research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of a one-dimensional helical-type silver(I) coordination polymer: catena-poly[[silver(I)-μ-N-(pyridin-4-ylmeth­yl)pyridine-3-amine-κ2N:N′] nitrate di­methyl sulfoxide disolvate]

aBusan International High School, Busan 614-100, Republic of Korea, bDepartment of Chemistry, Gyeongsang National University, Jinju 660-701, Republic of Korea, cDepartment of Food & Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and dResearch Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

Edited by P. C. Healy, Griffith University, Australia (Received 10 November 2014; accepted 12 November 2014; online 15 November 2014)

The asymmetric unit of the title compound, {[Ag(C11H11N3)]NO3·2(CH3)2SO}n, comprises one AgI atom, one N-(pyridine-4-ylmeth­yl)pyridine-3-amine ligand, one nitrate anion and two dimethyl sulfoxide mol­ecules. The AgI atoms are bridged by two pyridine N atoms from two symmetry-related ligands, forming a helical chain and adopting a slightly distorted linear coordination geometry [N—Ag—N = 175.37 (8)°]. The helical chain, with a pitch length of 16.7871 (8) Å, propagates along the b-axis direction. In the crystal, symmetry-related right- and left-handed helical chains are alternately arranged via Ag⋯Ag inter­actions [3.4145 (4) Å] and ππ stacking inter­actions [centroid–centroid distance = 3.650 (2) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to (100). Weak Ag⋯O [2.775 (2), 3.169 (4) and 2.690 (2) Å] inter­actions, as well as several N—H⋯O and C—H⋯O hydrogen-bonding inter­actions, contribute to the stabilization of the crystal structure. Parts of the dimethyl sulfoxide solvent molecule are disordered over two sets of sites in a 0.937 (3):0.063 (3) ratio.

1. Chemical context

Self-assembled supra­molecular architectures based on the reaction of the silver ion with dipyridyl-type ligands continue to attract attention not only because of the fascinating structures caused by a variety of coordination geometries for the AgI cation, but also their potential applications as functional materials (Lee et al., 2012[Lee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834-3837.]; Leong & Vittal, 2011[Leong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688-764.]; Park et al., 2010[Park, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148-4154.]; Zhang et al., 2009[Zhang, W., Ye, H. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980-2997.], 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). However, although there has been rapid growth in AgI coordination chemistry based on symmetrical dipyridyl ligands with nitro­gen donor atoms in the same positions on two terminal pyridines, investigations based on unsymmetrical dipyridyl ligands with nitro­gen donor atoms in different positions on two terminal pyridines are still rare (Moon & Park, 2013[Moon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414-m415.], 2014[Moon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.]; Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). Therefore, the development of AgI coordination polymers using unsymmetrical dipyridyl ligands is a challenging project and deserves exploration. Herein, we report the crystal structure of the title compound prepared by the reaction of silver nitrate with the unsymmetrical dipyridyl ligand, N-(pyridin-4-ylmeth­yl)pyridine-3-amine, which was been synthesized by the reaction of 3-amino­pyridine and pyridine-4-carboxaldehyde according to literature methods (Foxon et al., 2002[Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111-121.]; Lee et al., 2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]). The structure of the title compound is related to that of the monohydrated AgI coordination polymer with the same ligand (Zhang et al., 2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]).

[Scheme 1]

2. Structural commentary

The mol­ecular components of the title structure are shown in Fig. 1[link]. The asymmetric unit consists of one AgI atom, one N-(pyridin-4-ylmeth­yl)pyridine-3-amine ligand, one nitrate anion and two DMSO mol­ecules. The S atom of one of the DMSO mol­ecules is disordered over two sites [site-occupancy factors of 0.937 (3) for S2 and 0.063 (3) for S2′]. The Ag atom links two pyridine N atoms from two symmetry-related ligands, forming a helical chain. Thus the AgI atom is two-coordinate in a slightly distorted linear coordination geometry [N—Ag—N = 175.37 (8)°], with the Ag—N bond lengths of 2.158 (2) and 2.162 (2) Å. The helical chain propagates along the b-axis direction (Fig. 2[link]) and its pitch length is 16.7871 (8) Å, much longer than that [10.135 (2) Å] of the monohydrated AgI coordination polymer reported by Zhang et al. (2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). The two pyridine rings coordinating to the Ag atom are tilted by 9.77 (16)° with respect to each other. In the N-(pyridin-4-ylmeth­yl)pyridine-3-amine ligand, the two pyridine rings are almost perpendicular, the dihedral angle between their mean planes being 86.28 (7)°.

[Figure 1]
Figure 1
A view of the mol­ecular structure of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level and two-coloured dashed lines indicate the disordered part of DMSO. Ag⋯O and C—H⋯O inter­actions are shown as yellow dashed lines. [Symmetry codes: (i) −x + 1, y + [{1\over 2}], −z + [{1\over 2}]; (ii) −x + 1, y − [{1\over 2}], −z + [{1\over 2}].]
[Figure 2]
Figure 2
The two-dimensional supra­molecular network formed through Ag⋯Ag and Ag⋯O inter­actions (green dashed lines) as well as ππ stacking inter­actions (black dashed lines).

3. Supra­molecular features

In the crystal structure, the symmetry-related right- and left-handed helical chains are alternately arranged in the structure via Ag⋯Ag inter­actions [3.4145 (4) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to (100) (Fig. 2[link]). ππ stacking inter­actions [centroid–centroid distance = 3.650 (2) Å] between the pyridine rings of both helical chains contribute to the stabilization of the two-dimensional network. The two-dimensional networks are further stabilized by Ag⋯O inter­actions [Ag1⋯O1 = 2.775 (2), Ag1⋯O2i = 3.169 (4) and Ag1⋯O4 = 2.690 (2) Å; symmetry code: (i) −x + 1, −y + 1, −z] (Fig. 2[link]), as well as N—H⋯O and C—H⋯O hydrogen bonds between the helical chains and the nitrate anions or the DMSO mol­ecules (Table 1[link]). In addition, several C—H⋯O hydrogen bonds between the DMSO mol­ecules, and between the DMSO mol­ecules and the nitrate anions are also observed.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3⋯O3i 0.88 2.17 3.042 (3) 173
C1—H1⋯O1 0.95 2.55 3.306 (4) 136
C5—H5⋯O2ii 0.95 2.32 3.151 (3) 145
C6—H6A⋯O3iii 0.99 2.42 3.405 (4) 175
C8—H8⋯O3iii 0.95 2.55 3.480 (4) 168
C10—H10⋯O4iv 0.95 2.44 3.309 (4) 152
C12—H12A⋯O5 0.98 2.43 3.377 (4) 161
C12—H12B⋯O5v 0.98 2.55 3.478 (4) 159
C12—H12C⋯O3vi 0.98 2.35 3.270 (4) 156
C13—H13A⋯O1 0.98 2.53 3.292 (4) 134
C15—H15C⋯O2i 0.98 2.59 3.470 (6) 149
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z+1; (v) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (vi) -x+2, -y+1, -z.

4. Database survey

The structures of the silver(I) nitrate and perchlorate complexes of the same ligand have been reported as their monohydrated and non-solvated forms, respectively, by Zhang et al. (2013[Zhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914-5923.]). These complexes have been also studied for their luminescent properties in the solid state.

5. Synthesis and crystallization

N-(Pyridin-4-ylmeth­yl)pyridine-3-amine was prepared according to the procedure described by Lee et al. (2013[Lee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477-3480.]) and Foxon et al. (2002[Foxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111-121.]). Crystals of the title compound suitable for X-ray analysis were obtained by vapour diffusion of diethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) nitrate in the molar ratio 1:1 in methanol.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms S2 and S2′ of one DMSO mol­ecule are disordered over two sites with site-occupation factors of 0.937 (3) and 0.063 (3), respectively. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H, 0.88 Å for amine N—H and 0.99 Å for methyl­ene C—H. For all H atoms, Uiso(H) = 1.2Ueq(C,N).

Table 2
Experimental details

Crystal data
Chemical formula [Ag(C11H11N3)]NO3·2C2H6OS
Mr 511.36
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c (Å) 11.7046 (6), 16.7871 (8), 10.4922 (5)
β (°) 91.950 (1)
V3) 2060.38 (17)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.21
Crystal size (mm) 0.31 × 0.24 × 0.12
 
Data collection
Diffractometer Bruker SMART CCD
Absorption correction Multi-scan (SADABS; Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.705, 0.868
No. of measured, independent and observed [I > 2σ(I)] reflections 11476, 4039, 3485
Rint 0.063
(sin θ/λ)max−1) 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.08
No. of reflections 4039
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.63
Computer programs: SMART and SAINT-Plus (Bruker, 2000[Bruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2005[Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.]).

Supporting information


Chemical context top

Self-assembled supra­molecular architectures based on the reaction of the silver ion with di­pyridyl-type ligands continue to attract attention not only because of the fascinating structures caused by a variety of coordination geometries for the AgI cation, but also their potential applications as functional materials (Lee et al., 2012; Leong & Vittal, 2011; Park et al., 2010; Zhang et al., 2009, 2013). However, although there has been rapid growth in AgI coordination chemistry based on symmetrical di­pyridyl ligands with nitro­gen donor atoms in the same positions on two terminal pyridines, investigations based on unsymmetrical di­pyridyl ligands with nitro­gen donor atoms in different positions on two terminal pyridines are still rare (Moon & Park, 2013, 2014; Zhang et al., 2013). Therefore, the development of AgI coordination polymers using unsymmetrical di­pyridyl ligands is a challenging project and deserves exploration. Herein, we report the crystal structure of the title compound prepared by the reaction of silver nitrate with the unsymmetrical di­pyridyl ligand, N-(pyridin-4-yl­methyl)­pyridine-3-amine, which was been synthesized by the reaction of 3-amino­pyridine and pyridine-4-carboxaldehyde according to literature methods (Foxon et al., 2002; Lee et al., 2013). The structure of title compound is related to that of the monohydrated AgI coordination polymer with the same ligand (Zhang et al., 2013).

Structural commentary top

The molecular components of the title structure are shown in Fig. 1. The asymmetric unit is consist of one AgI atom, one N-(pyridin-4-yl­methyl)­pyridine-3-amine ligand, one nitrate anion and two DMSO molecules. The S atom of one of the DMSO molecules is disordered over two sites (site-occupancy factors of 0.94 for S2 and 0.06 for S2'). The Ag atom links two pyridine N atoms from two symmetry-related ligands, forming a helical chain. Thus the Ag atom is two-coordinate in a slightly distorted linear coordination geometry [N—Ag—N = 175.37 (8)°], with the Ag—N bond lengths of 2.158 (2) and 2.162 (2) Å. The helical chain propagates along the b axis (Fig. 2) and its pitch length is 16.7871 (8) Å, much longer than that [10.135 (2) Å] of the monohydrated AgI coordination polymer reported by Zhang et al. (2013). The two pyridine rings coordinating to the Ag atom are tilted by 9.77 (16)° with respect to each other. In the N-(pyridin-4-yl­methyl)­pyridine-3-amine ligand, the two pyridine rings are almost perpendicular, the dihedral angle between their mean planes being 86.28 (7)°.

Supra­molecular features top

n the crystal structure, the symmetry-related right- and left-handed helical chains are alternately arranged in the structure via Ag···Ag inter­actions [3.4145 (4) Å], resulting in the formation of a two-dimensional supra­molecular network extending parallel to (200) (Fig. 2). ππ stacking inter­actions [centroid–centroid distance = 3.650 (2) Å] between the pyridine rings of both helical chains contribute to the stabilization of the two-dimensional network. The two-dimensional networks are further stabilized by Ag···O inter­actions [Ag1···O1 = 2.775 (2), Ag1···O2i = 3.169 (4) and Ag1···O4 = 2.690 (2) Å; symmetry code: (i) -x + 1, -y + 1, -z] (Fig. 2), as well as N—H···O and C—H···O hydrogen bonds between the helical chains and the nitrate anions or the DMSO molecules (Table 1). In addition, several C—H···O hydrogen bonds between the DMSO molecules, and between the DMSO molecules and the nitrate anions are also observed.

Database survey top

The structures of the silver(I) nitrate and perchlorate complexes of the same ligand have been reported as their monohydrated and non-solvated forms, respectively, by Zhang et al. (2013). These complexes have been also studied for their luminescent properties in the solid state.

Synthesis and crystallization top

N-(Pyridin-4-yl­methyl)­pyridine-3-amine was prepared according to the procedure described by Lee et al. (2013) and Foxon et al. (2002). Crystals of the title compound suitable for X-ray analysis were obtained by vapour diffusion of di­ethyl ether into a DMSO solution of the white precipitate afforded by the reaction of the ligand with silver(I) nitrate in the molar ratio 1:1 in methanol.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms S2 and S2' of one DMSO molecule are disordered with site-occupation factors of 0.94 and 0.06, respectively. All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for Csp2—H, 0.88 Å for amine N—H and 0.99 Å for methyl­ene C—H. For all H atoms, Uiso(H) = 1.2Ueq(C,N).

Related literature top

For related literature, see: Foxon et al. (2002); Lee et al. (2012, 2013); Leong & Vittal (2011); Moon & Park (2013, 2014); Park et al. (2010); Zhang et al. (2009, 2013).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Fig. 1. A view of the molecular structure of the title compound, with the atom numbering. Displacement ellipsoids are drawn at the 50% probability level and two-coloured dashed lines indicate the disordered part of DMSO. Ag···O and C—H···O interactions are shown as yellow dashed lines. [Symmetry codes: (i) -x + 1, y + 1/2, -z + 1/2; (ii) -x + 1, y - 1/2, -z + 1/2.]

Fig. 2. The two-dimensional supramolecular network formed through Ag···Ag and Ag···O interactions (green dashed lines) and ππ stacking interactions (black dashed lines).
catena-Poly[[silver(I)-µ-N-(pyridin-4-ylmethyl)pyridine-3-amine-κ2N:N'] nitrate dimethyl sulfoxide disolvate] top
Crystal data top
[Ag(C11H11N3)]NO3·2C2H6OSF(000) = 1040
Mr = 511.36Dx = 1.649 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7555 reflections
a = 11.7046 (6) Åθ = 2.3–28.3°
b = 16.7871 (8) ŵ = 1.21 mm1
c = 10.4922 (5) ÅT = 173 K
β = 91.950 (1)°Plate, colorless
V = 2060.38 (17) Å30.31 × 0.24 × 0.12 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
4039 independent reflections
Radiation source: fine-focus sealed tube3485 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1214
Tmin = 0.705, Tmax = 0.868k = 2019
11476 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0348P)2 + 1.0473P]
where P = (Fo2 + 2Fc2)/3
4039 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
[Ag(C11H11N3)]NO3·2C2H6OSV = 2060.38 (17) Å3
Mr = 511.36Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.7046 (6) ŵ = 1.21 mm1
b = 16.7871 (8) ÅT = 173 K
c = 10.4922 (5) Å0.31 × 0.24 × 0.12 mm
β = 91.950 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4039 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3485 reflections with I > 2σ(I)
Tmin = 0.705, Tmax = 0.868Rint = 0.063
11476 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
4039 reflectionsΔρmin = 0.63 e Å3
255 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.599664 (17)0.557957 (11)0.078155 (18)0.03159 (9)
N10.64574 (18)0.46711 (13)0.2167 (2)0.0311 (5)
N20.45491 (18)0.15285 (12)0.5486 (2)0.0287 (5)
N30.6908 (2)0.29282 (13)0.6162 (2)0.0346 (5)
H30.71820.31600.68590.092 (15)*
C10.7468 (2)0.42880 (15)0.2103 (3)0.0328 (6)
H10.79450.44040.14120.039*
C20.7836 (2)0.37356 (15)0.2997 (3)0.0321 (6)
H20.85510.34770.29110.039*
C30.7164 (2)0.35560 (14)0.4024 (2)0.0279 (5)
C40.6126 (2)0.39512 (16)0.4087 (3)0.0355 (6)
H40.56350.38490.47720.043*
C50.5808 (2)0.44944 (16)0.3151 (3)0.0373 (6)
H50.50920.47550.32110.045*
C60.7578 (2)0.29614 (15)0.5034 (3)0.0336 (6)
H6A0.75850.24250.46440.040*
H6B0.83750.30960.52940.040*
C70.5858 (2)0.25525 (14)0.6209 (2)0.0284 (5)
C80.5553 (2)0.19125 (14)0.5408 (2)0.0270 (5)
H80.60740.17440.47880.032*
C90.3803 (2)0.17604 (17)0.6358 (3)0.0350 (6)
H90.31000.14830.64200.042*
C100.4037 (3)0.23941 (17)0.7165 (3)0.0388 (6)
H100.34950.25530.77690.047*
C110.5062 (2)0.27946 (16)0.7091 (2)0.0356 (6)
H110.52260.32340.76390.043*
S10.90399 (6)0.61772 (4)0.14218 (7)0.03541 (16)
O40.78359 (17)0.64866 (14)0.1364 (2)0.0545 (6)
C120.9849 (2)0.68750 (17)0.2364 (3)0.0392 (7)
H12A0.96270.68380.32540.047*
H12B0.96990.74150.20460.047*
H12C1.06650.67550.23090.047*
C130.9641 (3)0.6403 (2)0.0077 (3)0.0470 (7)
H13A0.92880.60650.07410.071*
H13B1.04670.63050.00250.071*
H13C0.95000.69640.02870.071*
S20.85523 (7)0.61054 (5)0.61168 (7)0.0404 (3)0.937 (3)
S2'0.8683 (14)0.5787 (10)0.4964 (13)0.060 (5)0.063 (3)
O50.95718 (18)0.64284 (13)0.5476 (2)0.0486 (5)
C140.7356 (3)0.6311 (3)0.5101 (4)0.0866 (14)
H14A0.72040.68850.50990.104*0.937 (3)
H14B0.66870.60260.54070.104*0.937 (3)
H14C0.75120.61350.42340.104*0.937 (3)
H14D0.73430.67710.45270.104*0.063 (3)
H14E0.72820.64930.59820.104*0.063 (3)
H14F0.67190.59540.48700.104*0.063 (3)
C150.8616 (4)0.5055 (2)0.5930 (5)0.0829 (14)
H15A0.92450.48410.64660.100*0.937 (3)
H15B0.87430.49260.50350.100*0.937 (3)
H15C0.78930.48180.61850.100*0.937 (3)
H15D0.93220.47420.59050.100*0.063 (3)
H15E0.79630.47160.56810.100*0.063 (3)
H15F0.85190.52560.67960.100*0.063 (3)
N40.72721 (19)0.45059 (12)0.1442 (2)0.0309 (5)
O10.7696 (2)0.50433 (13)0.0788 (2)0.0544 (6)
O20.6392 (2)0.46146 (17)0.2082 (3)0.0807 (10)
O30.77059 (19)0.38352 (12)0.1461 (2)0.0521 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03243 (13)0.03166 (13)0.03064 (12)0.00682 (8)0.00031 (9)0.00448 (8)
N10.0263 (11)0.0307 (11)0.0361 (12)0.0013 (9)0.0021 (9)0.0028 (9)
N20.0270 (11)0.0292 (11)0.0298 (11)0.0012 (8)0.0004 (9)0.0015 (9)
N30.0403 (13)0.0306 (11)0.0324 (12)0.0062 (9)0.0075 (10)0.0020 (9)
C10.0271 (13)0.0353 (14)0.0360 (14)0.0018 (10)0.0035 (11)0.0005 (11)
C20.0249 (12)0.0312 (13)0.0402 (14)0.0039 (10)0.0003 (11)0.0028 (11)
C30.0261 (12)0.0207 (11)0.0365 (13)0.0034 (9)0.0055 (11)0.0014 (10)
C40.0284 (13)0.0354 (14)0.0427 (15)0.0014 (11)0.0040 (12)0.0086 (12)
C50.0266 (13)0.0375 (15)0.0480 (17)0.0055 (11)0.0022 (12)0.0085 (12)
C60.0279 (13)0.0272 (13)0.0451 (15)0.0028 (10)0.0075 (12)0.0051 (11)
C70.0359 (14)0.0239 (12)0.0249 (11)0.0003 (10)0.0053 (10)0.0037 (10)
C80.0285 (12)0.0272 (12)0.0253 (12)0.0015 (10)0.0010 (10)0.0009 (9)
C90.0301 (13)0.0391 (15)0.0358 (14)0.0001 (11)0.0030 (11)0.0003 (12)
C100.0436 (16)0.0423 (16)0.0309 (13)0.0084 (13)0.0071 (12)0.0037 (12)
C110.0474 (16)0.0306 (13)0.0283 (12)0.0044 (12)0.0044 (12)0.0053 (11)
S10.0319 (3)0.0323 (3)0.0423 (4)0.0020 (3)0.0062 (3)0.0029 (3)
O40.0266 (10)0.0654 (14)0.0718 (15)0.0028 (10)0.0073 (10)0.0272 (13)
C120.0343 (15)0.0469 (17)0.0360 (14)0.0019 (12)0.0018 (12)0.0044 (13)
C130.0429 (17)0.063 (2)0.0353 (15)0.0057 (15)0.0019 (13)0.0093 (14)
S20.0469 (5)0.0423 (5)0.0318 (4)0.0074 (3)0.0008 (3)0.0013 (3)
S2'0.057 (9)0.081 (11)0.040 (7)0.001 (7)0.004 (6)0.001 (7)
O50.0421 (12)0.0470 (12)0.0565 (13)0.0080 (9)0.0009 (10)0.0018 (10)
C140.043 (2)0.141 (4)0.075 (3)0.001 (2)0.001 (2)0.009 (3)
C150.113 (4)0.042 (2)0.095 (3)0.023 (2)0.024 (3)0.003 (2)
N40.0269 (11)0.0321 (12)0.0340 (12)0.0015 (9)0.0039 (9)0.0025 (9)
O10.0673 (15)0.0464 (12)0.0498 (13)0.0149 (11)0.0055 (11)0.0193 (11)
O20.0514 (15)0.0690 (17)0.119 (3)0.0119 (13)0.0377 (17)0.0006 (17)
O30.0473 (13)0.0342 (11)0.0748 (16)0.0130 (9)0.0028 (12)0.0001 (11)
Geometric parameters (Å, º) top
Ag1—N2i2.158 (2)S1—C131.785 (3)
Ag1—N12.162 (2)C12—H12A0.9800
N1—C51.337 (4)C12—H12B0.9800
N1—C11.350 (3)C12—H12C0.9800
N2—C91.343 (4)C13—H13A0.9800
N2—C81.345 (3)C13—H13B0.9800
N2—Ag1ii2.158 (2)C13—H13C0.9800
N3—C71.383 (3)S2—O51.492 (2)
N3—C61.443 (4)S2—C141.764 (4)
N3—H30.8800S2—C151.777 (4)
C1—C21.378 (4)S2—H14E1.6245
C1—H10.9500S2—H15F1.5946
C2—C31.389 (4)S2'—O51.579 (16)
C2—H20.9500S2'—C151.597 (16)
C3—C41.388 (4)S2'—C141.794 (17)
C3—C61.523 (3)C14—H14A0.9800
C4—C51.382 (4)C14—H14B0.9800
C4—H40.9500C14—H14C0.9800
C5—H50.9500C14—H14D0.9799
C6—H6A0.9900C14—H14E0.9799
C6—H6B0.9900C14—H14F0.9800
C7—C111.396 (4)C15—H15A0.9800
C7—C81.402 (3)C15—H15B0.9800
C8—H80.9500C15—H15C0.9800
C9—C101.381 (4)C15—H15D0.9800
C9—H90.9500C15—H15E0.9801
C10—C111.380 (4)C15—H15F0.9799
C10—H100.9500N4—O21.224 (3)
C11—H110.9500N4—O11.228 (3)
S1—O41.501 (2)N4—O31.236 (3)
S1—C121.784 (3)
N2i—Ag1—N1175.37 (8)O5—S2—H14E124.0
C5—N1—C1117.0 (2)C15—S2—H14E115.4
C5—N1—Ag1122.74 (17)O5—S2—H15F124.0
C1—N1—Ag1120.11 (19)C14—S2—H15F114.4
C9—N2—C8119.5 (2)H14E—S2—H15F111.1
C9—N2—Ag1ii116.62 (17)O5—S2'—C15110.8 (9)
C8—N2—Ag1ii123.85 (17)O5—S2'—C14101.6 (9)
C7—N3—C6123.7 (2)C15—S2'—C14105.3 (9)
C7—N3—H3118.2S2—O5—S2'51.5 (6)
C6—N3—H3118.2S2—C14—H14A109.5
N1—C1—C2122.7 (3)S2'—C14—H14A129.7
N1—C1—H1118.6S2—C14—H14B109.5
C2—C1—H1118.6S2'—C14—H14B119.4
C1—C2—C3120.2 (2)H14A—C14—H14B109.5
C1—C2—H2119.9S2—C14—H14C109.5
C3—C2—H2119.9S2'—C14—H14C65.7
C4—C3—C2116.9 (2)H14A—C14—H14C109.5
C4—C3—C6122.6 (2)H14B—C14—H14C109.5
C2—C3—C6120.5 (2)S2—C14—H14D121.4
C5—C4—C3119.8 (3)S2'—C14—H14D109.4
C5—C4—H4120.1H14B—C14—H14D126.1
C3—C4—H4120.1H14C—C14—H14D70.5
N1—C5—C4123.3 (3)S2—C14—H14E65.5
N1—C5—H5118.3S2'—C14—H14E109.5
C4—C5—H5118.3H14A—C14—H14E70.9
N3—C6—C3115.3 (2)H14B—C14—H14E75.3
