research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-[({2-[bis­­(2-hy­dr­oxy­benz­yl)amino]­eth­yl}(2-hy­dr­oxy­benz­yl)amino)­meth­yl]-2-hy­droxy-5-methyl­benzaldehyde

aDepto. de Química – Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Santa Catarina, Brazil
*Correspondence e-mail: adailton.bortoluzzi@ufsc.br

Edited by A. J. Lough, University of Toronto, Canada (Received 29 October 2014; accepted 6 November 2014; online 21 November 2014)

The non-symmetric title mol­ecule, C32H34N2O5, is based on a tetra­substituted ethyl­enedi­amine backbone. The mol­ecular structure consists of three hy­droxy­benzyl groups and one 2-hy­droxy-5-methyl­benzaldehyde group bonded to the N atoms of the di­amine unit. The ethyl­enedi­amine skeleton shows a regular extended conformation, while the spatial orientation of the phenol arms is governed by hydrogen bonds. In the 2-hy­droxy-5-methyl­benzaldehyde group, an intra­molecular S(6) O—H⋯O hydrogen bond is observed between the alcohol and aldehyde functions, and the neighbouring phenol arm participates in an intra­molecular S(6) O—H⋯N hydrogen bond. The third phenol group is involved in a bifurcated intra­molecular hydrogen bond with graph-set notation S(6) for O—H⋯N and O—H⋯O intra­molecular hydrogen bonds between neighbouring amine and phenol arms, respectively. Finally, the fourth phenol group acts as an acceptor in a bifurcated intra­molecular hydrogen bond and also acts as donor in an inter­molecular hydrogen bond, which connects inversion-related mol­ecules into dimers with R44(8) ring motifs.

1. Chemical context

The preparation of non-symmetric compounds has always been of inter­est in organic synthesis, as well as in coordination chemistry. Compounds containing tetra­substituted ethyl­ene­di­amine groups have attracted significant inter­est because of their coordination versatility towards metal ions, their easy preparation and their biological activity (Musa et al., 2014[Musa, M. A., Badisa, V. L. D. & Latinwo, L. M. (2014). Anticancer Res. 34, 1601-1607.]). With respect to medical applications, high in vitro cytotoxic activity of free ethyl­enedi­amine-type compounds against different types of cancer cells, such as HL-60 leukemic and B16 human melanoma cells lines, has been reported (Dencic et al., 2012[Dencic, S. M., Poljarevic, J., Vilimanovich, U., Bogdanovic, A., Isakovic, A. J., Stevovic, T. K., Dulovic, M., Zogovic, N., Isakovic, A. M., Grguric-Sipka, S., Bumbasirevic, V., Sabo, T., Trajkovic, V. & Markovic, I. (2012). Chem. Res. Toxicol. 25, 931-939.]; Lazić et al., 2010[Lazić, J. M., Vučićević, L., Grgurić-Šipka, S., Janjetović, K., Kaluđerović, G. N., Misirkić, M., Gruden-Pavlović, M., Popadić, D., Paschke, R., Trajković, V. & Sabo, T. J. (2010). ChemMedChem, 5, 881-889.]). In addition, metal complexes containing substituted ethyl­enedi­amine have also found valuable applications in pharmacological research as potential anti­cancer agents (Ansari et al., 2009[Ansari, K. I., Kasiri, S., Grant, J. D. & Mandal, S. S. (2009). Dalton Trans. pp. 8525-8531.]), radiopharmaceuticals for tumor imaging (Boros et al., 2011[Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2011). Nucl. Med. Biol. 38, 1165-1174.]; Price et al., 2012[Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670-8683.]) and artificial nucleases (Raman et al., 2011[Raman, N., Selvan, A. & Sudharsan, S. (2011). Spectrochim. Acta Part A, 79, 873-883.]). In this paper, we report the synthesis and crystal structure of the non-symmetric mol­ecule 3-[({2-[bis­(2-hy­droxy­benz­yl)amino]­eth­yl}(2-hydroxy­benz­yl)amino)­meth­yl]-2-hy­droxy-5-methyl­benzaldehyde, (I)[link], which is a potential hexa­dentate ligand with an N2O4-donor set which could stabilize complexes containing high-oxidation-state metal ions, such as TcIII, GaIII and InIII ions, that are widely used in radiopharmaceuticals for diagnostic imaging and related research.

[Scheme 1]

2. Structural commentary

Compound (I)[link] is a non-symmetric mol­ecule based on a tetra­substituted ethyl­enedi­amine backbone (Fig. 1[link]). The structure consists of three hy­droxy­benzyl groups and one 2-hy­droxy-5-methyl­benzaldehyde group bonded to nitro­gen atoms of the di­amine unit. The ethyl­enedi­amine skeleton shows a regular extended `zigzag' conformation [with an N1—C2—C3—N4 torsion angle of 174.78 (13)°], while the pendant phenol arms are randomly oriented but governed by hydrogen bonds (Table 1[link]). Three intra­molecular hydrogen bonds with an S(6) graph-set motif are observed in the mol­ecular structure of (I)[link] (Fig. 2[link]). One of these occurs between the neighbouring alcohol and aldehyde groups. In addition, intra­molecular O—H⋯N and O—H⋯O inter­actions, which include bifurcated hydrogen bonds, are observed, involving O—H functions as donors and the amine sites and one phenolic oxygen atom as acceptors. All bond lengths and angles found for (I)[link] are in the expected range for organic compounds (Bruno et al., 2004[Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133-2144.]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10⋯O20i 0.93 1.80 2.7230 (16) 177
O20—H20⋯N1 0.94 1.75 2.5928 (17) 148
O20—H20⋯O10 0.94 2.43 3.0362 (19) 122
O30—H30⋯N4 0.93 1.94 2.784 (2) 149
O40—H40⋯O41 0.93 1.76 2.6146 (19) 151
Symmetry code: (i) -x+1, -y, -z.
[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with displacement ellipsoids drawn at the 40% probability level.
[Figure 2]
Figure 2
The intra­molecular hydrogen bonds (dashed lines) observed in (I)[link].

3. Supra­molecular features

In the crystal of (I)[link], inversion dimers with R44(8) ring motifs are formed by pairs of O—H⋯O hydrogen bonds (Fig. 3[link], Table 1[link]). The approximate planes of the ring motifs of the dimers are arranged as stacks along [010] (Fig. 4[link]). No ππ stacking inter­actions are observed.

[Figure 3]
Figure 3
An inversion dimer of (I)[link] formed by inter­molecular O—H⋯O hydrogen bonds (dashed lines). [Symmetry code: (′) −x + 1, −y, −z.]
[Figure 4]
Figure 4
Partial packing of (I)[link], showing dimers stacked along [010].

4. Database survey

A search for similar structures in the current version of the Cambridge Structural Database (Version 5.35, November 2013; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) resulted in four entries but only three different structures: (i) HUNDIE (CCDC 727272) and HUNDOK (CCDC 727273) (Boyle et al., 2009[Boyle, T. J., Pratt, H. D. III, Ottley, L. A. M., Alam, T. M., McIntyre, S. K., Rodriguez, M. A., Farrell, J. & Campana, C. F. (2009). Inorg. Chem. 48, 9191-9204.]); (ii) USODUC (CCDC 809654) (Wang et al., 2011a[Wang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011a). Acta Cryst. E67, o1438.]) and (iii) USODUC01 (CCDC 809654) (Wang et al., 2011b[Wang, N. S., Wang, Y. T., Li, J. Y. & Li, T. D. (2011b). Chin. J. Org. Chem. 31, 1703-1706.]). All of these structures are symmetric mol­ecules and the phenol groups have an additional one or two substituents in the para and ortho positions with respect to the O–H function. As observed in (I)[link], the spatial orientations of the phenol arms are influenced by intra- and inter­molecular hydrogen bonding. There are no significant differences in the geometrical parameters; however, the crystal packing shows distinguishable three-dimensional arrangements due to differences in mol­ecular symmetry and inter­molecular inter­actions.

5. Synthesis and crystallization

The title compound was obtained from a nucleophilic substitution reaction between N,N,N′-tris­(2-hy­droxy­benz­yl)-1,2-di­amino­ethane (Schmitt et al., 2002[Schmitt, H., Lomoth, R., Magnuson, A., Park, J., Fryxelius, J., Kritikos, M., Mårtensson, J., Hammarström, L., Sun, L. & Åkermark, B. (2002). Chem. Eur. J. 8, 3757-3768.]) and chloro­methyl-4-methyl-6-formyl­phenol. These precursors were prepared following the methodologies already described in the literature (Schmitt et al., 2002[Schmitt, H., Lomoth, R., Magnuson, A., Park, J., Fryxelius, J., Kritikos, M., Mårtensson, J., Hammarström, L., Sun, L. & Åkermark, B. (2002). Chem. Eur. J. 8, 3757-3768.]; Thoer et al., 1988[Thoer, A., Denis, G., Delmas, M. & Gaset, A. (1988). Synth. Commun. 18, 2095-2101.]). A solution of 2-chloro­methyl-4-methyl-6-formyl­phenol (1.19 g, 6.6 mmol) in tetra­hydro­furan (40 ml) was added slowly to a cooled solution of N,N,N′-tris­(2-hy­droxy­benz­yl)-1,2-di­amino­ethane (2.50 g, 6.6 mmol) in tetra­hydro­furan (40 ml) containing tri­ethyl­amine (0.96 ml, 6.6 mmol). The reaction was kept cooled during addition time, and the resulting solution stirred for 24 h. Yellow mixture oil/solid was obtained after evaporation of the solvent. A solution of this mixture in CH2Cl2 (50 ml) was washed with a saturated solution of NaHCO3 (3 × 50 ml) and filtered off in the presence of NaSO4. The solvent was removed, and a straw-yellow solid was obtained. This solid was refluxed in n-hexa­ne/CHCl3 (1:1, 100 ml). After cooling the solid was filtered off, washed with n-hexane (80 ml), dried and recrystallized from an ethyl acetate solution to afford 3-[({2-[bis­(2-hydroxy­benz­yl)amino]­eth­yl}(2-hy­droxy­benz­yl)amino)meth­yl]-2-hydroxy-5-methyl­benzaldehyde, (I)[link].

The formation of (I)[link] was indicated by the presence of the band at 1655 cm−1 in the IR spectrum, which is typical for stretching vibrations ν(C=O) of free aldehyde. In the 1H NMR spectrum, the signal at 9.81 p.p.m. related to one aldehyde proton is further evidence for product formation. Yield 90%, m.p. 444.8–445.4 K. IR (KBr, cm−1): ν(O—H) 3273, ν(C—Har and C—Halif) 3042–2718, ν(C=O)1655, ν(C=C) 1615–1457, δ(O—H) 1365, δ(C—O) 1252, δ(C—Har) 757; 1H NMR (400 MHz, CDCl3) (δ, p.p.m.): 2.29 (s, 3H, CH3), 2.78 (s, 4H, CH2-en), 3.58 (s, 2H, CH2), 3.61–3.77 (m, 6 H, CH2), 6.69–6.87 (m, 6H, CHar), 6.91 (d, 2H, CHar), 6.99 (d, 2 H, CHar), 7.07–7.19 (m, 2H, CHar), 7.24 (d, 2H, CHar), 9.81 (s, 1H, CHald); 13C NMR (400 MHz, DMSO-d6, δ p.p.m.): 20.0, 48.6, 48.8, 53.5, 54.3, 115.2, 121.7, 122.7, 123.2, 124.5, 127.6, 128.4, 128.7, 129.8, 130.8, 136.7, 156.2, 156.5, 158.7, 191.6. Negative HPLC/ESI–MS (m/z): [M−H] calculated for C32H35N2O5, 527.25; found, 527.19. Colourless blocks were grown by slow evaporation of the solvent from a saturated solution of (I)[link] in ethyl acetate.

6. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms were placed in idealized positions with distances of 0.95 (CHAr), 0.99 (CH2) or 0.98 Å (CH3) with Uiso = 1.2Ueq(C) or 1.5Ueq(Cmeth­yl). The hydrogen atoms of the alcohol groups were located from a Fourier difference map and treated with a riding-model approximation with Uiso(H) = 1.5Ueq(O).

Table 2
Experimental details

Crystal data
Chemical formula C32H34N2O5
Mr 526.61
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 190
a, b, c (Å) 10.1635 (5), 11.0440 (6), 13.5439 (7)
α, β, γ (°) 113.549 (2), 98.381 (2), 99.451 (3)
V3) 1336.64 (12)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.15 × 0.08 × 0.04
 
Data collection
Diffractometer Bruker APEXII DUO
No. of measured, independent and observed [I > 2σ(I)] reflections 17177, 8122, 5175
Rint 0.031
(sin θ/λ)max−1) 0.715
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.166, 1.02
No. of reflections 8122
No. of parameters 353
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.42, −0.25
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).

Supporting information


Chemical context top

\ The preparation of non-symmetric compounds has always been of inter­est in organic synthesis, as well as in coordination chemistry. Compounds containing tetra­substituted ethyl­enedi­amine groups have attracted significant inter­est because of their coordination versatility towards metal ions, their easy preparation and their biological activity (Musa et al., 2014). With respect to medical applications, high in vitro cytotoxic activity of free ethyl­enedi­amine-type compounds against different types of cancer cells, such as HL-60 leukemic and B16 human melanoma cells lines, has been reported (Dencic et al., 2012; Lazić et al., 2010). In addition, metal complexes containing substituted ethyl­enedi­amine have also found valuable applications in pharmacological research as potential anti­cancer agents (Ansari et al., 2009), radiopharmaceuticals for tumor imaging (Boros et al., 2011; Price et al., 2012) and artificial nucleases (Raman et al., 2011). In this paper, we report the synthesis and crystal structure of the non-symmetric molecule 3-[({2-[bis­(2-hy­droxy­benzyl)­amino]­ethyl}(2-hy­droxy­benzyl)­amino)­methyl]-2-\ hy­droxy-5-methyl­benzaldehyde, (I), which is a potential hexadentate ligand with an N2O4-donor set which could stabilize complexes containing high-oxidation-state metal ions, such as TcIII, GaIII and InIII ions, that are widely used in radiopharmaceuticals for diagnostic imaging and related research.

Structural commentary top

Compound (I) is a non-symmetric molecule based on a tetra­substituted ethyl­enedi­amine backbone (Fig. 1). The structure consists of three hy­droxy­benzyl groups and one 2-hy­droxy-5-methyl­benzaldehyde group bonded to nitro­gen atoms of the di­amine unit. The ethyl­enedi­amine skeleton shows a regular extended `zigzag' conformation, while the pendant phenol arms are randomly oriented but governed by hydrogen bonds (Table 1). Three intra­molecular hydrogen bonds with an S(6) graph-set motif are observed in the molecular structure of (I) (Fig. 2). One of these occurs between the neighbouring alcohol and aldehyde groups. In addition, intra­molecular O—H···N and O—H···O inter­actions, which include bifurcated hydrogen bonds, are observed, involving O—H functions as donors and the amine sites and one phenolic oxygen atom as acceptors. All bond lengths and angles found for (I) are in the expected range for organic compounds (Bruno et al., 2004).

Supra­molecular features top

In the crystal of (I), inversion dimers with R44(8) ring motifs are formed by pairs of O—H···O hydrogen bonds (Fig. 3, Table 1). The approximate planes of the ring motifs of the dimers are arranged as stacks along [010] (Fig. 4). No ππ stacking inter­actions are observed.

Database survey top

A search for similar structures in the current version of the Cambridge Structural Database (Version 5.35, November 2013; Groom & Allen, 2014) resulted in four entries but only three different structures: (i) CCDC 727272 and CCDC 727273 (Boyle et al., 2009); (ii) CCDC 809654 (Wang et al., 2011a or b?) and (iii) CCDC 809654 [same code as for (ii)>] (Wang et al., 20112011a or b?). All of these structures are symmetric molecules and the phenol groups have an additional one or two substituents in the para and ortho positions with respect to the O–H function. As observed in (I), the spatial orientations of the phenol arms are influenced by intra- and inter­molecular hydrogen bonding. There are no significant differences in the geometrical parameters; however, the crystal packing shows distinguishable three-dimensional arrangements due to differences in molecular symmetry and inter­molecular inter­actions.

Synthesis and crystallization top

\ The title compound was obtained from a nucleophilic substitution reaction between N,N,N'-tris­(2-hy­droxy­benzyl)-1,2-di­amino­ethane (Schmitt et al., 2002) and chloro­methyl-4-methyl-6-formyl­phenol. These precursors were prepared following the methodologies already described in the literature (Schmitt et al., 2002; Thoer et al., 1988). A solution of 2-chloro­methyl-4-methyl-6-formyl­phenol (1.19 g, 6.6 mmol) in tetra­hydro­furan (40 ml) was added slowly to a cooled solution of N,N,N'-tris­(2-hy­droxy­benzyl)-1,2-di­amino­ethane (2.50 g, 6.6 mmol) in tetra­hydro­furan (40 ml) containing tri­ethyl­amine (0.96 ml, 6.6 mmol). The reaction was kept cooled during addition time, and the resulting solution stirred for 24 hours. Yellow mixture oil/solid was obtained after evaporation of the solvent. A solution of this mixture in CH2Cl2 (50 ml) was washed with a saturated solution of NaHCO3 (3 x 50 ml) and filtered off in the presence of NaSO4. The solvent was removed, and a straw-yellow solid was obtained. This solid was refluxed in n-hexane/CHCl3 (1:1, 100 ml). After cooling the solid was filtered off, washed with n-hexane (80 ml), dried and recrystallized in ethyl acetate to afford 3-[({2-[bis­(2-hy­droxy­benzyl)­amino]­ethyl}(2-hy­droxy­benzyl)­amino)­methyl]-2-\ hy­droxy-5-methyl­benzaldehyde, (I).

The formation of (I) was indicated by the presence of the band at 1655 cm-1 in the IR spectrum, which is typical for stretching vibrations ν(CO) of free aldehyde. In the 1H NMR spectrum, the signal at 9.81 p.p.m. related to one aldehyde proton is further evidence for product formation. Yield 90%, m.p. 444.8–445.4 K. IR (KBr, cm-1): ν(O—H) 3273, ν(C—Har and C—Halif) 3042–2718, ν(CO)1655, ν(CC) 1615–1457, δ(O—H) 1365, δ(C—O) 1252, δ(C—Har) 757; 1H NMR (400 MHz, CDCl3) (δ, p.p.m.): 2.29 (s, 3H, CH3), 2.78 (s, 4H, CH2-en), 3.58 (s, 2H, CH2), 3.61–3.77 (m, 6 H, CH2), 6.69–6.87 (m, 6H, CHar), 6.91 (d, 2H, CHar), 6.99 (d, 2 H, CHar), 7.07–7.19 (m, 2H, CHar), 7.24 (d, 2H, CHar), 9.81 (s, 1H, CHald); 13C NMR (400 MHz, DMSO-d6, δ p.p.m.): 20.0, 48.6, 48.8, 53.5, 54.3, 115.2, 121.7, 122.7, 123.2, 124.5, 127.6, 128.4, 128.7, 129.8, 130.8, 136.7, 156.2, 156.5, 158.7, 191.6. Negative HPLC/ESI–MS (m/z): [M - H] calculated for C32H35N2O5-, 527.25; found, 527.19. X-ray quality crystals were grown by slow evaporation of the solvent from a saturated solution of (I) in ethyl acetate.

Refinement details top

H atoms were placed in idealized positions with distances of 0.95 (CHAr), 0.99 (CH2) or 0.98 Å (CH3) with Uiso = 1.2Ueq(C) or 1.5Ueq(Cmethyl). The hydrogen atoms of the alcohol groups were located from a Fourier difference map and treated with a riding-model approximation with Uiso(U)=1.5Ueq(O).

Related literature top

For related literature, see: Ansari et al. (2009); Boros et al. (2011); Boyle et al. (2009); Bruno et al. (2004); Dencic et al. (2012); Lazić et al. (2010); Musa et al. (2014); Price et al. (2012); Raman et al. (2011); Schmitt et al. (2002); Thoer et al. (1988); Wang, Wang, Guo & Li (2011); Wang, Wang, Li & Li (2011); Groom & Allen (2014)

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
The molecular structure of (I), with displacement ellipsoids drawn at the 40% probability level. H atoms are not shown.

The intramolecular hydrogen bonds (dashed lines) observed in (I).

An inversion dimer of (I) formed by intermolecular O—H···O hydrogen bonds (dashed lines). [Symmetry code: (') -x+1, -y, -z.]

Partial packing of (I), showing dimers stacked along [010].
3-[({2-[Bis(2-hydroxybenzyl)amino]ethyl}(2-hydroxybenzyl)amino)methyl]-2-hydroxy-5-methylbenzaldehyde top
Crystal data top
C32H34N2O5Z = 2
Mr = 526.61F(000) = 560
Triclinic, P1Dx = 1.308 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.1635 (5) ÅCell parameters from 4159 reflections
b = 11.0440 (6) Åθ = 2.4–30.3°
c = 13.5439 (7) ŵ = 0.09 mm1
α = 113.549 (2)°T = 190 K
β = 98.381 (2)°Prismatic, colourless
γ = 99.451 (3)°0.15 × 0.08 × 0.04 mm
V = 1336.64 (12) Å3
Data collection top
Bruker APEXII DUO
diffractometer
5175 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 30.6°, θmin = 1.7°
ϕ and ω scansh = 1314
17177 measured reflectionsk = 1515
8122 independent reflectionsl = 919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.2575P]
where P = (Fo2 + 2Fc2)/3
8122 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C32H34N2O5γ = 99.451 (3)°
Mr = 526.61V = 1336.64 (12) Å3
Triclinic, P1Z = 2
a = 10.1635 (5) ÅMo Kα radiation
b = 11.0440 (6) ŵ = 0.09 mm1
c = 13.5439 (7) ÅT = 190 K
α = 113.549 (2)°0.15 × 0.08 × 0.04 mm
β = 98.381 (2)°
Data collection top
Bruker APEXII DUO
diffractometer
5175 reflections with I > 2σ(I)
17177 measured reflectionsRint = 0.031
8122 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0570 restraints
wR(F2) = 0.166H-atom parameters constrained
S = 1.02Δρmax = 0.42 e Å3
8122 reflectionsΔρmin = 0.25 e Å3
353 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.55546 (13)0.19576 (13)0.30195 (10)0.0231 (3)
C20.46867 (17)0.29324 (17)0.32893 (12)0.0268 (3)
H2A0.51930.37750.39540.032*
H2B0.38530.25360.34600.032*
C30.42744 (17)0.32788 (16)0.23213 (12)0.0258 (3)
H3A0.51170.37350.22000.031*
H3B0.38650.24160.16460.031*
N40.33030 (13)0.41522 (13)0.24463 (11)0.0258 (3)
C100.69979 (16)0.26500 (17)0.31867 (13)0.0280 (3)
H10A0.74410.30710.39870.034*
H10B0.70170.33900.29480.034*
C110.78117 (16)0.17145 (16)0.25636 (13)0.0263 (3)
C120.74930 (16)0.11211 (18)0.14067 (13)0.0288 (3)
C130.82640 (18)0.02915 (19)0.08148 (15)0.0350 (4)
H130.80230.01220.00280.042*
C140.93856 (18)0.0067 (2)0.13728 (16)0.0368 (4)
H140.99150.04970.09670.044*
C150.97344 (18)0.06622 (19)0.25181 (16)0.0350 (4)
H151.05070.05150.29010.042*
C160.89474 (17)0.14765 (18)0.31045 (14)0.0312 (4)
H160.91880.18800.38910.037*
C200.54425 (17)0.11170 (17)0.36403 (13)0.0268 (3)
H20A0.55510.17180.44340.032*
H20B0.61920.06400.35760.032*
C210.40800 (16)0.00815 (16)0.32108 (13)0.0259 (3)
C220.34574 (17)0.05756 (17)0.20764 (14)0.0296 (3)
C230.22507 (19)0.15869 (19)0.16750 (17)0.0394 (4)
H230.18320.20180.09050.047*
C240.1654 (2)0.1970 (2)0.23937 (19)0.0457 (5)
H240.08380.26780.21130.055*
C250.2237 (2)0.1331 (2)0.35144 (19)0.0439 (5)
H250.18220.15920.40070.053*
C260.34370 (18)0.03025 (19)0.39182 (16)0.0338 (4)
H260.38270.01490.46930.041*
C300.20423 (18)0.36075 (19)0.27170 (17)0.0364 (4)
H30A0.22350.38270.35160.044*
H30B0.17670.26040.22930.044*
C310.08900 (18)0.41958 (19)0.24471 (18)0.0404 (4)
C320.0497 (2)0.4116 (2)0.13898 (18)0.0453 (5)
C330.0650 (2)0.4543 (2)0.1098 (2)0.0613 (7)
H330.09260.44600.03680.074*
C340.1378 (2)0.5087 (2)0.1875 (3)0.0637 (7)
H340.21740.53590.16720.076*
C350.0980 (2)0.5243 (2)0.2931 (3)0.0603 (7)
H350.14720.56600.34670.072*
C360.0148 (2)0.4792 (2)0.3227 (2)0.0499 (5)
H360.04160.48890.39620.060*
C400.39032 (17)0.55858 (16)0.32520 (14)0.0286 (3)
H40A0.43340.56130.39670.034*
H40B0.31590.60660.33760.034*
C410.49612 (16)0.63311 (16)0.28855 (13)0.0247 (3)
C420.62638 (16)0.70468 (16)0.35788 (12)0.0260 (3)
C430.71949 (16)0.78163 (17)0.32493 (13)0.0284 (3)
C440.68364 (17)0.78221 (17)0.22159 (13)0.0293 (3)
H440.74730.83410.19980.035*
C450.55741 (18)0.70888 (17)0.15050 (13)0.0290 (3)
C460.46489 (17)0.63763 (17)0.18737 (13)0.0277 (3)
H460.37620.59000.14060.033*
C470.85585 (19)0.8554 (2)0.39565 (15)0.0385 (4)
H470.91590.90590.37040.046*
C480.5214 (2)0.7027 (2)0.03654 (14)0.0406 (4)
H48A0.57190.78640.03680.061*
H48B0.42260.69350.01520.061*
H48C0.54620.62410.01660.061*
O100.64008 (13)0.13999 (14)0.09024 (10)0.0368 (3)
H100.62750.10240.01390.044*
O200.40399 (13)0.02278 (13)0.13465 (9)0.0364 (3)
H200.46840.06160.17340.044*
O300.12438 (17)0.36127 (17)0.06209 (13)0.0586 (4)
H300.21240.38040.10500.070*
O400.66072 (13)0.69757 (14)0.45562 (10)0.0380 (3)
H400.75200.74750.48590.046*
O410.89821 (14)0.85675 (16)0.48535 (11)0.0491 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0239 (6)0.0241 (6)0.0259 (6)0.0070 (5)0.0077 (5)0.0144 (5)
C20.0319 (8)0.0270 (8)0.0272 (7)0.0117 (7)0.0117 (6)0.0142 (6)
C30.0303 (8)0.0247 (8)0.0257 (7)0.0085 (6)0.0090 (6)0.0128 (6)
N40.0230 (6)0.0211 (6)0.0359 (7)0.0052 (5)0.0086 (5)0.0144 (5)
C100.0237 (8)0.0273 (8)0.0306 (8)0.0022 (6)0.0043 (6)0.0125 (6)
C110.0215 (7)0.0259 (8)0.0335 (8)0.0023 (6)0.0066 (6)0.0162 (7)
C120.0231 (8)0.0338 (9)0.0340 (8)0.0060 (7)0.0087 (6)0.0189 (7)
C130.0317 (9)0.0410 (10)0.0359 (9)0.0095 (8)0.0128 (7)0.0182 (8)
C140.0283 (9)0.0389 (10)0.0515 (10)0.0116 (8)0.0183 (8)0.0235 (9)
C150.0233 (8)0.0389 (10)0.0512 (10)0.0082 (7)0.0082 (7)0.0278 (9)
C160.0243 (8)0.0341 (9)0.0363 (8)0.0027 (7)0.0034 (6)0.0193 (7)
C200.0279 (8)0.0285 (8)0.0280 (7)0.0070 (6)0.0057 (6)0.0165 (6)
C210.0248 (8)0.0242 (8)0.0342 (8)0.0090 (6)0.0088 (6)0.0165 (6)
C220.0294 (8)0.0240 (8)0.0371 (8)0.0085 (7)0.0097 (7)0.0136 (7)
C230.0314 (9)0.0274 (9)0.0484 (10)0.0037 (7)0.0034 (8)0.0088 (8)
C240.0287 (9)0.0303 (10)0.0757 (14)0.0027 (8)0.0142 (9)0.0218 (10)
C250.0371 (10)0.0409 (11)0.0705 (14)0.0126 (9)0.0256 (10)0.0352 (10)
C260.0336 (9)0.0351 (9)0.0443 (9)0.0121 (7)0.0149 (7)0.0255 (8)
C300.0277 (9)0.0319 (9)0.0552 (11)0.0045 (7)0.0136 (8)0.0242 (8)
C310.0225 (8)0.0279 (9)0.0699 (13)0.0010 (7)0.0098 (8)0.0226 (9)
C320.0336 (10)0.0280 (10)0.0612 (12)0.0057 (8)0.0007 (9)0.0106 (9)
C330.0442 (13)0.0331 (11)0.0821 (17)0.0056 (10)0.0162 (11)0.0127 (11)
C340.0277 (10)0.0339 (12)0.113 (2)0.0043 (9)0.0014 (12)0.0225 (13)
C350.0338 (11)0.0353 (11)0.116 (2)0.0094 (9)0.0324 (13)0.0314 (13)
C360.0362 (11)0.0367 (11)0.0832 (15)0.0069 (9)0.0258 (10)0.0292 (11)
C400.0279 (8)0.0253 (8)0.0348 (8)0.0062 (6)0.0134 (7)0.0135 (7)
C410.0255 (7)0.0207 (7)0.0305 (7)0.0079 (6)0.0109 (6)0.0114 (6)
C420.0273 (8)0.0266 (8)0.0261 (7)0.0077 (6)0.0079 (6)0.0125 (6)
C430.0243 (8)0.0284 (8)0.0317 (8)0.0038 (6)0.0058 (6)0.0134 (7)
C440.0302 (8)0.0262 (8)0.0360 (8)0.0048 (7)0.0112 (7)0.0175 (7)
C450.0336 (9)0.0260 (8)0.0300 (8)0.0092 (7)0.0077 (6)0.0140 (6)
C460.0253 (8)0.0251 (8)0.0311 (8)0.0057 (6)0.0032 (6)0.0119 (6)
C470.0283 (9)0.0394 (10)0.0428 (10)0.0015 (8)0.0034 (7)0.0184 (8)
C480.0518 (12)0.0422 (11)0.0324 (9)0.0116 (9)0.0078 (8)0.0215 (8)
O100.0338 (7)0.0523 (8)0.0295 (6)0.0177 (6)0.0082 (5)0.0200 (6)
O200.0418 (7)0.0324 (7)0.0269 (6)0.0004 (6)0.0070 (5)0.0086 (5)
O300.0575 (10)0.0587 (10)0.0500 (9)0.0222 (8)0.0007 (7)0.0155 (8)
O400.0342 (7)0.0497 (8)0.0323 (6)0.0037 (6)0.0048 (5)0.0235 (6)
O410.0367 (7)0.0579 (9)0.0432 (8)0.0025 (7)0.0056 (6)0.0230 (7)
Geometric parameters (Å, º) top
N1—C21.471 (2)C26—H260.9500
N1—C101.478 (2)C30—C311.497 (3)
N1—C201.4828 (19)C30—H30A0.9900
C2—C31.528 (2)C30—H30B0.9900
C2—H2A0.9900C31—C321.392 (3)
C2—H2B0.9900C31—C361.398 (3)
C3—N41.471 (2)C32—O301.370 (3)
C3—H3A0.9900C32—C331.390 (3)
C3—H3B0.9900C33—C341.372 (4)
N4—C401.476 (2)C33—H330.9500
N4—C301.483 (2)C34—C351.361 (4)
C10—C111.500 (2)C34—H340.9500
C10—H10A0.9900C35—C361.392 (3)
C10—H10B0.9900C35—H350.9500
C11—C161.395 (2)C36—H360.9500
C11—C121.397 (2)C40—C411.507 (2)
C12—O101.361 (2)C40—H40A0.9900
C12—C131.389 (2)C40—H40B0.9900
C13—C141.387 (3)C41—C461.384 (2)
C13—H130.9500C41—C421.400 (2)
C14—C151.383 (3)C42—O401.3556 (18)
C14—H140.9500C42—C431.407 (2)
C15—C161.389 (2)C43—C441.397 (2)
C15—H150.9500C43—C471.456 (2)
C16—H160.9500C44—C451.380 (2)
C20—C211.509 (2)C44—H440.9500
C20—H20A0.9900C45—C461.400 (2)
C20—H20B0.9900C45—C481.505 (2)
C21—C261.393 (2)C46—H460.9500
C21—C221.401 (2)C47—O411.222 (2)
C22—O201.369 (2)C47—H470.9500
C22—C231.385 (2)C48—H48A0.9800
C23—C241.382 (3)C48—H48B0.9800
C23—H230.9500C48—H48C0.9800
C24—C251.377 (3)O10—H100.9269
C24—H240.9500O20—H200.9386
C25—C261.390 (3)O30—H300.9332
C25—H250.9500O40—H400.9349
C2—N1—C10111.44 (12)C25—C26—H26119.3
C2—N1—C20112.03 (12)C21—C26—H26119.3
C10—N1—C20111.35 (12)N4—C30—C31111.34 (14)
N1—C2—C3110.69 (12)N4—C30—H30A109.4
N1—C2—H2A109.5C31—C30—H30A109.4
C3—C2—H2A109.5N4—C30—H30B109.4
N1—C2—H2B109.5C31—C30—H30B109.4
C3—C2—H2B109.5H30A—C30—H30B108.0
H2A—C2—H2B108.1C32—C31—C36118.15 (19)
N4—C3—C2116.14 (12)C32—C31—C30120.33 (18)
N4—C3—H3A108.3C36—C31—C30121.5 (2)
C2—C3—H3A108.3O30—C32—C33119.1 (2)
N4—C3—H3B108.3O30—C32—C31120.03 (18)
C2—C3—H3B108.3C33—C32—C31120.9 (2)
H3A—C3—H3B107.4C34—C33—C32119.3 (3)
C3—N4—C40114.03 (13)C34—C33—H33120.3
C3—N4—C30112.54 (12)C32—C33—H33120.3
C40—N4—C30109.74 (13)C35—C34—C33121.2 (2)
N1—C10—C11113.43 (13)C35—C34—H34119.4
N1—C10—H10A108.9C33—C34—H34119.4
C11—C10—H10A108.9C34—C35—C36119.9 (2)
N1—C10—H10B108.9C34—C35—H35120.0
C11—C10—H10B108.9C36—C35—H35120.0
H10A—C10—H10B107.7C35—C36—C31120.4 (2)
C16—C11—C12117.97 (15)C35—C36—H36119.8
C16—C11—C10121.94 (15)C31—C36—H36119.8
C12—C11—C10119.96 (14)N4—C40—C41113.41 (13)
O10—C12—C13122.45 (15)N4—C40—H40A108.9
O10—C12—C11116.65 (15)C41—C40—H40A108.9
C13—C12—C11120.90 (15)N4—C40—H40B108.9
C14—C13—C12119.98 (16)C41—C40—H40B108.9
C14—C13—H13120.0H40A—C40—H40B107.7
C12—C13—H13120.0C46—C41—C42118.20 (14)
C15—C14—C13120.14 (17)C46—C41—C40120.76 (14)
C15—C14—H14119.9C42—C41—C40120.98 (14)
C13—C14—H14119.9O40—C42—C41119.10 (14)
C14—C15—C16119.55 (16)O40—C42—C43121.17 (14)
C14—C15—H15120.2C41—C42—C43119.73 (14)
C16—C15—H15120.2C44—C43—C42119.95 (15)
C15—C16—C11121.45 (16)C44—C43—C47119.64 (15)
C15—C16—H16119.3C42—C43—C47120.34 (15)
C11—C16—H16119.3C45—C44—C43121.23 (15)
N1—C20—C21111.67 (12)C45—C44—H44119.4
N1—C20—H20A109.3C43—C44—H44119.4
C21—C20—H20A109.3C44—C45—C46117.50 (15)
N1—C20—H20B109.3C44—C45—C48121.42 (16)
C21—C20—H20B109.3C46—C45—C48121.06 (16)
H20A—C20—H20B107.9C41—C46—C45123.31 (15)
C26—C21—C22117.90 (16)C41—C46—H46118.3
C26—C21—C20121.25 (15)C45—C46—H46118.3
C22—C21—C20120.77 (14)O41—C47—C43124.37 (17)
O20—C22—C23119.00 (16)O41—C47—H47117.8
O20—C22—C21120.26 (15)C43—C47—H47117.8
C23—C22—C21120.74 (17)C45—C48—H48A109.5
C24—C23—C22120.06 (18)C45—C48—H48B109.5
C24—C23—H23120.0H48A—C48—H48B109.5
C22—C23—H23120.0C45—C48—H48C109.5
C25—C24—C23120.42 (18)H48A—C48—H48C109.5
C25—C24—H24119.8H48B—C48—H48C109.5
C23—C24—H24119.8C12—O10—H10112.6
C24—C25—C26119.46 (18)C22—O20—H20109.6
C24—C25—H25120.3C32—O30—H30103.6
C26—C25—H25120.3C42—O40—H40104.9
C25—C26—C21121.40 (18)
C10—N1—C2—C381.42 (15)C40—N4—C30—C3172.17 (19)
C20—N1—C2—C3153.07 (13)N4—C30—C31—C3254.0 (2)
N1—C2—C3—N4174.78 (13)N4—C30—C31—C36128.35 (18)
C2—C3—N4—C4072.09 (17)C36—C31—C32—O30176.19 (18)
C2—C3—N4—C3053.74 (18)C30—C31—C32—O306.1 (3)
C2—N1—C10—C11159.44 (12)C36—C31—C32—C333.7 (3)
C20—N1—C10—C1174.67 (16)C30—C31—C32—C33174.00 (18)
N1—C10—C11—C16117.78 (16)O30—C32—C33—C34178.0 (2)
N1—C10—C11—C1266.33 (19)C31—C32—C33—C341.9 (3)
C16—C11—C12—O10178.35 (15)C32—C33—C34—C351.5 (3)
C10—C11—C12—O102.3 (2)C33—C34—C35—C362.9 (3)
C16—C11—C12—C131.6 (2)C34—C35—C36—C311.0 (3)
C10—C11—C12—C13177.67 (15)C32—C31—C36—C352.3 (3)
O10—C12—C13—C14178.56 (17)C30—C31—C36—C35175.38 (17)
C11—C12—C13—C141.4 (3)C3—N4—C40—C4167.55 (17)
C12—C13—C14—C150.3 (3)C30—N4—C40—C41165.16 (14)
C13—C14—C15—C160.5 (3)N4—C40—C41—C4654.7 (2)
C14—C15—C16—C110.3 (3)N4—C40—C41—C42128.20 (16)
C12—C11—C16—C150.8 (2)C46—C41—C42—O40177.66 (14)
C10—C11—C16—C15176.73 (15)C40—C41—C42—O405.2 (2)
C2—N1—C20—C2172.32 (16)C46—C41—C42—C431.9 (2)
C10—N1—C20—C21162.11 (13)C40—C41—C42—C43175.28 (15)
N1—C20—C21—C26146.22 (15)O40—C42—C43—C44177.11 (15)
N1—C20—C21—C2237.1 (2)C41—C42—C43—C442.4 (2)
C26—C21—C22—O20179.39 (15)O40—C42—C43—C470.2 (3)
C20—C21—C22—O203.8 (2)C41—C42—C43—C47179.35 (16)
C26—C21—C22—C230.9 (2)C42—C43—C44—C450.3 (3)
C20—C21—C22—C23175.91 (16)C47—C43—C44—C45177.31 (17)
O20—C22—C23—C24179.02 (16)C43—C44—C45—C462.1 (2)
C21—C22—C23—C240.7 (3)C43—C44—C45—C48176.43 (16)
C22—C23—C24—C251.4 (3)C42—C41—C46—C450.7 (2)
C23—C24—C25—C260.4 (3)C40—C41—C46—C45177.87 (15)
C24—C25—C26—C211.2 (3)C44—C45—C46—C412.7 (3)
C22—C21—C26—C251.8 (2)C48—C45—C46—C41175.86 (16)
C20—C21—C26—C25174.92 (16)C44—C43—C47—O41177.20 (19)
C3—N4—C30—C31159.71 (15)C42—C43—C47—O410.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O20i0.931.802.7230 (16)177
O20—H20···N10.941.752.5928 (17)148
O20—H20···O100.942.433.0362 (19)122
O30—H30···N40.931.942.784 (2)149
O40—H40···O410.931.762.6146 (19)151
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10···O20i0.931.802.7230 (16)177.0
O20—H20···N10.941.752.5928 (17)147.5
O20—H20···O100.942.433.0362 (19)122.0
O30—H30···N40.931.942.784 (2)149.3
O40—H40···O410.931.762.6146 (19)151.2
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC32H34N2O5
Mr526.61
Crystal system, space groupTriclinic, P1
Temperature (K)190
a, b, c (Å)10.1635 (5), 11.0440 (6), 13.5439 (7)
α, β, γ (°)113.549 (2), 98.381 (2), 99.451 (3)
V3)1336.64 (12)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.15 × 0.08 × 0.04
Data collection
DiffractometerBruker APEXII DUO
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17177, 8122, 5175
Rint0.031
(sin θ/λ)max1)0.715
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.166, 1.02
No. of reflections8122
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

 

Acknowledgements

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Financiadora de Estudos e Projetos (FINEP) for support.

References

First citationAnsari, K. I., Kasiri, S., Grant, J. D. & Mandal, S. S. (2009). Dalton Trans. pp. 8525–8531.  Web of Science CrossRef Google Scholar
First citationBoros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2011). Nucl. Med. Biol. 38, 1165–1174.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBoyle, T. J., Pratt, H. D. III, Ottley, L. A. M., Alam, T. M., McIntyre, S. K., Rodriguez, M. A., Farrell, J. & Campana, C. F. (2009). Inorg. Chem. 48, 9191–9204.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDencic, S. M., Poljarevic, J., Vilimanovich, U., Bogdanovic, A., Isakovic, A. J., Stevovic, T. K., Dulovic, M., Zogovic, N., Isakovic, A. M., Grguric-Sipka, S., Bumbasirevic, V., Sabo, T., Trajkovic, V. & Markovic, I. (2012). Chem. Res. Toxicol. 25, 931–939.  PubMed Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationLazić, J. M., Vučićević, L., Grgurić-Šipka, S., Janjetović, K., Kaluđerović, G. N., Misirkić, M., Gruden-Pavlović, M., Popadić, D., Paschke, R., Trajković, V. & Sabo, T. J. (2010). ChemMedChem, 5, 881–889.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMusa, M. A., Badisa, V. L. D. & Latinwo, L. M. (2014). Anticancer Res. 34, 1601–1607.  CAS PubMed Google Scholar
First citationPrice, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670–8683.  Web of Science CrossRef CAS PubMed Google Scholar
First citationRaman, N., Selvan, A. & Sudharsan, S. (2011). Spectrochim. Acta Part A, 79, 873–883.  Web of Science CrossRef CAS Google Scholar
First citationSchmitt, H., Lomoth, R., Magnuson, A., Park, J., Fryxelius, J., Kritikos, M., Mårtensson, J., Hammarström, L., Sun, L. & Åkermark, B. (2002). Chem. Eur. J. 8, 3757–3768.  CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationThoer, A., Denis, G., Delmas, M. & Gaset, A. (1988). Synth. Commun. 18, 2095–2101.  CrossRef CAS Web of Science Google Scholar
First citationWang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011a). Acta Cryst. E67, o1438.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, N. S., Wang, Y. T., Li, J. Y. & Li, T. D. (2011b). Chin. J. Org. Chem. 31, 1703–1706.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds