organic compounds
S,4S)-5,5-dimethyl-2-(pyridin-2-yl)-1,3-thiazolidine-4-carboxylic acid
of (2aDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan, and bCREST, Japan Science and Technology Agency, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: kuwamuran12@chem.sci.osaka-u.ac.jp
In the title compound, C11H14N2O2S, the thiazolidine ring has an with the C atom bonded to the carboxylic acid group at the flap. Two C atoms of the thiazolidine ring adopt S conformations. In the crystal, O—H⋯N hydrogen bonds between the amine and carboxylic acid groups construct a helical chain structure along the a-axis direction. The chains are further connected via weak C—H⋯π contacts, forming a layer parallel to the ac plane.
Keywords: crystal structure; thiazolidine; hydrogen bonding; C—H⋯π contacts.
CCDC reference: 1033831
1. Related literature
For background to compounds containing thiazoline or thiazolidine rings, see: Bolos et al. (2002); Pontiki et al. (2006); Shih & Ke (2004). For related structures, see: Brunner et al. (1984, 2001). For the preparation of D-penicillamine-coordinated metal complexes, see: Igashira-Kamiyama & Konno (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure.
Supporting information
CCDC reference: 1033831
10.1107/S1600536814024854/is5377sup1.cif
contains datablocks New_Global_Publ_Block, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814024854/is5377Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814024854/is5377Isup3.cml
The compounds containing thiazoline or thiazolidine rings are of attractive attention for their coordination chemistry and potential antibiotic and antitumoral activities (Pontiki et al., 2006; Shih & Ke, 2004; Bolos et al., 2002). As part of our continuing study to create sulfur coordinated coordination compounds (Igashira-Kamiyama & Konno, 2011), we synthesized a novel thiazolidine compound, which is prepared from the condensation of D-penicillamine and 2-pyridine carboxaldehyde. Herein the structure and synthesis of (2S,4S)-5,5-dimethyl-2-(pyridin-2-yl)thiazolidine-4-carboxylic acid are reported.
The title compound is enantiometrically pure and the π contacts (Table 1), forming a layer parallel to the ac plane (Fig. 2).
was determined by the of the [0.01 (9)]. The chiral C-2 and C-4 atoms (atoms C6 and C7, respectively) have S configurations (Fig. 1). In the crystal, the molecules are interacted through O—H···N hydrogen bonds and weak C–H···To a white suspension of D-penicillamine (60 mg, 0.40 mmol) in MeOH (2.5 mL) was added 2-pyridine carboxaldehyde (43 mg, 0.40 mmol). The mixture was stirred at 50 °C for 2 h to give a pale yellow solution. The reaction mixture was allowed to stand at room temperature. Colorless crystals were obtained by slow evaporation of the reaction mixture after 10 days. Yield: 38 mg (40%). Anal Calcd for C11H14N2O2S: C 55.44, H 5.92, N 11.71%. Found: C 55.20, H 5.82, N 11.71%. IR: νmax (cm-1): 1570, 1591.
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2014); software used to prepare material for publication: CrystalStructure (Rigaku, 2014).Molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are at the 70% probability level. H atoms are drawn as spheres of arbitrary radii. Crystal packing diagram of the title compound, viewed along with the a axis. Orange and blue dotted lines indicate the weak C—H···π contact and the O—H···N hydrogen bond, respectively. |
C11H14N2O2S | Dx = 1.311 Mg m−3 |
Mr = 238.30 | Mo Kα radiation, λ = 0.71075 Å |
Orthorhombic, P212121 | Cell parameters from 606 reflections |
a = 7.906 (4) Å | θ = 3.0–21.8° |
b = 11.306 (5) Å | µ = 0.26 mm−1 |
c = 13.504 (7) Å | T = 200 K |
V = 1207.1 (10) Å3 | Block, colorless |
Z = 4 | 0.25 × 0.25 × 0.25 mm |
F(000) = 504.00 |
Rigaku R-AXIS RAPID diffractometer | 2711 reflections with F2 > 2σ(F2) |
ω scans | Rint = 0.020 |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | θmax = 27.5°, θmin = 3.0° |
Tmin = 0.785, Tmax = 0.938 | h = −10→10 |
9629 measured reflections | k = −14→13 |
2767 independent reflections | l = −17→17 |
Refinement on F2 | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | w = 1/[σ2(Fo2) + (0.045P)2 + 0.1433P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max < 0.001 |
2767 reflections | Δρmax = 0.23 e Å−3 |
152 parameters | Δρmin = −0.18 e Å−3 |
0 restraints | Absolute structure: Flack x determined using 1118 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.01 (9) |
Secondary atom site location: difference Fourier map |
C11H14N2O2S | V = 1207.1 (10) Å3 |
Mr = 238.30 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.906 (4) Å | µ = 0.26 mm−1 |
b = 11.306 (5) Å | T = 200 K |
c = 13.504 (7) Å | 0.25 × 0.25 × 0.25 mm |
Rigaku R-AXIS RAPID diffractometer | 2767 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2711 reflections with F2 > 2σ(F2) |
Tmin = 0.785, Tmax = 0.938 | Rint = 0.020 |
9629 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.074 | Δρmax = 0.23 e Å−3 |
S = 1.10 | Δρmin = −0.18 e Å−3 |
2767 reflections | Absolute structure: Flack x determined using 1118 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013) |
152 parameters | Absolute structure parameter: 0.01 (9) |
0 restraints |
Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY |
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
S1 | 0.73917 (6) | 0.55168 (4) | 0.77596 (3) | 0.03414 (14) | |
O1 | 0.8795 (2) | 0.83178 (13) | 0.53057 (12) | 0.0499 (4) | |
O2 | 0.9289 (2) | 0.65820 (14) | 0.45666 (11) | 0.0409 (4) | |
N1 | 0.63325 (18) | 0.85167 (14) | 0.83052 (11) | 0.0277 (3) | |
N2 | 0.65342 (19) | 0.73327 (14) | 0.65780 (10) | 0.0261 (3) | |
C1 | 0.5500 (2) | 0.74879 (16) | 0.82907 (12) | 0.0256 (3) | |
C2 | 0.4421 (3) | 0.71255 (17) | 0.90457 (14) | 0.0334 (4) | |
C3 | 0.4220 (3) | 0.78569 (19) | 0.98617 (14) | 0.0363 (4) | |
C4 | 0.5073 (3) | 0.89258 (17) | 0.98869 (14) | 0.0335 (4) | |
C5 | 0.6099 (2) | 0.92190 (16) | 0.90928 (14) | 0.0308 (4) | |
C6 | 0.5841 (2) | 0.66856 (16) | 0.74195 (12) | 0.0263 (3) | |
C7 | 0.7626 (2) | 0.65411 (15) | 0.60028 (11) | 0.0242 (3) | |
C8 | 0.8809 (2) | 0.58482 (16) | 0.67186 (13) | 0.0265 (3) | |
C9 | 0.8626 (2) | 0.72556 (17) | 0.52484 (12) | 0.0295 (4) | |
C10 | 0.9418 (3) | 0.46896 (18) | 0.62677 (16) | 0.0390 (4) | |
C11 | 1.0304 (3) | 0.6594 (2) | 0.70700 (16) | 0.0407 (5) | |
H2 | 0.38344 | 0.63938 | 0.90033 | 0.0401* | |
H3 | 0.35091 | 0.76278 | 1.03953 | 0.0436* | |
H4 | 0.49563 | 0.94457 | 1.04353 | 0.0402* | |
H5 | 0.66695 | 0.99584 | 0.91074 | 0.0369* | |
H6 | 0.47579 | 0.63008 | 0.72142 | 0.0315* | |
H7 | 0.68972 | 0.59616 | 0.56409 | 0.0290* | |
H10A | 0.84418 | 0.42248 | 0.60474 | 0.0468* | |
H10B | 1.01526 | 0.48577 | 0.57003 | 0.0468* | |
H10C | 1.00522 | 0.42406 | 0.67652 | 0.0468* | |
H11A | 0.98853 | 0.73348 | 0.73572 | 0.0488* | |
H11B | 1.09424 | 0.61552 | 0.75716 | 0.0488* | |
H11C | 1.10427 | 0.67722 | 0.65067 | 0.0488* | |
H12 | 0.711 (3) | 0.790 (2) | 0.6820 (17) | 0.0392* | |
H13 | 0.992 (4) | 0.696 (3) | 0.424 (2) | 0.0614* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0440 (3) | 0.0322 (2) | 0.0262 (2) | 0.0066 (2) | 0.00704 (19) | 0.00796 (16) |
O1 | 0.0704 (11) | 0.0304 (8) | 0.0487 (9) | −0.0018 (7) | 0.0192 (8) | 0.0082 (7) |
O2 | 0.0512 (9) | 0.0432 (8) | 0.0282 (7) | −0.0165 (7) | 0.0152 (6) | −0.0046 (6) |
N1 | 0.0281 (7) | 0.0288 (8) | 0.0263 (7) | −0.0001 (6) | 0.0014 (6) | 0.0008 (6) |
N2 | 0.0305 (7) | 0.0296 (8) | 0.0183 (6) | 0.0036 (6) | −0.0018 (6) | 0.0012 (6) |
C1 | 0.0241 (7) | 0.0314 (9) | 0.0214 (7) | 0.0026 (6) | −0.0028 (6) | 0.0014 (6) |
C2 | 0.0336 (9) | 0.0336 (10) | 0.0331 (9) | −0.0037 (8) | 0.0061 (8) | 0.0012 (8) |
C3 | 0.0391 (10) | 0.0418 (11) | 0.0281 (9) | 0.0034 (9) | 0.0105 (8) | 0.0032 (8) |
C4 | 0.0402 (10) | 0.0344 (10) | 0.0259 (8) | 0.0106 (8) | 0.0019 (7) | −0.0020 (7) |
C5 | 0.0331 (9) | 0.0274 (9) | 0.0318 (9) | 0.0026 (7) | −0.0001 (7) | −0.0002 (7) |
C6 | 0.0262 (8) | 0.0310 (8) | 0.0216 (8) | −0.0017 (7) | −0.0010 (6) | 0.0010 (7) |
C7 | 0.0269 (7) | 0.0273 (7) | 0.0184 (6) | −0.0040 (7) | −0.0009 (6) | 0.0005 (6) |
C8 | 0.0289 (8) | 0.0267 (8) | 0.0238 (8) | −0.0004 (6) | 0.0015 (7) | 0.0013 (6) |
C9 | 0.0331 (8) | 0.0333 (9) | 0.0222 (8) | −0.0035 (7) | −0.0001 (7) | 0.0044 (7) |
C10 | 0.0444 (11) | 0.0324 (10) | 0.0402 (11) | 0.0066 (9) | 0.0088 (9) | −0.0016 (8) |
C11 | 0.0365 (10) | 0.0435 (11) | 0.0421 (11) | −0.0056 (9) | −0.0132 (9) | 0.0019 (9) |
S1—C6 | 1.8599 (19) | C8—C11 | 1.528 (3) |
S1—C8 | 1.8362 (19) | O2—H13 | 0.79 (3) |
O1—C9 | 1.211 (2) | N2—H12 | 0.85 (2) |
O2—C9 | 1.305 (2) | C2—H2 | 0.950 |
N1—C1 | 1.337 (2) | C3—H3 | 0.950 |
N1—C5 | 1.340 (2) | C4—H4 | 0.950 |
N2—C6 | 1.458 (2) | C5—H5 | 0.950 |
N2—C7 | 1.466 (2) | C6—H6 | 1.000 |
C1—C2 | 1.391 (3) | C7—H7 | 1.000 |
C1—C6 | 1.510 (2) | C10—H10A | 0.980 |
C2—C3 | 1.387 (3) | C10—H10B | 0.980 |
C3—C4 | 1.384 (3) | C10—H10C | 0.980 |
C4—C5 | 1.385 (3) | C11—H11A | 0.980 |
C7—C8 | 1.556 (2) | C11—H11B | 0.980 |
C7—C9 | 1.522 (2) | C11—H11C | 0.980 |
C8—C10 | 1.523 (3) | ||
C6—S1—C8 | 93.90 (8) | C7—N2—H12 | 110.5 (16) |
C1—N1—C5 | 117.35 (15) | C1—C2—H2 | 120.764 |
C6—N2—C7 | 109.13 (14) | C3—C2—H2 | 120.760 |
N1—C1—C2 | 123.21 (16) | C2—C3—H3 | 120.513 |
N1—C1—C6 | 116.48 (15) | C4—C3—H3 | 120.502 |
C2—C1—C6 | 120.26 (16) | C3—C4—H4 | 120.818 |
C1—C2—C3 | 118.48 (18) | C5—C4—H4 | 120.808 |
C2—C3—C4 | 118.98 (18) | N1—C5—H5 | 118.207 |
C3—C4—C5 | 118.37 (18) | C4—C5—H5 | 118.203 |
N1—C5—C4 | 123.59 (17) | S1—C6—H6 | 108.899 |
S1—C6—N2 | 107.54 (12) | N2—C6—H6 | 108.902 |
S1—C6—C1 | 110.63 (12) | C1—C6—H6 | 108.903 |
N2—C6—C1 | 111.90 (15) | N2—C7—H7 | 108.652 |
N2—C7—C8 | 109.38 (13) | C8—C7—H7 | 108.655 |
N2—C7—C9 | 109.66 (14) | C9—C7—H7 | 108.656 |
C8—C7—C9 | 111.77 (14) | C8—C10—H10A | 109.475 |
S1—C8—C7 | 102.22 (12) | C8—C10—H10B | 109.471 |
S1—C8—C10 | 108.89 (13) | C8—C10—H10C | 109.472 |
S1—C8—C11 | 110.30 (13) | H10A—C10—H10B | 109.472 |
C7—C8—C10 | 112.01 (15) | H10A—C10—H10C | 109.467 |
C7—C8—C11 | 112.32 (15) | H10B—C10—H10C | 109.470 |
C10—C8—C11 | 110.76 (16) | C8—C11—H11A | 109.470 |
O1—C9—O2 | 125.42 (18) | C8—C11—H11B | 109.475 |
O1—C9—C7 | 122.76 (16) | C8—C11—H11C | 109.473 |
O2—C9—C7 | 111.80 (16) | H11A—C11—H11B | 109.465 |
C9—O2—H13 | 109 (2) | H11A—C11—H11C | 109.474 |
C6—N2—H12 | 106.1 (15) | H11B—C11—H11C | 109.470 |
Cg is the centroid of the N1/C1–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H13···N2i | 0.79 (3) | 1.87 (3) | 2.654 (2) | 173 (3) |
C3—H3···Cgii | 0.95 | 2.81 | 3.629 (2) | 145 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+2. |
Cg is the centroid of the N1/C1–C5 ring. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H13···N2i | 0.79 (3) | 1.87 (3) | 2.654 (2) | 173 (3) |
C3—H3···Cgii | 0.95 | 2.81 | 3.629 (2) | 145 |
Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) x−1/2, −y+3/2, −z+2. |
Acknowledgements
This work was supported by a Grant-in-Aid for Science Research (grant No. 23350026) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
References
Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350. CrossRef Web of Science IUCr Journals Google Scholar
Bolos, C. A., Papazisis, K. T., Kortsaris, A. H., Voyatzi, S., Zambouli, D. & Kyriakidis, D. A. (2002). J. Inorg. Biochem. 88, 25–36. Web of Science CrossRef PubMed CAS Google Scholar
Brunner, H., Becker, R. & Riepl, G. (1984). Organometallics, 3, 1354–1359. CrossRef CAS Web of Science Google Scholar
Brunner, H., Mijolović, D. & Zabel, M. (2001). Synthesis, pp. 1671–1680. CSD CrossRef Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Igashira-Kamiyama, A. & Konno, T. (2011). Dalton Trans. 40, 7249–7263. Web of Science CAS PubMed Google Scholar
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. Web of Science CrossRef CAS IUCr Journals Google Scholar
Pontiki, E., Hadjipavlou-Litina, D., Chaviara, A. T. & Bolos, C. A. (2006). Bioorg. Med. Chem. Lett. 16, 2234–2237. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2014). CrystalStructure. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Shih, M.-H. & Ke, F.-Y. (2004). Bioorg. Med. Chem. 12, 4633–4643. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.