N3—C6—H6A108.5H14C—C14—H14E174.3
C3—C6—H6A108.5H14D—C14—H14E109.5
N3—C6—H6B108.5S2—C14—H14F127.7
C3—C6—H6B108.5S2'—C14—H14F109.5
H6A—C6—H6B107.5H14A—C14—H14F117.6
N3—C7—C11120.3 (2)H14C—C14—H14F75.5
N3—C7—C8122.5 (2)H14D—C14—H14F109.5
C11—C7—C8117.2 (2)H14E—C14—H14F109.5
N2—C8—C7122.4 (2)S2'—C15—S246.3 (6)
N2—C8—H8118.8S2'—C15—H15A126.5
C7—C8—H8118.8S2—C15—H15A109.5
N2—C9—C10121.4 (3)S2'—C15—H15B63.2
N2—C9—H9119.3S2—C15—H15B109.5
C10—C9—H9119.3H15A—C15—H15B109.5
C11—C10—C9119.7 (3)S2'—C15—H15C123.2
C11—C10—H10120.2S2—C15—H15C109.5
C9—C10—H10120.2H15A—C15—H15C109.5
C10—C11—C7119.8 (2)H15B—C15—H15C109.5
C10—C11—H11120.1S2'—C15—H15D109.6
C7—C11—H11120.1S2—C15—H15D124.9
O4—S1—C12105.96 (13)H15B—C15—H15D72.5
O4—S1—C13106.77 (15)H15C—C15—H15D121.8
C12—S1—C1397.50 (14)S2'—C15—H15E109.4
S1—C12—H12A109.5S2—C15—H15E124.8
S1—C12—H12B109.5H15A—C15—H15E120.3
H12A—C12—H12B109.5H15B—C15—H15E76.1
S1—C12—H12C109.5H15D—C15—H15E109.5
H12A—C12—H12C109.5S2'—C15—H15F109.4
H12B—C12—H12C109.5S2—C15—H15F63.1
S1—C13—H13A109.5H15A—C15—H15F72.7
S1—C13—H13B109.5H15B—C15—H15F172.3
H13A—C13—H13B109.5H15C—C15—H15F76.1
S1—C13—H13C109.5H15D—C15—H15F109.5
H13A—C13—H13C109.5H15E—C15—H15F109.5
H13B—C13—H13C109.5O2—N4—O1120.9 (2)
O5—S2—C14106.70 (18)O2—N4—O3117.7 (2)
O5—S2—C15105.90 (18)O1—N4—O3121.3 (2)
C14—S2—C1599.3 (3)
C5—N1—C1—C20.1 (4)C8—N2—C9—C101.0 (4)
Ag1—N1—C1—C2176.35 (19)Ag1ii—N2—C9—C10176.0 (2)
N1—C1—C2—C30.5 (4)N2—C9—C10—C110.8 (4)
C1—C2—C3—C40.4 (4)C9—C10—C11—C70.5 (4)
C1—C2—C3—C6178.5 (2)N3—C7—C11—C10177.3 (2)
C2—C3—C4—C50.0 (4)C8—C7—C11—C101.5 (4)
C6—C3—C4—C5178.9 (2)C14—S2—O5—S2'58.3 (8)
C1—N1—C5—C40.3 (4)C15—S2—O5—S2'46.9 (8)
Ag1—N1—C5—C4175.8 (2)C15—S2'—O5—S256.6 (7)
C3—C4—C5—N10.4 (4)C14—S2'—O5—S254.9 (5)
C7—N3—C6—C376.5 (3)O5—S2—C14—S2'57.3 (8)
C4—C3—C6—N39.4 (3)C15—S2—C14—S2'52.5 (8)
C2—C3—C6—N3169.5 (2)O5—S2'—C14—S251.1 (5)
C6—N3—C7—C11154.1 (2)C15—S2'—C14—S264.6 (6)
C6—N3—C7—C827.1 (4)O5—S2'—C15—S249.4 (6)
C9—N2—C8—C70.0 (4)C14—S2'—C15—S259.7 (7)
Ag1ii—N2—C8—C7176.86 (17)O5—S2—C15—S2'51.4 (8)
N3—C7—C8—N2177.5 (2)C14—S2—C15—S2'59.1 (8)
C11—C7—C8—N21.3 (3)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3iii0.882.173.042 (3)173
C1—H1···O10.952.553.306 (4)136
C5—H5···O2iv0.952.323.151 (3)145
C6—H6A···O3v0.992.423.405 (4)175
C8—H8···O3v0.952.553.480 (4)168
C10—H10···O4vi0.952.443.309 (4)152
C12—H12A···O50.982.433.377 (4)161
C12—H12B···O5vii0.982.553.478 (4)159
C12—H12C···O3viii0.982.353.270 (4)156
C13—H13A···O10.982.533.292 (4)134
C15—H15C···O2iii0.982.593.470 (6)149
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y+1, z; (v) x, y+1/2, z+1/2; (vi) x+1, y+1, z+1; (vii) x, y+3/2, z1/2; (viii) x+2, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O3i0.882.173.042 (3)173.3
C1—H1···O10.952.553.306 (4)136.4
C5—H5···O2ii0.952.323.151 (3)145.4
C6—H6A···O3iii0.992.423.405 (4)174.8
C8—H8···O3iii0.952.553.480 (4)167.6
C10—H10···O4iv0.952.443.309 (4)152.2
C12—H12A···O50.982.433.377 (4)161.4
C12—H12B···O5v0.982.553.478 (4)158.6
C12—H12C···O3vi0.982.353.270 (4)156.0
C13—H13A···O10.982.533.292 (4)134.4
C15—H15C···O2i0.982.593.470 (6)148.9
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1, z+1; (v) x, y+3/2, z1/2; (vi) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C11H11N3)]NO3·2C2H6OS
Mr511.36
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)11.7046 (6), 16.7871 (8), 10.4922 (5)
β (°) 91.950 (1)
V3)2060.38 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.31 × 0.24 × 0.12
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.705, 0.868
No. of measured, independent and
observed [I > 2σ(I)] reflections
11476, 4039, 3485
Rint0.063
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.08
No. of reflections4039
No. of parameters255
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.63

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2005), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by NRF (2010–0022675) projects.

References

First citationBrandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Germany.  Google Scholar
First citationBruker. (2000). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFoxon, S. P., Walter, O. & Schindler, S. (2002). Eur. J. Inorg. Chem. pp. 111–121.  CSD CrossRef Google Scholar
First citationLee, E., Ryu, H., Moon, S.-H. & Park, K.-M. (2013). Bull. Korean Chem. Soc. 34, 3477–3480.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, E., Seo, J., Lee, S. S. & Park, K.-M. (2012). Cryst. Growth Des. 12, 3834–3837.  Web of Science CrossRef CAS Google Scholar
First citationLeong, W. L. & Vittal, J. J. (2011). Chem. Rev. 111, 688–764.  Web of Science CrossRef CAS PubMed Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2013). Acta Cryst. E69, m414–m415.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationMoon, S.-H. & Park, K.-M. (2014). Acta Cryst. E70, m233.  CSD CrossRef IUCr Journals Google Scholar
First citationPark, K.-M., Seo, J., Moon, S.-H. & Lee, S. S. (2010). Cryst. Growth Des. 10, 4148–4154.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Z.-Y., Deng, Z.-P., Huo, L.-H., Zhao, H. & Gao, S. (2013). Inorg. Chem. 52, 5914–5923.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationZhang, W., Ye, H. & Xiong, R. G. (2009). Coord. Chem. Rev. 253, 2980–2997.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds