organic compounds
H-1,3-benzodioxol-5-yl)-7,9-dibromo-8-oxo-1-oxaspiro[4.5]deca-2,6,9-triene-3-carboxylate
of methyl 2-(2aLaboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970, Campinas, SP, Brazil, bLaboratory of Single Crystal X-Ray Diffraction, Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970, Campinas, SP, Brazil, and cLaboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, PO Box 6154 - 13083-970, Campinas, SP, Brazil
*Correspondence e-mail: aparicio@iqm.unicamp.br
The title compound, C18H12Br2O6, was synthesized from Morita–Baylis–Hillman adducts. It incorporates the brominated spiro-hexadienone moiety typically exhibited by compounds of this class that exhibit biological activity. Both the brominated cyclohexadienone and the central five-membered rings are nearly planar (r.m.s. deviations of 0.044 and 0.016 Å, respectively), being almost perpendicularly oriented [interplanar angle = 89.47 (5)°]. With respect to the central five-membered ring, the brominated cyclohexadienone ring, the benzodioxol ring and the carboxylate fragment make C—O—C—C, O—C—C—C and C—C—C—O dihedral angles of −122.11 (8), −27.20 (11) and −8.40 (12)°, respectively. An intramolecular C—H⋯O hydrogen bond occurs. In the crystal, molecules are linked by non-classical C—H⋯O and C—H⋯Br hydrogen bonds resulting in a molecular packing in which the brominated rings are in a head-to-head orientation, forming well marked planes parallel to the b axis.
CCDC reference: 1033626
1. Related literature
For compounds that contain a spiro-hexadienone moiety in their structures, related biological activities and examples of brominated spiro-hexadienones, see: König & Wright (1993); Lou (2012); Sorek et al. (2009). For strategies for the synthesis of spiro-hexadienones from Morita–Baylis–Hillman aducts, see: Martins et al. (2014); Barontini et al. (2013).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2010); cell SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1033626
10.1107/S1600536814024763/hg5413sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814024763/hg5413Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814024763/hg5413Isup4.cdx
Supporting information file. DOI: 10.1107/S1600536814024763/hg5413Isup4.cml
Compounds containing a spiro-hexadienone moiety typically exhibit biological activity, also sharing a structural architecture observed in some natural products (König & Wright, 1993; Sorek et al., 2009). In view of the importance of this class of compounds, recent efforts resulted in a new synthetic strategy, which starts from Morita-Baylis-Hillman adducts as building blocks for organic synthesis (Martins et al., 2014). Based on this methodology, it was possible to obtain a brominated spiro-hexadienone which resulted, to our knowledge, in the first report of a halogenated spiro-hexadienone crystal structure.
\ Methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-dibromo-8-oxo-1-oxaspiro[4.5]deca-2,6,9-\ triene-3-carboxylate was prepared from a subset of β-ketoesters following the experimental protocol recently described by Barontini et al. (2013). A separable mixture of mono- and dibrominated (in majority) derivatives in good overall yields was obtained.
After chromatographic separation, the dibrominated compounds were easily transformed into halogenated spiro-hexadienones, in three steps procedure, starting with the Morita-Baylis-Hillman adducts.
Methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-dibromo-8-oxo-1-oxaspiro[4.5]deca-2,6,9-\ triene-3-carboxylate (48 mg, 0.1 mmoL) was dissolved in absolute chloroform-D1 (1 mL), followed by stirring until total dissolution was achieved. The solution was kept in the freezer. After two weeks, the resulting material was filtered under vacuum, washed with small portions of cold chloroform and dried in a desiccator to furnish pale yellow single crystals suitable for X-ray diffraction data collection.
The C-bound H atoms were positioned with idealized geometry and treated as riding atoms: phenyl, methyl and methylene C—H bond lengths were 0.95, 0.98 and 0.99 Å, respectively. The isotropic displacement parameters values (Uiso(H)) were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other attached H atoms.
The title compound (Fig. 1) crystallized in the 1 assuming a conformational structure determined by non-classical intramolecular C—H—O and intermolecular C—H—O and C—H—Br bonding (Table 1, Fig. 2). The molecule contains one six-membered (brominated ciclohexadienone) and one central five-membered rings connected by a spiro-carbon C4. The mean plane of these planar rings, C1—C2—C4—C17—C18 (r.m.s.= 0.044 Å) and C4—C10—C11—C5—O2 (r.m.s. = 0.016 Å), are almost perpendicularly oriented, making a plane-plane angle of 90.53°. With respect to the central five-membered ring, the brominated spiro-hexadienone and the benzodioxol rings make dihedral angles C5—O2—C4—C3 = -122.11 (8)° and O2—C5—C6—C14 = -27.20 (11)°, respectively, while the dihedral angle with the carboxylate fragment C10—C11—C15—O6 is -8.40 (12)°.
PIn the hexadienone ring of the title compound, the C2—C3, C17—C18 and C1—O1 bond lengths are 1.3351 (13), 1.3354 (13) and 1.2139 (11) Å, respectively, and the bond length between the spiro-carbon (C4) and the oxygen atom C4—O2 is 1.4684 (11) Å, similar to those reported for a related oxaspiro structure (Lou, 2012). In the latter, the plane-plane angle between the mean planes of the six-membered and the central five-membered rings in the spiro-carbon is 96.06°, slightly different from that observed in the title compound (90.53°). Further comparison also reveals different orientations of the carboxylate moiety, which makes a dihedral angle of 170.6 (1)° (C10—C11—C15—O5) in the title compound, with a corresponding angle equal to 11.3 (3)° in the related structure (Lou, 2012). This large difference is consistent with an observed C7—H7—O5 intramolecular hydrogen bond (Table 1) in the title compound, which results in a favourable conformation of the carboxylate group.
Data collection: APEX2 (Bruker, 2010); cell
SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003), PLATON (Spek, 2009) and publCIF (Westrip, 2010).The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids. Crystal packing of the title compound, showing hydrogen bonding interactions. |
C18H12Br2O6 | Z = 2 |
Mr = 484.10 | F(000) = 476 |
Triclinic, P1 | Dx = 1.885 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.1929 (13) Å | Cell parameters from 9887 reflections |
b = 8.4811 (14) Å | θ = 3.2–35.1° |
c = 12.761 (2) Å | µ = 4.79 mm−1 |
α = 84.485 (4)° | T = 100 K |
β = 80.007 (5)° | Block, pale yellow |
γ = 78.077 (4)° | 0.32 × 0.17 × 0.16 mm |
V = 852.7 (2) Å3 |
Bruker APEX CCD detector diffractometer | 7098 independent reflections |
Radiation source: fine-focus sealed tube | 6288 reflections with I > 2σ(I) |
Detector resolution: 8.3333 pixels mm-1 | Rint = 0.017 |
phi and ω scans | θmax = 34.3°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | h = −12→12 |
Tmin = 0.309, Tmax = 0.515 | k = −13→13 |
27788 measured reflections | l = −20→20 |
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.018 | H-atom parameters constrained |
wR(F2) = 0.047 | w = 1/[σ2(Fo2) + (0.0245P)2 + 0.2583P] where P = (Fo2 + 2Fc2)/3 |
S = 1.02 | (Δ/σ)max = 0.003 |
7098 reflections | Δρmax = 0.57 e Å−3 |
236 parameters | Δρmin = −0.39 e Å−3 |
C18H12Br2O6 | γ = 78.077 (4)° |
Mr = 484.10 | V = 852.7 (2) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.1929 (13) Å | Mo Kα radiation |
b = 8.4811 (14) Å | µ = 4.79 mm−1 |
c = 12.761 (2) Å | T = 100 K |
α = 84.485 (4)° | 0.32 × 0.17 × 0.16 mm |
β = 80.007 (5)° |
Bruker APEX CCD detector diffractometer | 7098 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2010) | 6288 reflections with I > 2σ(I) |
Tmin = 0.309, Tmax = 0.515 | Rint = 0.017 |
27788 measured reflections |
R[F2 > 2σ(F2)] = 0.018 | 0 restraints |
wR(F2) = 0.047 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.57 e Å−3 |
7098 reflections | Δρmin = −0.39 e Å−3 |
236 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.81611 (2) | 1.44904 (2) | 0.62579 (2) | 0.01782 (3) | |
Br2 | 0.72560 (2) | 0.85491 (2) | 0.49155 (2) | 0.01638 (3) | |
O1 | 0.75814 (11) | 1.20677 (9) | 0.48397 (6) | 0.01915 (14) | |
O2 | 0.81234 (9) | 0.93071 (9) | 0.86474 (5) | 0.01450 (12) | |
O3 | 0.57197 (10) | 0.68379 (9) | 1.33065 (6) | 0.01608 (13) | |
O4 | 0.81596 (9) | 0.50402 (9) | 1.26861 (6) | 0.01609 (13) | |
O5 | 1.24024 (10) | 0.67487 (10) | 1.01728 (6) | 0.01916 (14) | |
O6 | 1.37041 (9) | 0.72220 (9) | 0.84968 (6) | 0.01529 (12) | |
C1 | 0.79228 (12) | 1.13898 (10) | 0.56785 (7) | 0.01214 (14) | |
C2 | 0.83286 (12) | 1.22429 (10) | 0.65381 (7) | 0.01222 (14) | |
C3 | 0.88062 (12) | 1.14902 (11) | 0.74351 (7) | 0.01357 (15) | |
H3 | 0.8963 | 1.2114 | 0.7977 | 0.016* | |
C4 | 0.91021 (12) | 0.96878 (11) | 0.76100 (7) | 0.01264 (15) | |
C5 | 0.91926 (12) | 0.83972 (10) | 0.92957 (7) | 0.01135 (14) | |
C6 | 0.82769 (11) | 0.79788 (10) | 1.03513 (7) | 0.01106 (14) | |
C7 | 0.88494 (12) | 0.65586 (11) | 1.09690 (7) | 0.01202 (14) | |
H7 | 0.9864 | 0.5828 | 1.0731 | 0.014* | |
C8 | 0.78592 (12) | 0.62914 (11) | 1.19325 (7) | 0.01182 (14) | |
C9 | 0.63896 (12) | 0.73620 (11) | 1.23042 (7) | 0.01254 (14) | |
C10 | 1.09810 (12) | 0.89627 (12) | 0.77135 (7) | 0.01504 (16) | |
H10A | 1.1501 | 0.8183 | 0.7164 | 0.018* | |
H10B | 1.1655 | 0.9820 | 0.7656 | 0.018* | |
C11 | 1.08297 (12) | 0.81321 (11) | 0.88176 (7) | 0.01190 (14) | |
C12 | 0.66357 (14) | 0.52054 (12) | 1.34563 (8) | 0.01708 (17) | |
H12A | 0.6912 | 0.5003 | 1.4188 | 0.020* | |
H12B | 0.5948 | 0.4422 | 1.3344 | 0.020* | |
C13 | 0.58111 (12) | 0.87530 (11) | 1.17181 (8) | 0.01435 (15) | |
H13 | 0.4809 | 0.9486 | 1.1975 | 0.017* | |
C14 | 0.67762 (12) | 0.90331 (11) | 1.07223 (7) | 0.01288 (15) | |
H14 | 0.6401 | 0.9965 | 1.0287 | 0.015* | |
C15 | 1.23289 (12) | 0.72953 (11) | 0.92621 (7) | 0.01239 (14) | |
C16 | 1.52864 (13) | 0.64225 (14) | 0.88280 (9) | 0.02125 (19) | |
H16A | 1.5418 | 0.6880 | 0.9478 | 0.032* | |
H16B | 1.6222 | 0.6580 | 0.8261 | 0.032* | |
H16C | 1.5291 | 0.5265 | 0.8969 | 0.032* | |
C17 | 0.85126 (12) | 0.88535 (11) | 0.68028 (7) | 0.01319 (15) | |
H17 | 0.8524 | 0.7728 | 0.6918 | 0.016* | |
C18 | 0.79718 (12) | 0.96291 (10) | 0.59287 (7) | 0.01170 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.02471 (5) | 0.00997 (4) | 0.01954 (5) | −0.00466 (3) | −0.00492 (4) | 0.00072 (3) |
Br2 | 0.02188 (5) | 0.01408 (4) | 0.01473 (4) | −0.00300 (3) | −0.00654 (3) | −0.00306 (3) |
O1 | 0.0307 (4) | 0.0153 (3) | 0.0107 (3) | −0.0017 (3) | −0.0063 (3) | 0.0023 (2) |
O2 | 0.0119 (3) | 0.0197 (3) | 0.0100 (3) | −0.0004 (2) | −0.0030 (2) | 0.0048 (2) |
O3 | 0.0186 (3) | 0.0160 (3) | 0.0112 (3) | −0.0020 (2) | 0.0011 (2) | 0.0023 (2) |
O4 | 0.0173 (3) | 0.0147 (3) | 0.0138 (3) | −0.0009 (2) | −0.0019 (2) | 0.0056 (2) |
O5 | 0.0146 (3) | 0.0278 (4) | 0.0125 (3) | 0.0000 (3) | −0.0034 (2) | 0.0045 (3) |
O6 | 0.0106 (3) | 0.0196 (3) | 0.0133 (3) | 0.0005 (2) | −0.0009 (2) | 0.0011 (2) |
C1 | 0.0137 (4) | 0.0115 (3) | 0.0101 (3) | −0.0011 (3) | −0.0008 (3) | −0.0001 (3) |
C2 | 0.0144 (4) | 0.0101 (3) | 0.0119 (4) | −0.0024 (3) | −0.0017 (3) | 0.0000 (3) |
C3 | 0.0153 (4) | 0.0137 (3) | 0.0123 (4) | −0.0032 (3) | −0.0034 (3) | −0.0009 (3) |
C4 | 0.0137 (4) | 0.0143 (3) | 0.0091 (3) | −0.0018 (3) | −0.0025 (3) | 0.0023 (3) |
C5 | 0.0129 (4) | 0.0113 (3) | 0.0096 (3) | −0.0011 (3) | −0.0037 (3) | 0.0010 (3) |
C6 | 0.0123 (4) | 0.0117 (3) | 0.0093 (3) | −0.0021 (3) | −0.0028 (3) | 0.0004 (3) |
C7 | 0.0128 (4) | 0.0113 (3) | 0.0114 (3) | −0.0009 (3) | −0.0024 (3) | 0.0003 (3) |
C8 | 0.0135 (4) | 0.0111 (3) | 0.0109 (3) | −0.0020 (3) | −0.0036 (3) | 0.0012 (3) |
C9 | 0.0139 (4) | 0.0133 (3) | 0.0101 (3) | −0.0028 (3) | −0.0012 (3) | −0.0001 (3) |
C10 | 0.0131 (4) | 0.0196 (4) | 0.0110 (4) | −0.0014 (3) | −0.0027 (3) | 0.0036 (3) |
C11 | 0.0122 (4) | 0.0133 (3) | 0.0095 (3) | −0.0010 (3) | −0.0024 (3) | 0.0009 (3) |
C12 | 0.0219 (5) | 0.0149 (4) | 0.0127 (4) | −0.0037 (3) | 0.0000 (3) | 0.0027 (3) |
C13 | 0.0139 (4) | 0.0140 (4) | 0.0130 (4) | 0.0005 (3) | −0.0006 (3) | 0.0004 (3) |
C14 | 0.0131 (4) | 0.0127 (3) | 0.0116 (4) | −0.0004 (3) | −0.0026 (3) | 0.0015 (3) |
C15 | 0.0115 (4) | 0.0132 (3) | 0.0117 (4) | −0.0005 (3) | −0.0023 (3) | −0.0003 (3) |
C16 | 0.0119 (4) | 0.0287 (5) | 0.0201 (5) | 0.0015 (4) | −0.0019 (3) | 0.0012 (4) |
C17 | 0.0151 (4) | 0.0114 (3) | 0.0126 (4) | −0.0018 (3) | −0.0031 (3) | 0.0012 (3) |
C18 | 0.0134 (4) | 0.0110 (3) | 0.0108 (3) | −0.0018 (3) | −0.0025 (3) | −0.0011 (3) |
Br1—C2 | 1.8863 (9) | C6—C14 | 1.4001 (13) |
Br2—C18 | 1.8887 (9) | C6—C7 | 1.4158 (12) |
O1—C1 | 1.2139 (11) | C7—C8 | 1.3775 (13) |
O2—C5 | 1.3772 (11) | C7—H7 | 0.9500 |
O2—C4 | 1.4684 (11) | C8—C9 | 1.3900 (13) |
O3—C9 | 1.3721 (11) | C9—C13 | 1.3777 (13) |
O3—C12 | 1.4444 (12) | C10—C11 | 1.5104 (13) |
O4—C8 | 1.3746 (11) | C10—H10A | 0.9900 |
O4—C12 | 1.4397 (13) | C10—H10B | 0.9900 |
O5—C15 | 1.2158 (11) | C11—C15 | 1.4623 (13) |
O6—C15 | 1.3520 (11) | C12—H12A | 0.9900 |
O6—C16 | 1.4459 (13) | C12—H12B | 0.9900 |
C1—C2 | 1.4887 (13) | C13—C14 | 1.4026 (13) |
C1—C18 | 1.4904 (12) | C13—H13 | 0.9500 |
C2—C3 | 1.3351 (13) | C14—H14 | 0.9500 |
C3—C4 | 1.4985 (13) | C16—H16A | 0.9800 |
C3—H3 | 0.9500 | C16—H16B | 0.9800 |
C4—C17 | 1.4996 (13) | C16—H16C | 0.9800 |
C4—C10 | 1.5585 (14) | C17—C18 | 1.3354 (13) |
C5—C11 | 1.3563 (13) | C17—H17 | 0.9500 |
C5—C6 | 1.4733 (12) | ||
C5—O2—C4 | 109.46 (7) | C11—C10—H10A | 111.3 |
C9—O3—C12 | 104.80 (7) | C4—C10—H10A | 111.3 |
C8—O4—C12 | 105.13 (7) | C11—C10—H10B | 111.3 |
C15—O6—C16 | 115.44 (8) | C4—C10—H10B | 111.3 |
O1—C1—C2 | 122.93 (8) | H10A—C10—H10B | 109.2 |
O1—C1—C18 | 122.50 (8) | C5—C11—C15 | 128.64 (8) |
C2—C1—C18 | 114.57 (8) | C5—C11—C10 | 110.13 (8) |
C3—C2—C1 | 123.31 (8) | C15—C11—C10 | 121.07 (8) |
C3—C2—Br1 | 121.81 (7) | O4—C12—O3 | 106.94 (7) |
C1—C2—Br1 | 114.87 (6) | O4—C12—H12A | 110.3 |
C2—C3—C4 | 121.73 (8) | O3—C12—H12A | 110.3 |
C2—C3—H3 | 119.1 | O4—C12—H12B | 110.3 |
C4—C3—H3 | 119.1 | O3—C12—H12B | 110.3 |
O2—C4—C3 | 107.32 (7) | H12A—C12—H12B | 108.6 |
O2—C4—C17 | 106.47 (7) | C9—C13—C14 | 116.62 (9) |
C3—C4—C17 | 114.33 (8) | C9—C13—H13 | 121.7 |
O2—C4—C10 | 105.43 (7) | C14—C13—H13 | 121.7 |
C3—C4—C10 | 111.56 (8) | C6—C14—C13 | 121.91 (8) |
C17—C4—C10 | 111.13 (8) | C6—C14—H14 | 119.0 |
C11—C5—O2 | 112.55 (8) | C13—C14—H14 | 119.0 |
C11—C5—C6 | 135.58 (8) | O5—C15—O6 | 122.92 (9) |
O2—C5—C6 | 111.85 (8) | O5—C15—C11 | 127.60 (9) |
C14—C6—C7 | 120.45 (8) | O6—C15—C11 | 109.47 (8) |
C14—C6—C5 | 117.27 (8) | O6—C16—H16A | 109.5 |
C7—C6—C5 | 122.27 (8) | O6—C16—H16B | 109.5 |
C8—C7—C6 | 116.53 (8) | H16A—C16—H16B | 109.5 |
C8—C7—H7 | 121.7 | O6—C16—H16C | 109.5 |
C6—C7—H7 | 121.7 | H16A—C16—H16C | 109.5 |
O4—C8—C7 | 127.79 (8) | H16B—C16—H16C | 109.5 |
O4—C8—C9 | 109.53 (8) | C18—C17—C4 | 122.64 (8) |
C7—C8—C9 | 122.61 (8) | C18—C17—H17 | 118.7 |
O3—C9—C13 | 128.16 (9) | C4—C17—H17 | 118.7 |
O3—C9—C8 | 109.94 (8) | C17—C18—C1 | 122.38 (8) |
C13—C9—C8 | 121.85 (8) | C17—C18—Br2 | 121.91 (7) |
C11—C10—C4 | 102.30 (7) | C1—C18—Br2 | 115.70 (6) |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O5i | 0.95 | 2.61 | 3.4272 (13) | 144 |
C7—H7···O5 | 0.95 | 2.34 | 2.9441 (13) | 121 |
C10—H10A···O1ii | 0.99 | 2.55 | 3.3995 (13) | 143 |
C12—H12A···Br1iii | 0.99 | 2.96 | 3.9411 (12) | 173 |
C12—H12A···O1iii | 0.99 | 2.53 | 3.0852 (13) | 116 |
C13—H13···O2iv | 0.95 | 2.63 | 3.3909 (13) | 137 |
C16—H16C···O5v | 0.98 | 2.59 | 3.2434 (14) | 124 |
C17—H17···Br1vi | 0.95 | 3.03 | 3.9069 (11) | 153 |
C14—H14···O2 | 0.95 | 2.36 | 2.6937 (12) | 100 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+2, −y+2, −z+1; (iii) x, y−1, z+1; (iv) −x+1, −y+2, −z+2; (v) −x+3, −y+1, −z+2; (vi) x, y−1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3···O5i | 0.95 | 2.61 | 3.4272 (13) | 143.8 |
C7—H7···O5 | 0.95 | 2.34 | 2.9441 (13) | 120.7 |
C10—H10A···O1ii | 0.99 | 2.55 | 3.3995 (13) | 143.4 |
C12—H12A···Br1iii | 0.99 | 2.96 | 3.9411 (12) | 172.7 |
C12—H12A···O1iii | 0.99 | 2.53 | 3.0852 (13) | 115.5 |
C13—H13···O2iv | 0.95 | 2.63 | 3.3909 (13) | 136.9 |
C16—H16C···O5v | 0.98 | 2.59 | 3.2434 (14) | 124.1 |
C17—H17···Br1vi | 0.95 | 3.03 | 3.9069 (11) | 153.4 |
C14—H14···O2 | 0.95 | 2.36 | 2.6937 (12) | 100.3 |
Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+2, −y+2, −z+1; (iii) x, y−1, z+1; (iv) −x+1, −y+2, −z+2; (v) −x+3, −y+1, −z+2; (vi) x, y−1, z. |
Acknowledgements
The authors acknowledge Dr Jorge Henrique Monteiro for preliminary structure
This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2009/18390–4 and 2009/51602–5), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RA is the recipient of a research grant from CNPq.References
Barontini, M., Proietti Silvestri, I., Nardi, V., Crisante, F., Pepe, G., Pari, L., Gallucci, F., Bovicelli, P. & Righi, G. (2013). Med. Chem. Res. 22, 674–680. Web of Science CrossRef CAS Google Scholar
Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. Web of Science CrossRef IUCr Journals Google Scholar
König, G. M. & Wright, A. D. (1993). Heterocycles, 36, 1351–1358. Google Scholar
Lou, Y. (2012). Acta Cryst. E68, o1152. CrossRef IUCr Journals Google Scholar
Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Web of Science CrossRef CAS IUCr Journals Google Scholar
Martins, L. J., Ferreira, B. V., Almeida, W. P., Lancellotti, M. & Coelho, F. (2014). Tetrahedron Lett. 55, 5264–5267. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sorek, H., Rudi, A., Goldberg, I., Aknin, M. & Kashman, Y. (2009). J. Nat. Prod. 72, 784–786. Web of Science CSD CrossRef PubMed CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.