.963.9411 (12)172.7
C12—H12A···O1iii0.992.533.0852 (13)115.5
C13—H13···O2iv0.952.633.3909 (13)136.9
C16—H16C···O5v0.982.593.2434 (14)124.1
C17—H17···Br1vi0.953.033.9069 (11)153.4
C14—H14···O20.952.362.6937 (12)100.3
Symmetry codes: (i) x+2, y+2, z+2; (ii) x+2, y+2, z+1; (iii) x, y1, z+1; (iv) x+1, y+2, z+2; (v) x+3, y+1, z+2; (vi) x, y1, z.
 

Acknowledgements

The authors acknowledge Dr Jorge Henrique Monteiro for preliminary structure refinement. This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2009/18390–4 and 2009/51602–5), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RA is the recipient of a research grant from CNPq.

References

First citationBarontini, M., Proietti Silvestri, I., Nardi, V., Crisante, F., Pepe, G., Pari, L., Gallucci, F., Bovicelli, P. & Righi, G. (2013). Med. Chem. Res. 22, 674–680.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKönig, G. M. & Wright, A. D. (1993). Heterocycles, 36, 1351–1358.  Google Scholar
First citationLou, Y. (2012). Acta Cryst. E68, o1152.  CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMartins, L. J., Ferreira, B. V., Almeida, W. P., Lancellotti, M. & Coelho, F. (2014). Tetrahedron Lett. 55, 5264–5267.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSorek, H., Rudi, A., Goldberg, I., Aknin, M. & Kashman, Y. (2009). J. Nat. Prod. 72, 784–786.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1275-o1276
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds