organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1270-o1271

Crystal structure of ethyl 2-(2-fluoro­benzyl­­idene)-5-(4-fluoro­phen­yl)-7-methyl-3-oxo-2,3-di­hydro-5H-1,3-thia­zolo[3,2-a]pyrimidine-6-carb­­oxy­late

aDepartment of Studies in Chemistry, Bangalore University, Bangalore 560 001, Karnataka, India
*Correspondence e-mail: noorsb@rediffmail.com

Edited by A. J. Lough, University of Toronto, Canada (Received 26 October 2014; accepted 14 November 2014; online 19 November 2014)

In the title mol­ecule, C23H18F2N2O3S, the 4-fluoro-substituted and 2-fluoro-substituted benzene rings form dihedral angles of 88.16 (8) and 23.1 (1)°, respectively, with the thia­zole ring. The pyrimidine ring adopts a flattened sofa conformation with the sp3-hydridized C atom forming the flap. In the crystal, pairs of weak C—H⋯O hydrogen bonds link mol­ecules related by twofold rotation axes, forming R22(10) rings, which are in turn linked by weak C—H⋯N inter­actions to form chains of rings along [010]. In addition, weak C—H⋯π(arene) inter­actions link the chains into layers parallel to (001) and ππ inter­actions with a centroid–centroid distance of 3.836 (10) Å connect these layers into a three-dimensional network.

1. Related literature

For the biological activity of fused pyrimidine derivatives, see: Alam et al. (2010a[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010a). Med. Chem. Res. 19, 1245-1258.],b[Alam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010b). Eur. J. Med. Chem. 45, 5113—5119.]); Jotani et al. (2009[Jotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr. 39, 898-901.]). For the biological activity of fluoro-substituted compounds, see: Guru Row (1999[Guru Row, T. N. (1999). Chem. Rev. 183, 81—100.]); Yamazaki et al. (2009[Yamazaki, T., Taguchi, T. & Ojima, I. (2009). Fluorine in Medicinal Chemistry and Chemical Biology, edited by I. Ojima, pp. 3-46. Weinheim: Wiley-Blackwell.]). For related structures, see: Krishnamurthy et al. (2014[Krishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187-o1188.]); Nagarajaiah & Begum (2011[Nagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.]). For hydrogen-bond graph-set motifs motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C23H18F2N2O3S

  • Mr = 440.45

  • Monoclinic, C 2/c

  • a = 24.746 (5) Å

  • b = 9.6879 (17) Å

  • c = 16.757 (3) Å

  • β = 92.022 (5)°

  • V = 4014.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 100 K

  • 0.18 × 0.16 × 0.16 mm

2.2. Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]) Tmin = 0.963, Tmax = 0.967

  • 9957 measured reflections

  • 3520 independent reflections

  • 3169 reflections with I > 2σ(I)

  • Rint = 0.034

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.112

  • S = 1.03

  • 3520 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C11–C16 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O2i 0.99 2.48 3.119 (2) 122
C15—H15⋯N2ii 0.95 2.57 3.488 (2) 162
C8—H8BCgiii 0.99 2.96 3.911 (2) 162
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) x, y+1, z; (iii) [-x+{\script{3\over 2}}, y+{\script{3\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

A heterocyclic nucleus imparts an important role in medicinal chemistry and serves as a key template for the development of various therapeutic agents. Among the various heterocyclic compounds, the synthetic studies of the fused pyrimidines that is specifically the thiazolo [3,2-a]pyrimidines have been reported extensively because of their structural diversity and association with a wide spectrum of biological activities such as antiviral, anticancer, anti-inflammatory and anti-hypertensive properties (Alam et al., 2010a,b; Jotani et al., 2009). The presence of a fluorine atom in the molecule can have profound and unexpected results on the biological activity of the compound (Guru Row, 1999; Yamazaki et al., 2009). Herein, we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The 4-fluoro-substituted (C11–C16) and 2-fluoro-substituted (C18–C23) benzene rings form dihedral angles of 88.16 (8)° and 23.1 (1)°, respectively with the thiazole ring (C2/C3/N1/C9/S1). The pyrimidine ring adopts a flattened sofa conformation with atom C5 forming the flap. The carbonyl group of the exocyclic ester at C6 adopts a cis orientation with respect to C6C7 double bond. The bond lengths and angles are in good agreement with those reported previously for related structures (Krishnamurthy et al., 2014; Nagarajaiah & Begum et al., 2011). In the crystal, pairs of weak C—H···O hydrogen bonds link molecules related by twofold rotation axes to form R22(10) rings (Bernstein et al., 1995), which are in turn linked by weak C—H···N interactions to form chains of rings (Fig. 2) along [010]. In addition, weak C—H···π(arene) interaction link chains into layers parallel to (001) and π···π interactions with a centroid–centroid distance of 3.836 (10)Å connect these layers into a three-dimensional network. The π···π interactions occur between symmetry related Cg–Cg(1-x, y, 3/2-z) rings, where Cg is the centroid of the C11–C16 ring.

Related literature top

For the biological activity of fused pyrimidine derivatives, see: Alam et al. (2010a,b); Jotani et al. (2009). For the biological activity of fluoro-substituted compounds, see: Guru Row (1999); Yamazaki et al. (2009). For related structures, see: Krishnamurthy et al. (2014); Nagarajaiah & Begum (2011). For hydrogen-bond graph-set motifs motifs, see: Bernstein et al. (1995).

Experimental top

A mixture of 4-(4-fluoro-phenyl)-6-methyl-2-thioxo-1,2,3,4-tetrahydro- pyrimidine-5-carboxylic acid ethyl ester (10 mmol), chloroaceticacid (10 mmol), 2-fluorobenzaldehyde (10 mmol) and sodium acetate (1.5 g) was placed in a mixture of glacial acetic acid and acetic anhydride (25 ml; 1:1) and refluxed for 8—10 h until the TLC assay indicated that the reaction was complete. The reaction mixture was concentrated and the solid thus obtained was filtered and recrystallized from ethyl acetate to get the title compound (82% yield, mp 444 K). The compound was recrystallized by slow evaporation from dimethylformamide (DMF) solvent, yielding pale yellow single crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were placed in calculated positions in the riding-model approximation with C—H = 0.95 – 1.00 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for other hydrogen atoms.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
Fig. 1. The molecular structure of the title compound drawn with 50% probability level ellipsoids. H atoms are presented as small spheres of arbitrary radius.

Fig. 2. Part of the crystal structure with hydrogen bonds shown as dashed lines. For clarity H atoms not involved in hydrogen bonding are not shown.
2-(2-Fluorobenzylidene)-5-(4-fluorophenyl)-7-methyl-3-oxo-2,3-dihydro-5H-1,3-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C23H18F2N2O3SF(000) = 1824
Mr = 440.45Dx = 1.457 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3520 reflections
a = 24.746 (5) Åθ = 1.7–25.0°
b = 9.6879 (17) ŵ = 0.21 mm1
c = 16.757 (3) ÅT = 100 K
β = 92.022 (5)°Block, yellow
V = 4014.7 (13) Å30.18 × 0.16 × 0.16 mm
Z = 8
Data collection top
Bruker SMART APEX CCD
diffractometer
3520 independent reflections
Radiation source: fine-focus sealed tube3169 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 2929
Tmin = 0.963, Tmax = 0.967k = 1111
9957 measured reflectionsl = 1619
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0629P)2 + 4.1702P]
where P = (Fo2 + 2Fc2)/3
3520 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C23H18F2N2O3SV = 4014.7 (13) Å3
Mr = 440.45Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.746 (5) ŵ = 0.21 mm1
b = 9.6879 (17) ÅT = 100 K
c = 16.757 (3) Å0.18 × 0.16 × 0.16 mm
β = 92.022 (5)°
Data collection top
Bruker SMART APEX CCD
diffractometer
3520 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3169 reflections with I > 2σ(I)
Tmin = 0.963, Tmax = 0.967Rint = 0.034
9957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
3520 reflectionsΔρmin = 0.34 e Å3
282 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.565115 (17)0.43828 (4)0.65490 (3)0.02504 (15)
F10.43031 (4)1.13600 (11)0.77686 (7)0.0351 (3)
O30.36126 (5)0.76825 (13)0.48959 (7)0.0266 (3)
O10.56122 (5)0.78762 (12)0.54420 (7)0.0244 (3)
N10.50281 (5)0.61793 (14)0.58253 (8)0.0194 (3)
N20.45904 (6)0.41667 (14)0.62854 (9)0.0238 (3)
F20.75173 (5)0.66324 (14)0.56697 (9)0.0542 (4)
C60.40531 (7)0.59402 (17)0.56217 (10)0.0201 (4)
O20.30987 (5)0.59424 (14)0.53122 (10)0.0430 (4)
C50.45256 (6)0.69513 (16)0.56176 (10)0.0196 (4)
H50.45530.73350.50670.023*
C30.55343 (7)0.67752 (17)0.57664 (9)0.0200 (4)
C100.35362 (7)0.64859 (18)0.52739 (11)0.0245 (4)
C150.44806 (7)1.05927 (17)0.64716 (11)0.0257 (4)
H150.45311.15180.63020.031*
C20.59521 (7)0.58692 (18)0.61561 (10)0.0227 (4)
C110.44590 (6)0.81437 (17)0.61988 (10)0.0197 (4)
C170.64788 (7)0.62041 (19)0.61580 (10)0.0254 (4)
H170.65640.70510.59060.031*
C70.40961 (7)0.46736 (17)0.59525 (10)0.0221 (4)
C160.45294 (6)0.94976 (17)0.59459 (11)0.0228 (4)
H160.46120.96740.54060.027*
C90.50089 (7)0.49166 (17)0.61977 (10)0.0214 (4)
C120.43361 (6)0.78875 (17)0.69901 (10)0.0210 (4)
H120.42870.69640.71650.025*
C130.42838 (7)0.89693 (18)0.75269 (10)0.0236 (4)
H130.42010.88010.80680.028*
C140.43566 (7)1.02957 (18)0.72492 (11)0.0250 (4)
C10.36551 (7)0.36219 (19)0.60085 (11)0.0292 (4)
H1A0.33030.40780.59420.044*
H1B0.36810.31710.65320.044*
H1C0.36920.29290.55880.044*
C180.69365 (7)0.5428 (2)0.64997 (11)0.0285 (4)
C80.31251 (7)0.8348 (2)0.45669 (12)0.0315 (4)
H8A0.28650.85080.49930.038*
H8B0.29500.77550.41520.038*
C190.74540 (7)0.5658 (2)0.62342 (11)0.0299 (4)
C200.79025 (8)0.4941 (2)0.65104 (12)0.0368 (5)
H200.82490.51350.63110.044*
C210.78402 (8)0.3936 (3)0.70814 (13)0.0425 (5)
H210.81430.34130.72710.051*
C40.32924 (9)0.9693 (2)0.42117 (15)0.0472 (6)
H4A0.34831.02500.46210.071*
H4B0.29711.01920.40110.071*
H4C0.35330.95190.37710.071*
C220.73389 (9)0.3693 (3)0.73753 (16)0.0636 (8)
H220.72960.30100.77750.076*
C230.68945 (9)0.4436 (3)0.70917 (14)0.0552 (7)
H230.65510.42630.73080.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0253 (3)0.0241 (3)0.0257 (3)0.00599 (16)0.00118 (18)0.00482 (17)
F10.0385 (6)0.0243 (6)0.0427 (7)0.0029 (5)0.0040 (5)0.0127 (5)
O30.0179 (6)0.0298 (7)0.0321 (7)0.0029 (5)0.0001 (5)0.0065 (5)
O10.0208 (6)0.0234 (6)0.0292 (7)0.0007 (5)0.0034 (5)0.0021 (5)
N10.0193 (7)0.0177 (7)0.0214 (7)0.0029 (5)0.0020 (6)0.0010 (6)
N20.0266 (8)0.0207 (7)0.0243 (8)0.0006 (6)0.0026 (6)0.0014 (6)
F20.0245 (6)0.0584 (8)0.0795 (10)0.0091 (6)0.0015 (6)0.0307 (7)
C60.0198 (8)0.0212 (8)0.0195 (8)0.0013 (7)0.0029 (6)0.0030 (7)
O20.0199 (7)0.0314 (7)0.0774 (11)0.0033 (6)0.0031 (7)0.0116 (7)
C50.0171 (8)0.0194 (8)0.0221 (8)0.0026 (6)0.0005 (6)0.0022 (7)
C30.0209 (8)0.0214 (8)0.0180 (8)0.0017 (7)0.0033 (6)0.0018 (7)
C100.0217 (9)0.0222 (8)0.0298 (9)0.0001 (7)0.0032 (7)0.0030 (7)
C150.0207 (9)0.0168 (8)0.0399 (11)0.0003 (6)0.0035 (8)0.0025 (7)
C20.0243 (9)0.0264 (9)0.0176 (8)0.0055 (7)0.0023 (7)0.0019 (7)
C110.0136 (7)0.0204 (8)0.0251 (9)0.0011 (6)0.0000 (6)0.0001 (7)
C170.0239 (9)0.0308 (9)0.0217 (9)0.0036 (7)0.0014 (7)0.0013 (7)
C70.0233 (9)0.0227 (8)0.0206 (8)0.0002 (7)0.0049 (7)0.0033 (7)
C160.0183 (8)0.0228 (9)0.0274 (9)0.0012 (6)0.0026 (7)0.0030 (7)
C90.0257 (9)0.0202 (8)0.0186 (8)0.0043 (7)0.0026 (7)0.0011 (7)
C120.0181 (8)0.0177 (8)0.0271 (9)0.0007 (6)0.0005 (7)0.0032 (7)
C130.0196 (8)0.0265 (9)0.0248 (9)0.0028 (7)0.0009 (7)0.0009 (7)
C140.0186 (8)0.0215 (8)0.0349 (10)0.0028 (7)0.0002 (7)0.0081 (7)
C10.0291 (10)0.0265 (9)0.0322 (10)0.0059 (8)0.0049 (8)0.0019 (8)
C180.0211 (9)0.0402 (10)0.0241 (9)0.0053 (8)0.0003 (7)0.0038 (8)
C80.0185 (9)0.0344 (10)0.0412 (11)0.0042 (7)0.0049 (8)0.0055 (9)
C190.0240 (9)0.0342 (10)0.0312 (10)0.0031 (8)0.0018 (7)0.0000 (8)
C200.0177 (9)0.0523 (13)0.0402 (11)0.0006 (8)0.0014 (8)0.0022 (10)
C210.0252 (10)0.0627 (14)0.0392 (12)0.0123 (10)0.0038 (9)0.0083 (11)
C40.0290 (11)0.0514 (13)0.0612 (15)0.0061 (9)0.0010 (10)0.0276 (12)
C220.0288 (12)0.102 (2)0.0601 (16)0.0125 (13)0.0013 (11)0.0483 (16)
C230.0227 (11)0.094 (2)0.0489 (14)0.0123 (11)0.0073 (9)0.0370 (14)
Geometric parameters (Å, º) top
S1—C91.7532 (17)C17—H170.9500
S1—C21.7596 (18)C7—C11.498 (2)
F1—C141.359 (2)C16—H160.9500
O3—C101.338 (2)C12—C131.390 (2)
O3—C81.459 (2)C12—H120.9500
O1—C31.216 (2)C13—C141.381 (3)
N1—C91.375 (2)C13—H130.9500
N1—C31.386 (2)C1—H1A0.9800
N1—C51.482 (2)C1—H1B0.9800
N2—C91.278 (2)C1—H1C0.9800
N2—C71.414 (2)C18—C231.387 (3)
F2—C191.349 (2)C18—C191.389 (3)
C6—C71.349 (2)C8—C41.497 (3)
C6—C101.484 (2)C8—H8A0.9900
C6—C51.526 (2)C8—H8B0.9900
O2—C101.208 (2)C19—C201.376 (3)
C5—C111.524 (2)C20—C211.378 (3)
C5—H51.0000C20—H200.9500
C3—C21.489 (2)C21—C221.371 (3)
C15—C141.380 (3)C21—H210.9500
C15—C161.387 (2)C4—H4A0.9800
C15—H150.9500C4—H4B0.9800
C2—C171.343 (3)C4—H4C0.9800
C11—C161.391 (2)C22—C231.385 (3)
C11—C121.393 (2)C22—H220.9500
C17—C181.460 (2)C23—H230.9500
C9—S1—C291.35 (8)C11—C12—H12119.7
C10—O3—C8115.66 (13)C14—C13—C12117.86 (16)
C9—N1—C3116.66 (14)C14—C13—H13121.1
C9—N1—C5120.90 (13)C12—C13—H13121.1
C3—N1—C5121.74 (13)F1—C14—C15118.47 (16)
C9—N2—C7116.77 (14)F1—C14—C13118.26 (16)
C7—C6—C10122.66 (15)C15—C14—C13123.26 (16)
C7—C6—C5122.46 (15)C7—C1—H1A109.5
C10—C6—C5114.81 (14)C7—C1—H1B109.5
N1—C5—C11109.96 (13)H1A—C1—H1B109.5
N1—C5—C6108.16 (13)C7—C1—H1C109.5
C11—C5—C6112.57 (13)H1A—C1—H1C109.5
N1—C5—H5108.7H1B—C1—H1C109.5
C11—C5—H5108.7C23—C18—C19115.70 (17)
C6—C5—H5108.7C23—C18—C17124.10 (17)
O1—C3—N1123.73 (15)C19—C18—C17120.21 (17)
O1—C3—C2126.49 (15)O3—C8—C4107.36 (15)
N1—C3—C2109.78 (14)O3—C8—H8A110.2
O2—C10—O3123.02 (16)C4—C8—H8A110.2
O2—C10—C6125.85 (17)O3—C8—H8B110.2
O3—C10—C6111.13 (14)C4—C8—H8B110.2
C14—C15—C16117.88 (16)H8A—C8—H8B108.5
C14—C15—H15121.1F2—C19—C20118.49 (17)
C16—C15—H15121.1F2—C19—C18117.92 (16)
C17—C2—C3121.14 (16)C20—C19—C18123.58 (19)
C17—C2—S1128.34 (14)C19—C20—C21118.82 (18)
C3—C2—S1110.49 (12)C19—C20—H20120.6
C16—C11—C12119.46 (16)C21—C20—H20120.6
C16—C11—C5120.17 (15)C22—C21—C20119.71 (19)
C12—C11—C5120.36 (14)C22—C21—H21120.1
C2—C17—C18128.02 (18)C20—C21—H21120.1
C2—C17—H17116.0C8—C4—H4A109.5
C18—C17—H17116.0C8—C4—H4B109.5
C6—C7—N2122.16 (15)H4A—C4—H4B109.5
C6—C7—C1126.68 (16)C8—C4—H4C109.5
N2—C7—C1111.15 (15)H4A—C4—H4C109.5
C15—C16—C11120.87 (16)H4B—C4—H4C109.5
C15—C16—H16119.6C21—C22—C23120.3 (2)
C11—C16—H16119.6C21—C22—H22119.8
N2—C9—N1126.81 (15)C23—C22—H22119.8
N2—C9—S1121.49 (13)C22—C23—C18121.8 (2)
N1—C9—S1111.69 (12)C22—C23—H23119.1
C13—C12—C11120.67 (15)C18—C23—H23119.1
C13—C12—H12119.7
C9—N1—C5—C11104.58 (16)C9—N2—C7—C65.9 (2)
C3—N1—C5—C1165.51 (19)C9—N2—C7—C1172.94 (15)
C9—N1—C5—C618.7 (2)C14—C15—C16—C110.5 (2)
C3—N1—C5—C6171.21 (14)C12—C11—C16—C150.2 (2)
C7—C6—C5—N114.5 (2)C5—C11—C16—C15178.72 (15)
C10—C6—C5—N1168.64 (13)C7—N2—C9—N11.3 (2)
C7—C6—C5—C11107.15 (18)C7—N2—C9—S1177.66 (12)
C10—C6—C5—C1169.67 (18)C3—N1—C9—N2176.87 (16)
C9—N1—C3—O1178.82 (15)C5—N1—C9—N212.6 (3)
C5—N1—C3—O110.7 (2)C3—N1—C9—S12.14 (18)
C9—N1—C3—C21.3 (2)C5—N1—C9—S1168.43 (11)
C5—N1—C3—C2169.20 (13)C2—S1—C9—N2177.27 (15)
C8—O3—C10—O23.5 (3)C2—S1—C9—N11.80 (12)
C8—O3—C10—C6176.91 (14)C16—C11—C12—C130.1 (2)
C7—C6—C10—O27.4 (3)C5—C11—C12—C13178.90 (14)
C5—C6—C10—O2169.38 (18)C11—C12—C13—C140.1 (2)
C7—C6—C10—O3172.13 (15)C16—C15—C14—F1179.44 (14)
C5—C6—C10—O311.1 (2)C16—C15—C14—C130.5 (3)
O1—C3—C2—C172.0 (3)C12—C13—C14—F1179.61 (14)
N1—C3—C2—C17178.08 (15)C12—C13—C14—C150.4 (3)
O1—C3—C2—S1179.75 (14)C2—C17—C18—C2321.2 (3)
N1—C3—C2—S10.14 (17)C2—C17—C18—C19158.67 (19)
C9—S1—C2—C17176.98 (17)C10—O3—C8—C4177.01 (17)
C9—S1—C2—C31.09 (12)C23—C18—C19—F2178.7 (2)
N1—C5—C11—C16108.87 (17)C17—C18—C19—F21.4 (3)
C6—C5—C11—C16130.46 (16)C23—C18—C19—C201.8 (3)
N1—C5—C11—C1270.07 (18)C17—C18—C19—C20178.07 (18)
C6—C5—C11—C1250.6 (2)F2—C19—C20—C21179.40 (19)
C3—C2—C17—C18179.02 (16)C18—C19—C20—C210.0 (3)
S1—C2—C17—C181.1 (3)C19—C20—C21—C221.5 (4)
C10—C6—C7—N2179.71 (15)C20—C21—C22—C231.0 (4)
C5—C6—C7—N23.1 (2)C21—C22—C23—C181.0 (5)
C10—C6—C7—C11.6 (3)C19—C18—C23—C222.3 (4)
C5—C6—C7—C1178.17 (16)C17—C18—C23—C22177.6 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.483.119 (2)122
C15—H15···N2ii0.952.573.488 (2)162
C8—H8B···Cgiii0.992.963.911 (2)162
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x+3/2, y+3/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C11–C16 ring.
D—H···AD—HH···AD···AD—H···A
C8—H8A···O2i0.992.483.119 (2)122
C15—H15···N2ii0.952.573.488 (2)162
C8—H8B···Cgiii0.992.963.911 (2)162
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1, z; (iii) x+3/2, y+3/2, z+3/2.
 

Acknowledgements

NSB is thankful to the University Grants Commission (UGC), India, for financial assistance. MSK thanks the UGC for the UGC–BSR for a meritorious fellowship.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010a). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationAlam, O., Khan, S. A., Siddiqui, N., Ahsan, W., Verma, S. P. & Gilani, S. J. (2010b). Eur. J. Med. Chem. 45, 5113—5119.  Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker. (1998). SMART, SAINT and SADABS. Bruker Axs Inc., Madison, Wisconcin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGuru Row, T. N. (1999). Chem. Rev. 183, 81—100.  Google Scholar
First citationJotani, M. M., Baldaniya, B. B. & Jasinski, J. P. (2009). J. Chem. Crystallogr. 39, 898–901.  Web of Science CSD CrossRef CAS Google Scholar
First citationKrishnamurthy, M. S., Nagarajaiah, H. & Begum, N. S. (2014). Acta Cryst. E70, o1187–o1188.  CSD CrossRef IUCr Journals Google Scholar
First citationNagarajaiah, H. & Begum, N. S. (2011). Acta Cryst. E67, o3444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamazaki, T., Taguchi, T. & Ojima, I. (2009). Fluorine in Medicinal Chemistry and Chemical Biology, edited by I. Ojima, pp. 3–46. Weinheim: Wiley-Blackwell.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1270-o1271
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds