organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1225-o1226

Crystal strucutre of rac-methyl (11aR*,12S*,13R*,15aS*,15bS*)-11-oxo-11,11a,12,13-tetra­hydro-9H,15bH-13,15a-ep­­oxy­isoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepine-12-carboxyl­ate

aOrganic Chemistry Department, Peoples' Friendship University of Russia, Miklukho-Maklaya St 6, Moscow 117198, Russia, bBaku State University, Z. Khalilov St 23, Baku AZ-1148, Azerbaijan, and cX-Ray Structural Centre, A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov St, B-334, Moscow 119991, Russian Federation
*Correspondence e-mail: organik10@hotmail.com

Edited by S. V. Lindeman, Marquette University, USA (Received 18 October 2014; accepted 23 October 2014; online 5 November 2014)

The title compound, C21H18N2O4, obtained as a racemate, contains a novel heterocyclic system, viz. isoindolo[1,2-c]pyrrolo­[1,2-a][1,4]benzodiazepine. The central diazepane ring has a distorted boat conformation with two phenyl­ene-fused and one methine C atom deviating by 0.931 (1), 0.887 (1) and 0.561 (1) Å, respectively, from the mean plane of the rest of the ring. The γ-lactone ring has an envelope conformation, with the C atom opposite to amide bond deviating by 0.355 (1) Å from its plane. In the crystal, mol­ecules form centrosymmetric dimers through pairs of C—H⋯O hydrogen bonds.

1. Related literature

For the synthesis of pyrrolo­[1,2-a][1,4]benzodiazepine, see: Raines et al. (1976[Raines, S., Chai, S. Y. & Palopoli, F. P. (1976). J. Heterocycl. Chem. 13, 711-716.]). For reviews on intra­molecular cyclo­addition reactions of α,β-unsaturated acid anhydrides to furfuryl­amines (IMDAF reactions), see: Vogel et al. (1999[Vogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521-13642.]); Zubkov et al. (2005[Zubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639-669.]). For related compounds, see: Zubkov et al. (2009[Zubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789-3803.], 2014[Zubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659-1690.]); Zubkov, Galeev et al. (2010[Zubkov, F. I., Galeev, T. R., Nikitina, E. V., Lazenkova, I. V., Zaytsev, V. P. & Varlamov, A. V. (2010). Synlett, pp. 2063-2066.]); Zubkov, Zaitsev et al. (2010[Zubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192-1206.]); Zaytsev et al. (2012[Zaytsev, V. P., Zubkov, F. I., Motorygina, E. L., Gorbacheva, M. G., Nikitina, E. V. & Varlamov, A. V. (2012). Chem. Heterocycl. Compd, 47, 1603-1606.], 2013[Zaytsev, V. P., Zubkov, F. I., Toze, F. A. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, S1, E18-38.]); Toze et al. (2011[Toze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852-o2853.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H18N2O4

  • Mr = 362.37

  • Monoclinic, P 21 /c

  • a = 8.1565 (3) Å

  • b = 14.2567 (5) Å

  • c = 14.6664 (5) Å

  • β = 98.210 (1)°

  • V = 1688.00 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

2.2. Data collection

  • Bruker APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003[Bruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.971, Tmax = 0.971

  • 25733 measured reflections

  • 6162 independent reflections

  • 5097 reflections with I > 2σ(I)

  • Rint = 0.029

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.119

  • S = 1.00

  • 6162 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11A—H11A⋯O1i 1.00 2.54 3.2663 (12) 129
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Chemical context top

\ In the last few years, our group has developed an effective strategy for the synthesis of 3,6a-ep­oxy­iso­indoles annulated withvarious heterocycles (Zubkov et al. 2009, 2014; Zubkov, Galeev et al. 2010; Zubkov, Zaitsev et al. 2010; Zaytsev et al. 2012, 2013). This strategy is based on the intra­molecular cyclo­addition reaction of α,β-unsaturated acid anhydrides to furfuryl­amines (IMDAF) (Vogel et al., 1999; Zubkov et al., 2005).

This article describes the synthesis (Raines et al., 1976) and structure of a novel heterocyclic system – isoindolo[1,2-c]pyrrolo­[1,2-a][1,4]benzodiazepine, which can be easily obtained using the IMDAF reaction between maleic anhydride and 4-(2-furyl)-5,6-di­hydro-4H-pyrrolo­[1,2-a][1,4]benzodiazepine (Fig. 1). The resulting compound is an analogue of the previously described rac-methyl-11,13a-ep­oxy­pyrrolo­[2',1':3,4][1,4]diazepino[2,1-\ a]iso­indole-10-carboxyl­ate (Toze et al., 2011).

Structural commentary top

\ The title compound, C21H18N2O4 (I), includes a fused hexacyclic system containing four five-membered rings (pyrrole, 2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan), one six-membered ring (benzene) and one seven-membered ring (1,4-diazepane) (Fig. 2). The pyrrole and benzene rings are planar; the 2-pyrrolidinone, tetra­hydro­furan and di­hydro­furan five-membered rings have the usual envelope conformations, and the central seven-membered diazepane ring adopts a boat conformation with the base plane composed from the N4, C15C, N10 and C9 atoms. The C4A, C8A and C15B atoms deviate from this base plane outward the bridge oxygen atom. As a consequence, the inter­plane angle between the boat bottom of the diazepane ring (N4/C9/N10/C15C) and the base plane of the central pyrrolidinone ring (N10/C11/C11A/C15B) is 19.80 (5)°. The nitro­gen N4 and N10 atoms have trigonal–planar geometry (sums of the bond angles are 360.0 (2) and 360.0 (3)°, respectively).

The molecule of I possesses five asymmetric centers at the C11A, C12, C13, C15A and C15B carbon atoms and can potentially have numerous diastereomers. The crystal of I is racemic and consists of enanti­omeric pairs with the following relative configuration of the centers: 11AR*, 12S*, 13R*, 15AS*, 15BS*.

Supra­molecular features top

In the crystal of I, the molecules form the centrosymmetric dimers by the two weak inter­molecular C11A—H11A···O1i hydrogen bonds [C···O 3.2663 (12) Å, H···O 2.54, C—H···O 129°, Table 1, Fig. 3]. The crystal packing of the dimers is stacked along the a axis (Fig. 3). Symmetry code: (i) (1–x, 1–y, 1–z).

Synthesis and crystallization top

A solution of the initial acid (0.5 g, 1.4 mmol) in methanol (40 mL) was refluxed for 3 h in the presence of catalytic amount of concentrated H2SO4 (monitoring by TLC until disappearance of the starting compound sport, eluent – EtOAc, Sorbfil). At the end of the reaction, the clear green solution was poured into water (100 mL) and extracted with CH2Cl2 (3×50 mL). The extract was dried over MgSO4 and concentrated in vacuo. The crude ester was recrystallized from a mixture of EtOH–DMF to give the title compound as yellow prisms. Yield is 0.4 g (79%). The single crystals of the product were obtained by slow crystallization from EtOH–DMF. M.p. = 492–493 K. IR (KBr), ν (cm–1): 1739, 1692; 1H NMR (CDCl3, 400 MHz, 300 K): δ = 2.76 (d, 1H, H11A, J11A,12 = 8.7), 2.91 (d, 1H, H12, J11A,12 = 8.7), 3.79 (s, 3H, CO2Me), 3.96 (d, 1H, H9B, J9A,9B = 13.9), 4.95 (d, 1H, H9A, J9A,9B = 13.9), 5.00 (s, 1H, H15B), 5.32 (d, 1H, H13, J13,14 = 1.8), 6.31 (dd, 1H, H2, J2,3 = 2.8, J1,2 = 3.7), 6.47 (d, 1H, H15, J14,15 = 5.9), 6.52 (dd, 1H, H14, J13,14 = 1.8, J14,15 = 5.9), 6.56 (dd, 1H, H1, J1,3 = 1.4, J1,2 = 3.7), 6.55 (dd, 1H, H3, J1,3 = 1.4, J2,3 = 2.8), 7.30–7.49 (m, 4H, C6H4). 13C NMR (CDCl3, 100 MHz, 300 K): δ = 43.5 (C9), 45.2, 51.5, 52.1, 53.7 (C11a, C12, C15B, CO2Me), 81.7 (C13), 90.2 (C15a), 109.9, 110.9 (C1, C2), 121.2, 123.2, 125.3, 127.0, 127.6, 129.8, 130.8, 134.3, 137.4, 140.1 (C6H4, C3, C14, C15, C15C), 168.4, 172.2 (NCO, CO2Me). EI–MS (70 eV) m/z (rel. intensity): 362 [M]+ (20), 249 (60),233 (32), 191 (19), 181 (54), 167 (31), 154 ( 73), 121 (21), 113 (100), 85 (38), 59 (29). Anal. Calcd for C21H18N2O4: C, 69.60; H, 5.01; N, 7.73. Found: C, 69.88; H, 4.89; N, 7.66.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. All hydrogen atoms were placed in the calculated positions with C—H = 0.95 (aryl-H), 0.98 (methyl-H), 0.99 (methyl­ene-H), and 1.00 (methine-H) Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the CH3 group and Uiso(H) = 1.2Ueq(C) for the other groups. Positions of the hydrogen atoms of the methyl group were optimized rotationally.

Related literature top

For the synthesis of pyrrolo[1,2-a][1,4]benzodiazepine, see: Raines et al. (1976). For reviews on intramolecular cycloaddition reactions of α,β-unsaturated acid anhydrides to furfurylamines (IMDAF reactions), see: Vogel et al. (1999); Zubkov et al. (2005). For related compounds, see: Zubkov et al. (2009, 2014); Zubkov, Galeev et al. (2010); Zubkov, Zaitsev et al. (2010); Zaytsev et al. (2012, 2013); Toze et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1. Synthesis of methyl 11-oxo-11,11a,12,13-tetrahydro-9H,15b-H-13,15a-epoxyisoindolo[1,2c]pyrrolo[1,2a][1,4]benzodiazepine-12-carboxylate.

Figure 2. Molecular structure of (I). Displacement ellipsoids are shown at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.

Figure 3. A portion of crystal packing of I along the crystallographic a axis demonstrating the centrosymmetric H-bonded dimers. Only hydrogen atoms at the asymmetric centers are shown. Dashed lines indicate the weak intermolecular C—H···O hydrogen bonds.
rac-Methyl (11aR*,12S*,13R*,15aS*,15bS*)-11-oxo-11,11a,12,13-tetrahydro-9H,15bH-13,15a-epoxyisoindolo[1,2-c]pyrrolo[1,2-a][1,4]benzodiazepine-12-carboxylate top
Crystal data top
C21H18N2O4F(000) = 760
Mr = 362.37Dx = 1.426 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8798 reflections
a = 8.1565 (3) Åθ = 2.5–32.6°
b = 14.2567 (5) ŵ = 0.10 mm1
c = 14.6664 (5) ÅT = 100 K
β = 98.210 (1)°Prism, yellow
V = 1688.00 (10) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker APEX DUO CCD
diffractometer
6162 independent reflections
Radiation source: fine-focus sealed tube5097 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 32.6°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1212
Tmin = 0.971, Tmax = 0.971k = 2121
25733 measured reflectionsl = 2222
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0646P)2 + 0.565P]
where P = (Fo2 + 2Fc2)/3
6162 reflections(Δ/σ)max < 0.001
245 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C21H18N2O4V = 1688.00 (10) Å3
Mr = 362.37Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1565 (3) ŵ = 0.10 mm1
b = 14.2567 (5) ÅT = 100 K
c = 14.6664 (5) Å0.30 × 0.30 × 0.30 mm
β = 98.210 (1)°
Data collection top
Bruker APEX DUO CCD
diffractometer
6162 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
5097 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.971Rint = 0.029
25733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.00Δρmax = 0.47 e Å3
6162 reflectionsΔρmin = 0.26 e Å3
245 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27309 (9)0.45215 (5)0.53193 (5)0.01848 (14)
O20.47579 (12)0.27298 (6)0.63472 (6)0.02842 (18)
O30.60524 (10)0.32277 (5)0.51730 (5)0.02255 (16)
C10.31059 (13)0.53225 (7)0.90588 (6)0.01946 (18)
H10.40200.49120.92160.023*
C20.19108 (14)0.55791 (9)0.96356 (7)0.0242 (2)
H20.18830.53661.02470.029*
C30.08144 (14)0.61843 (8)0.91546 (7)0.0228 (2)
H30.01070.64690.93740.027*
N40.12777 (10)0.63120 (6)0.82896 (6)0.01710 (16)
C4A0.04475 (12)0.68950 (7)0.75861 (7)0.01735 (17)
C50.02093 (13)0.77501 (7)0.78280 (8)0.0232 (2)
H50.00680.79440.84540.028*
C60.10691 (14)0.83162 (8)0.71507 (9)0.0274 (2)
H60.15600.88840.73170.033*
C70.12110 (15)0.80554 (8)0.62343 (9)0.0279 (2)
H70.17450.84600.57690.033*
C80.05706 (14)0.71985 (8)0.59930 (8)0.0227 (2)
H80.06870.70210.53630.027*
C8A0.02398 (12)0.65967 (7)0.66631 (7)0.01659 (17)
C90.07294 (11)0.56233 (7)0.63935 (6)0.01498 (16)
H9A0.01740.51550.67430.018*
H9B0.03340.55250.57300.018*
N100.25065 (10)0.54661 (6)0.65654 (5)0.01399 (14)
C110.33580 (12)0.49482 (6)0.60081 (6)0.01406 (16)
C11A0.51928 (11)0.50475 (6)0.63808 (6)0.01349 (15)
H11A0.57050.55660.60590.016*
C120.63419 (12)0.41731 (6)0.64878 (6)0.01520 (16)
H120.74140.43220.62640.018*
C130.66222 (12)0.40784 (7)0.75634 (6)0.01691 (17)
H130.69920.34440.78010.020*
C140.77432 (12)0.48870 (8)0.79392 (7)0.01889 (18)
H140.88840.48520.81860.023*
C150.67943 (12)0.56536 (7)0.78501 (6)0.01747 (17)
H150.71050.62770.80260.021*
C15A0.51170 (11)0.53094 (6)0.74072 (6)0.01330 (15)
C15B0.35216 (11)0.58535 (6)0.73907 (6)0.01326 (15)
H15B0.37460.65300.72770.016*
C15C0.26875 (12)0.57808 (7)0.82316 (6)0.01505 (16)
O160.50407 (9)0.43775 (5)0.77891 (5)0.01577 (13)
C160.55961 (12)0.32965 (7)0.60170 (7)0.01805 (18)
C170.53752 (19)0.24502 (8)0.46127 (9)0.0329 (3)
H17A0.61240.22890.41700.049*
H17B0.42900.26250.42800.049*
H17C0.52520.19080.50080.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0207 (3)0.0205 (3)0.0142 (3)0.0013 (3)0.0025 (2)0.0047 (2)
O20.0349 (5)0.0188 (4)0.0335 (4)0.0061 (3)0.0117 (4)0.0013 (3)
O30.0306 (4)0.0187 (3)0.0186 (3)0.0031 (3)0.0043 (3)0.0035 (3)
C10.0229 (4)0.0227 (4)0.0130 (4)0.0056 (4)0.0032 (3)0.0013 (3)
C20.0276 (5)0.0331 (6)0.0132 (4)0.0092 (4)0.0074 (4)0.0036 (4)
C30.0234 (5)0.0315 (5)0.0158 (4)0.0079 (4)0.0102 (4)0.0082 (4)
N40.0178 (4)0.0196 (4)0.0152 (3)0.0034 (3)0.0069 (3)0.0047 (3)
C4A0.0155 (4)0.0161 (4)0.0219 (4)0.0024 (3)0.0076 (3)0.0039 (3)
C50.0196 (4)0.0188 (4)0.0329 (5)0.0022 (3)0.0096 (4)0.0094 (4)
C60.0217 (5)0.0158 (4)0.0462 (7)0.0012 (4)0.0105 (5)0.0055 (4)
C70.0257 (5)0.0190 (5)0.0397 (6)0.0049 (4)0.0073 (5)0.0042 (4)
C80.0232 (5)0.0204 (4)0.0254 (5)0.0052 (4)0.0066 (4)0.0033 (4)
C8A0.0159 (4)0.0150 (4)0.0200 (4)0.0007 (3)0.0065 (3)0.0004 (3)
C90.0147 (4)0.0152 (4)0.0152 (4)0.0014 (3)0.0023 (3)0.0014 (3)
N100.0146 (3)0.0158 (3)0.0117 (3)0.0013 (3)0.0023 (2)0.0021 (3)
C110.0170 (4)0.0137 (4)0.0121 (3)0.0013 (3)0.0043 (3)0.0009 (3)
C11A0.0152 (4)0.0133 (4)0.0127 (3)0.0005 (3)0.0043 (3)0.0005 (3)
C120.0164 (4)0.0146 (4)0.0151 (4)0.0012 (3)0.0041 (3)0.0008 (3)
C130.0168 (4)0.0183 (4)0.0161 (4)0.0022 (3)0.0036 (3)0.0033 (3)
C140.0164 (4)0.0258 (5)0.0144 (4)0.0008 (3)0.0022 (3)0.0004 (3)
C150.0162 (4)0.0215 (4)0.0150 (4)0.0044 (3)0.0034 (3)0.0015 (3)
C15A0.0151 (4)0.0130 (4)0.0123 (3)0.0013 (3)0.0036 (3)0.0006 (3)
C15B0.0154 (4)0.0133 (3)0.0115 (3)0.0017 (3)0.0035 (3)0.0015 (3)
C15C0.0168 (4)0.0158 (4)0.0132 (4)0.0040 (3)0.0046 (3)0.0029 (3)
O160.0173 (3)0.0152 (3)0.0157 (3)0.0002 (2)0.0054 (2)0.0037 (2)
C160.0198 (4)0.0150 (4)0.0195 (4)0.0041 (3)0.0036 (3)0.0004 (3)
C170.0497 (8)0.0209 (5)0.0256 (5)0.0033 (5)0.0037 (5)0.0070 (4)
Geometric parameters (Å, º) top
O1—C111.2267 (11)C9—H9A0.9900
O2—C161.2039 (13)C9—H9B0.9900
O3—C161.3460 (12)N10—C111.3629 (11)
O3—C171.4420 (14)N10—C15B1.4729 (11)
C1—C15C1.3773 (13)C11—C11A1.5247 (13)
C1—C21.4266 (15)C11A—C121.5541 (13)
C1—H10.9500C11A—C15A1.5607 (13)
C2—C31.3644 (17)C11A—H11A1.0000
C2—H20.9500C12—C161.5129 (14)
C3—N41.3866 (12)C12—C131.5672 (13)
C3—H30.9500C12—H121.0000
N4—C15C1.3896 (13)C13—O161.4413 (12)
N4—C4A1.4192 (13)C13—C141.5247 (14)
C4A—C51.3976 (14)C13—H131.0000
C4A—C8A1.4059 (13)C14—C151.3349 (15)
C5—C61.3897 (17)C14—H140.9500
C5—H50.9500C15—C15A1.5102 (13)
C6—C71.3834 (18)C15—H150.9500
C6—H60.9500C15A—O161.4466 (11)
C7—C81.3941 (15)C15A—C15B1.5122 (13)
C7—H70.9500C15B—C15C1.4948 (12)
C8—C8A1.3976 (14)C15B—H15B1.0000
C8—H80.9500C17—H17A0.9800
C8A—C91.5123 (13)C17—H17B0.9800
C9—N101.4528 (12)C17—H17C0.9800
C16—O3—C17116.50 (9)C11—C11A—H11A110.8
C15C—C1—C2107.24 (10)C12—C11A—H11A110.8
C15C—C1—H1126.4C15A—C11A—H11A110.8
C2—C1—H1126.4C16—C12—C11A114.78 (8)
C3—C2—C1107.97 (9)C16—C12—C13112.31 (8)
C3—C2—H2126.0C11A—C12—C1399.79 (7)
C1—C2—H2126.0C16—C12—H12109.9
C2—C3—N4108.18 (9)C11A—C12—H12109.9
C2—C3—H3125.9C13—C12—H12109.9
N4—C3—H3125.9O16—C13—C14101.74 (8)
C3—N4—C15C108.69 (9)O16—C13—C12101.47 (7)
C3—N4—C4A125.31 (9)C14—C13—C12107.01 (8)
C15C—N4—C4A126.00 (8)O16—C13—H13115.0
C5—C4A—C8A120.69 (10)C14—C13—H13115.0
C5—C4A—N4119.12 (9)C12—C13—H13115.0
C8A—C4A—N4120.15 (8)C15—C14—C13105.92 (8)
C6—C5—C4A119.85 (10)C15—C14—H14127.0
C6—C5—H5120.1C13—C14—H14127.0
C4A—C5—H5120.1C14—C15—C15A104.65 (8)
C7—C6—C5120.14 (10)C14—C15—H15127.7
C7—C6—H6119.9C15A—C15—H15127.7
C5—C6—H6119.9O16—C15A—C15102.61 (7)
C6—C7—C8119.99 (11)O16—C15A—C15B113.13 (7)
C6—C7—H7120.0C15—C15A—C15B124.39 (8)
C8—C7—H7120.0O16—C15A—C11A99.42 (7)
C7—C8—C8A121.07 (10)C15—C15A—C11A109.54 (7)
C7—C8—H8119.5C15B—C15A—C11A105.06 (7)
C8A—C8—H8119.5N10—C15B—C15C112.54 (7)
C8—C8A—C4A118.12 (9)N10—C15B—C15A101.67 (7)
C8—C8A—C9119.70 (9)C15C—C15B—C15A116.31 (8)
C4A—C8A—C9121.96 (9)N10—C15B—H15B108.7
N10—C9—C8A112.98 (8)C15C—C15B—H15B108.7
N10—C9—H9A109.0C15A—C15B—H15B108.7
C8A—C9—H9A109.0C1—C15C—N4107.93 (8)
N10—C9—H9B109.0C1—C15C—C15B132.45 (9)
C8A—C9—H9B109.0N4—C15C—C15B119.39 (8)
H9A—C9—H9B107.8C13—O16—C15A95.36 (7)
C11—N10—C9124.11 (8)O2—C16—O3124.65 (10)
C11—N10—C15B114.91 (8)O2—C16—C12125.82 (9)
C9—N10—C15B120.97 (7)O3—C16—C12109.51 (8)
O1—C11—N10125.05 (9)O3—C17—H17A109.5
O1—C11—C11A127.86 (8)O3—C17—H17B109.5
N10—C11—C11A107.03 (7)H17A—C17—H17B109.5
C11—C11A—C12120.57 (8)O3—C17—H17C109.5
C11—C11A—C15A101.30 (7)H17A—C17—H17C109.5
C12—C11A—C15A101.58 (7)H17B—C17—H17C109.5
C15C—C1—C2—C30.39 (12)C13—C14—C15—C15A0.95 (10)
C1—C2—C3—N40.35 (12)C14—C15—C15A—O1633.34 (9)
C2—C3—N4—C15C0.19 (12)C14—C15—C15A—C15B163.20 (8)
C2—C3—N4—C4A179.84 (9)C14—C15—C15A—C11A71.57 (9)
C3—N4—C4A—C537.78 (14)C11—C11A—C15A—O1685.68 (7)
C15C—N4—C4A—C5141.80 (10)C12—C11A—C15A—O1639.10 (8)
C3—N4—C4A—C8A139.92 (10)C11—C11A—C15A—C15167.24 (7)
C15C—N4—C4A—C8A40.50 (14)C12—C11A—C15A—C1567.98 (9)
C8A—C4A—C5—C60.39 (15)C11—C11A—C15A—C15B31.51 (8)
N4—C4A—C5—C6178.07 (9)C12—C11A—C15A—C15B156.29 (7)
C4A—C5—C6—C72.93 (17)C11—N10—C15B—C15C138.43 (8)
C5—C6—C7—C83.57 (18)C9—N10—C15B—C15C40.32 (11)
C6—C7—C8—C8A0.88 (17)C11—N10—C15B—C15A13.28 (10)
C7—C8—C8A—C4A2.36 (16)C9—N10—C15B—C15A165.47 (8)
C7—C8—C8A—C9172.37 (10)O16—C15A—C15B—N1080.04 (8)
C5—C4A—C8A—C82.98 (14)C15—C15A—C15B—N10154.51 (8)
N4—C4A—C8A—C8179.36 (9)C11A—C15A—C15B—N1027.37 (8)
C5—C4A—C8A—C9171.61 (9)O16—C15A—C15B—C15C42.57 (10)
N4—C4A—C8A—C96.05 (14)C15—C15A—C15B—C15C82.88 (11)
C8—C8A—C9—N10118.64 (10)C11A—C15A—C15B—C15C149.98 (8)
C4A—C8A—C9—N1066.84 (11)C2—C1—C15C—N40.27 (11)
C8A—C9—N10—C11143.31 (9)C2—C1—C15C—C15B174.54 (10)
C8A—C9—N10—C15B38.06 (11)C3—N4—C15C—C10.05 (11)
C9—N10—C11—O13.19 (15)C4A—N4—C15C—C1179.59 (9)
C15B—N10—C11—O1175.52 (9)C3—N4—C15C—C15B175.20 (8)
C9—N10—C11—C11A174.16 (8)C4A—N4—C15C—C15B4.44 (14)
C15B—N10—C11—C11A7.13 (10)N10—C15B—C15C—C1118.64 (11)
O1—C11—C11A—C1248.29 (13)C15A—C15B—C15C—C11.93 (15)
N10—C11—C11A—C12134.46 (8)N10—C15B—C15C—N467.62 (11)
O1—C11—C11A—C15A159.13 (9)C15A—C15B—C15C—N4175.67 (8)
N10—C11—C11A—C15A23.61 (9)C14—C13—O16—C15A49.73 (8)
C11—C11A—C12—C1612.35 (12)C12—C13—O16—C15A60.58 (8)
C15A—C11A—C12—C16123.04 (8)C15—C15A—O16—C1351.04 (8)
C11—C11A—C12—C13107.91 (9)C15B—C15A—O16—C13172.50 (7)
C15A—C11A—C12—C132.78 (8)C11A—C15A—O16—C1361.58 (7)
C16—C12—C13—O1687.41 (9)C17—O3—C16—O24.70 (15)
C11A—C12—C13—O1634.64 (8)C17—O3—C16—C12177.05 (9)
C16—C12—C13—C14166.38 (8)C11A—C12—C16—O287.26 (12)
C11A—C12—C13—C1471.58 (9)C13—C12—C16—O225.82 (14)
O16—C13—C14—C1531.71 (9)C11A—C12—C16—O394.52 (9)
C12—C13—C14—C1574.32 (9)C13—C12—C16—O3152.41 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11A···O1i1.002.543.2663 (12)129
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11A—H11A···O1i1.002.543.2663 (12)129
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors are grateful to the Russian Foundation for Basic Research for financial support (grant Nos. 13-03-00105a and 13-03-90400).

References

First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationRaines, S., Chai, S. Y. & Palopoli, F. P. (1976). J. Heterocycl. Chem. 13, 711–716.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToze, F. A. A., Airiyan, I. K., Nikitina, E. V., Sorokina, E. A. & Khrustalev, V. N. (2011). Acta Cryst. E67, o2852–o2853.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationVogel, P., Cossy, J., Plumet, J. & Arjona, O. (1999). Tetrahedron, 55, 13521–13642.  Web of Science CrossRef CAS Google Scholar
First citationZaytsev, V. P., Zubkov, F. I., Motorygina, E. L., Gorbacheva, M. G., Nikitina, E. V. & Varlamov, A. V. (2012). Chem. Heterocycl. Compd, 47, 1603–1606.  Web of Science CrossRef CAS Google Scholar
First citationZaytsev, V. P., Zubkov, F. I., Toze, F. A. A., Orlova, D. N., Eliseeva, M. N., Grudinin, D. G., Nikitina, E. V. & Varlamov, A. V. (2013). J. Heterocycl. Chem. 50, S1, E18–38.  Google Scholar
First citationZubkov, F. I., Ershova, J. D., Orlova, A. A., Zaytsev, V. P., Nikitina, E. V., Peregudov, A. S., Gurbanov, A. V., Borisov, R. S., Khrustalev, V. N., Maharramov, A. M. & Varlamov, A. V. (2009). Tetrahedron, 65, 3789–3803.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Galeev, T. R., Nikitina, E. V., Lazenkova, I. V., Zaytsev, V. P. & Varlamov, A. V. (2010). Synlett, pp. 2063–2066.  Web of Science CrossRef Google Scholar
First citationZubkov, F. I., Nikitina, E. V., Galeev, T. R., Zaytsev, V. P., Khrustalev, V. N., Novikov, R. A., Orlova, D. N. & Varlamov, A. V. (2014). Tetrahedron, 70, 1659–1690.  Web of Science CSD CrossRef CAS Google Scholar
First citationZubkov, F. I., Nikitina, E. V. & Varlamov, A. V. (2005). Russ. Chem. Rev. 74, 639–669.  CrossRef CAS Google Scholar
First citationZubkov, F. I., Zaitsev, V. P., Piskareva, A. M., Eliseeva, M. N., Nikitina, E. V., Mikhailova, N. M. & Varlamov, A. V. (2010). Russ. J. Org. Chem. 46, 1192–1206.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1225-o1226
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds