metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m403-m404

Crystal structure of catena-poly[[(3-tert-butyl­pyridine-κN)(4-tert-butyl­pyridine-κN)cadmium]-di-μ-thio­cyanato-κ2N:S;κ2S:N]

aInstitut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 2, 24118 Kiel, Germany, and bInstitut für Physikalische Chemie, Christian-Albrechts-Universität Kiel, Max-Eyth-Strasse 1, 24118 Kiel, Germany
*Correspondence e-mail: jwerner@ac.uni-kiel.de

Edited by S. Parkin, University of Kentucky, USA (Received 25 October 2014; accepted 10 November 2014; online 19 November 2014)

In the crystal structure of the title compound, [Cd(NCS)2(C9H13N)2]n, the CdII cations are coordinated in a slightly distorted octa­hedral geometry by one 3-tert-butyl­pyridine ligand, one 4-tert-butyl­pyridine ligand and two pairs of translationally-equivalent μ-1,3-bridging thio­cyanate ligands, all of which are in general positions. These μ-1,3-bridging thio­cyante anions bridge the CdII cations, forming chains that propagate parallel to the b axis.

1. Related literature

For related crystal structures with μ-1,3-bridging thio­cyanate anions, see: Banerjee et al. (2005[Banerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535-544.]); Reinert et al. (2012a[Reinert, T., Jess, I. & Näther, C. (2012a). Acta Cryst. E68, m1372.],b[Reinert, T., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1333.]); Tahli et al. (2011[Tahli, A., Maclaren, J. K., Boldog, I. & Janiak, C. (2011). Inorg. Chim. Acta, 374, 506-513.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Cd(NCS)2(C9H13N)2]

  • Mr = 498.97

  • Monoclinic, P 21 /c

  • a = 20.0917 (8) Å

  • b = 5.9503 (2) Å

  • c = 21.0198 (9) Å

  • β = 115.902 (3)°

  • V = 2260.51 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.16 mm−1

  • T = 293 K

  • 0.16 × 0.12 × 0.09 mm

2.2. Data collection

  • STOE IPDS-2 diffractometer

  • Absorption correction: numerical (X-SHAPE and X-RED32; Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.760, Tmax = 0.895

  • 25365 measured reflections

  • 5407 independent reflections

  • 4159 reflections with I > 2σ(I)

  • Rint = 0.044

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.084

  • S = 1.14

  • 5407 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: X-AREA (Stoe & Cie, 2008[Stoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2011[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Synthesis and crystallization top

CdSO4·8/3H2O was purchased from Merck, and 4-tert-butyl­pyridine and Ba(NCS)2·3H2O were purchased from Alfa Aesar. The 4-tert-butyl­pyridine has a purity of only 97% and is contaminated with 3-tert-butyl­pyridine, which cannot be separated. Cd(NCS)2 was synthesized by stirring 17.5 g (57.00 mmol) Ba(NCS)2·3H2O and 14.6 g (57.00 mmol) CdSO4·8/3H2O in 300 mL H2O at RT for three hours. The white residue of BaSO4 was filtered off and the solvent was evaporated by heating. The homogeneity of the product was investigated by X-ray powder diffraction and elemental analysis. The title compound was prepared by the reaction of (0.15 mmol) 34.3 mg Cd(NCS)2 and (0.15 mmol) 22.2 µL 4-tert-butyl­pyridine in 1.0 mL H2O at 80 °C in a closed 10 mL glass culture tube. After several days, colorless crystalline blocks were obtained.

Refinement top

Carbon-bound H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2 Ueq(C) using a riding model with C—H = 0.95 Å for aromatic and C—H = 0.99 Å for methyl H atoms.

Related literature top

For related crystal structures with µ-1,3-bridging thiocyanato anions, see: Banerjee et al. (2005); Reinert et al. (2012a,b); Tahli et al. (2011).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2008); cell refinement: X-AREA (Stoe & Cie, 2008); data reduction: X-AREA (Stoe & Cie, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
Fig. 1: Crystal structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code: i: (x, y+1, z); ii: (x, y-1, z).
catena-Poly[[(3-tert-butylpyridine-κN)(4-tert-butylpyridine-κN)cadmium]-di-µ-thiocyanato-κ2N:S;κ2S:N] top
Crystal data top
[Cd(NCS)2(C9H13N)2]F(000) = 1016
Mr = 498.97Dx = 1.466 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25365 reflections
a = 20.0917 (8) Åθ = 2.0–28.0°
b = 5.9503 (2) ŵ = 1.16 mm1
c = 21.0198 (9) ÅT = 293 K
β = 115.902 (3)°Block, colourless
V = 2260.51 (15) Å30.16 × 0.12 × 0.09 mm
Z = 4
Data collection top
STOE IPDS-2
diffractometer
5407 independent reflections
Radiation source: fine-focus sealed tube4159 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ω scansθmax = 28.0°, θmin = 2.0°
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
h = 2626
Tmin = 0.760, Tmax = 0.895k = 77
25365 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.8678P]
where P = (Fo2 + 2Fc2)/3
5407 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Cd(NCS)2(C9H13N)2]V = 2260.51 (15) Å3
Mr = 498.97Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.0917 (8) ŵ = 1.16 mm1
b = 5.9503 (2) ÅT = 293 K
c = 21.0198 (9) Å0.16 × 0.12 × 0.09 mm
β = 115.902 (3)°
Data collection top
STOE IPDS-2
diffractometer
5407 independent reflections
Absorption correction: numerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
4159 reflections with I > 2σ(I)
Tmin = 0.760, Tmax = 0.895Rint = 0.044
25365 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.14Δρmax = 0.41 e Å3
5407 reflectionsΔρmin = 0.50 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.732991 (14)0.24172 (4)0.269228 (13)0.04067 (8)
N10.67220 (19)0.5638 (5)0.20986 (17)0.0535 (7)
C10.65872 (17)0.7440 (6)0.18809 (16)0.0415 (6)
S10.63714 (5)0.99805 (14)0.15449 (5)0.0484 (2)
N20.79392 (17)0.0756 (5)0.32949 (17)0.0514 (7)
C20.80555 (17)0.2557 (6)0.35212 (16)0.0421 (6)
S20.82427 (6)0.51157 (15)0.38460 (5)0.0554 (2)
N110.81232 (17)0.2863 (5)0.21360 (15)0.0482 (7)
C110.8505 (3)0.4716 (7)0.2206 (2)0.0724 (13)
H110.84730.58350.25010.087*
C120.8948 (3)0.5105 (7)0.1870 (2)0.0713 (13)
H120.92090.64490.19500.086*
C130.9014 (2)0.3547 (6)0.14183 (19)0.0443 (7)
C140.8606 (2)0.1617 (7)0.1342 (3)0.0638 (11)
H140.86220.04740.10470.077*
C150.8174 (2)0.1363 (7)0.1698 (2)0.0638 (11)
H150.79010.00470.16230.077*
C160.9479 (2)0.3988 (7)0.1019 (2)0.0509 (8)
C170.9747 (3)0.1778 (9)0.0830 (3)0.0847 (15)
H17A1.00380.21050.05800.127*
H17B0.93280.08820.05360.127*
H17C1.00430.09670.12550.127*
C180.8990 (3)0.5207 (10)0.0334 (3)0.0867 (16)
H18A0.92690.55080.00720.130*
H18B0.88210.65980.04440.130*
H18C0.85710.42820.00560.130*
C191.0150 (3)0.5424 (10)0.1453 (3)0.0862 (16)
H19A1.04320.56740.11910.129*
H19B1.04520.46640.18880.129*
H19C0.99900.68400.15570.129*
N210.64660 (16)0.2045 (5)0.31532 (16)0.0470 (7)
C210.5826 (2)0.3142 (7)0.2852 (2)0.0546 (9)
H210.57330.40390.24590.066*
C220.5296 (2)0.2999 (7)0.3098 (2)0.0629 (11)
H220.48550.37950.28790.076*
C230.5429 (2)0.1660 (7)0.3673 (2)0.0573 (10)
H230.50750.15540.38460.069*
C240.60838 (19)0.0467 (6)0.39999 (18)0.0454 (8)
C250.6582 (2)0.0755 (6)0.37141 (19)0.0473 (8)
H250.70300.00050.39280.057*
C260.6255 (2)0.0980 (7)0.4648 (2)0.0587 (10)
C270.6837 (4)0.2738 (12)0.4745 (4)0.133 (3)
H27A0.66620.37060.43390.200*
H27B0.69330.36110.51600.200*
H27C0.72850.20110.47970.200*
C280.6512 (6)0.0518 (13)0.5280 (3)0.171 (4)
H28A0.66270.03730.56960.257*
H28B0.61270.15690.52230.257*
H28C0.69450.13190.53270.257*
C290.5577 (3)0.2282 (11)0.4579 (4)0.1055 (19)
H29A0.54160.32550.41750.158*
H29B0.51880.12490.45210.158*
H29C0.56990.31650.49970.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04773 (12)0.03305 (11)0.04745 (12)0.00141 (12)0.02654 (10)0.00495 (11)
N10.064 (2)0.0352 (15)0.0566 (18)0.0003 (14)0.0216 (16)0.0037 (14)
C10.0434 (15)0.0405 (15)0.0407 (15)0.0062 (17)0.0185 (13)0.0032 (17)
S10.0550 (5)0.0374 (4)0.0470 (5)0.0007 (4)0.0167 (4)0.0063 (4)
N20.0536 (18)0.0355 (14)0.0603 (19)0.0036 (13)0.0204 (15)0.0053 (14)
C20.0422 (15)0.0421 (16)0.0425 (15)0.0014 (17)0.0190 (13)0.0044 (17)
S20.0675 (6)0.0385 (4)0.0481 (5)0.0007 (4)0.0141 (5)0.0058 (4)
N110.0579 (17)0.0447 (16)0.0456 (15)0.0034 (14)0.0260 (14)0.0023 (13)
C110.108 (4)0.055 (2)0.084 (3)0.028 (2)0.070 (3)0.024 (2)
C120.097 (3)0.057 (2)0.086 (3)0.032 (2)0.065 (3)0.021 (2)
C130.0418 (18)0.0475 (18)0.0463 (19)0.0013 (15)0.0218 (16)0.0042 (15)
C140.069 (3)0.055 (2)0.090 (3)0.017 (2)0.055 (3)0.023 (2)
C150.063 (2)0.052 (2)0.088 (3)0.017 (2)0.044 (2)0.011 (2)
C160.048 (2)0.059 (2)0.053 (2)0.0025 (17)0.0279 (17)0.0068 (17)
C170.087 (3)0.081 (3)0.115 (4)0.013 (3)0.071 (3)0.004 (3)
C180.082 (3)0.117 (4)0.074 (3)0.019 (3)0.047 (3)0.038 (3)
C190.064 (3)0.111 (4)0.097 (4)0.026 (3)0.047 (3)0.013 (3)
N210.0460 (15)0.0488 (17)0.0530 (16)0.0030 (13)0.0278 (14)0.0065 (13)
C210.052 (2)0.060 (2)0.054 (2)0.0076 (17)0.0246 (18)0.0103 (17)
C220.046 (2)0.074 (3)0.071 (3)0.0149 (19)0.0288 (19)0.013 (2)
C230.048 (2)0.075 (2)0.058 (2)0.0019 (19)0.0309 (19)0.0028 (19)
C240.0450 (18)0.055 (2)0.0395 (17)0.0068 (16)0.0220 (15)0.0049 (15)
C250.0436 (18)0.054 (2)0.0477 (19)0.0038 (16)0.0230 (16)0.0046 (16)
C260.063 (2)0.071 (3)0.049 (2)0.007 (2)0.0303 (19)0.0052 (19)
C270.118 (5)0.159 (7)0.151 (6)0.059 (5)0.084 (5)0.103 (5)
C280.323 (12)0.124 (6)0.047 (3)0.086 (7)0.063 (5)0.013 (3)
C290.094 (4)0.110 (5)0.124 (5)0.012 (4)0.058 (4)0.038 (4)
Geometric parameters (Å, º) top
Cd1—N22.305 (3)C18—H18A0.9600
Cd1—N12.322 (3)C18—H18B0.9600
Cd1—N212.339 (3)C18—H18C0.9600
Cd1—N112.368 (3)C19—H19A0.9600
Cd1—S2i2.7412 (10)C19—H19B0.9600
Cd1—S1ii2.7513 (10)C19—H19C0.9600
N1—C11.151 (4)N21—C211.330 (5)
C1—S11.644 (4)N21—C251.339 (4)
S1—Cd1i2.7513 (10)C21—C221.375 (5)
N2—C21.154 (4)C21—H210.9300
C2—S21.644 (4)C22—C231.374 (6)
S2—Cd1ii2.7412 (10)C22—H220.9300
N11—C111.314 (5)C23—C241.385 (5)
N11—C151.319 (5)C23—H230.9300
C11—C121.378 (5)C24—C251.384 (4)
C11—H110.9300C24—C261.518 (5)
C12—C131.373 (5)C25—H250.9300
C12—H120.9300C26—C281.492 (7)
C13—C141.379 (5)C26—C271.514 (7)
C13—C161.527 (5)C26—C291.518 (6)
C14—C151.379 (5)C27—H27A0.9600
C14—H140.9300C27—H27B0.9600
C15—H150.9300C27—H27C0.9600
C16—C191.519 (6)C28—H28A0.9600
C16—C181.525 (6)C28—H28B0.9600
C16—C171.537 (6)C28—H28C0.9600
C17—H17A0.9600C29—H29A0.9600
C17—H17B0.9600C29—H29B0.9600
C17—H17C0.9600C29—H29C0.9600
N2—Cd1—N1179.28 (11)H18A—C18—H18B109.5
N2—Cd1—N2190.40 (11)C16—C18—H18C109.5
N1—Cd1—N2189.39 (11)H18A—C18—H18C109.5
N2—Cd1—N1193.03 (11)H18B—C18—H18C109.5
N1—Cd1—N1187.23 (11)C16—C19—H19A109.5
N21—Cd1—N11175.34 (11)C16—C19—H19B109.5
N2—Cd1—S2i87.88 (8)H19A—C19—H19B109.5
N1—Cd1—S2i91.43 (8)C16—C19—H19C109.5
N21—Cd1—S2i90.86 (8)H19A—C19—H19C109.5
N11—Cd1—S2i92.42 (8)H19B—C19—H19C109.5
N2—Cd1—S1ii92.89 (8)C21—N21—C25117.4 (3)
N1—Cd1—S1ii87.79 (8)C21—N21—Cd1119.6 (2)
N21—Cd1—S1ii87.21 (8)C25—N21—Cd1123.0 (2)
N11—Cd1—S1ii89.46 (8)N21—C21—C22122.5 (4)
S2i—Cd1—S1ii177.92 (3)N21—C21—H21118.8
C1—N1—Cd1163.7 (3)C22—C21—H21118.8
N1—C1—S1178.0 (3)C23—C22—C21118.8 (4)
C1—S1—Cd1i98.96 (11)C23—C22—H22120.6
C2—N2—Cd1161.9 (3)C21—C22—H22120.6
N2—C2—S2178.6 (3)C22—C23—C24120.7 (3)
C2—S2—Cd1ii100.68 (11)C22—C23—H23119.6
C11—N11—C15115.2 (3)C24—C23—H23119.6
C11—N11—Cd1121.6 (2)C25—C24—C23115.6 (3)
C15—N11—Cd1122.9 (2)C25—C24—C26122.4 (3)
N11—C11—C12124.1 (4)C23—C24—C26122.0 (3)
N11—C11—H11118.0N21—C25—C24124.9 (3)
C12—C11—H11118.0N21—C25—H25117.5
C13—C12—C11121.3 (4)C24—C25—H25117.5
C13—C12—H12119.3C28—C26—C27110.3 (6)
C11—C12—H12119.3C28—C26—C24108.3 (4)
C12—C13—C14114.3 (3)C27—C26—C24111.8 (3)
C12—C13—C16122.0 (3)C28—C26—C29109.6 (5)
C14—C13—C16123.6 (3)C27—C26—C29105.6 (5)
C13—C14—C15120.7 (4)C24—C26—C29111.2 (4)
C13—C14—H14119.6C26—C27—H27A109.5
C15—C14—H14119.6C26—C27—H27B109.5
N11—C15—C14124.3 (4)H27A—C27—H27B109.5
N11—C15—H15117.8C26—C27—H27C109.5
C14—C15—H15117.8H27A—C27—H27C109.5
C19—C16—C18109.7 (4)H27B—C27—H27C109.5
C19—C16—C13111.2 (3)C26—C28—H28A109.5
C18—C16—C13107.7 (3)C26—C28—H28B109.5
C19—C16—C17108.5 (4)H28A—C28—H28B109.5
C18—C16—C17108.5 (4)C26—C28—H28C109.5
C13—C16—C17111.3 (3)H28A—C28—H28C109.5
C16—C17—H17A109.5H28B—C28—H28C109.5
C16—C17—H17B109.5C26—C29—H29A109.5
H17A—C17—H17B109.5C26—C29—H29B109.5
C16—C17—H17C109.5H29A—C29—H29B109.5
H17A—C17—H17C109.5C26—C29—H29C109.5
H17B—C17—H17C109.5H29A—C29—H29C109.5
C16—C18—H18A109.5H29B—C29—H29C109.5
C16—C18—H18B109.5
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd(NCS)2(C9H13N)2]
Mr498.97
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)20.0917 (8), 5.9503 (2), 21.0198 (9)
β (°) 115.902 (3)
V3)2260.51 (15)
Z4
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.16 × 0.12 × 0.09
Data collection
DiffractometerSTOE IPDS2
diffractometer
Absorption correctionNumerical
(X-SHAPE and X-RED32; Stoe & Cie, 2008)
Tmin, Tmax0.760, 0.895
No. of measured, independent and
observed [I > 2σ(I)] reflections
25365, 5407, 4159
Rint0.044
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.084, 1.14
No. of reflections5407
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.50

Computer programs: X-AREA (Stoe & Cie, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2011), publCIF (Westrip, 2010).

 

Acknowledgements

We gratefully acknowledge financial support by the DFG (project No. NA 720/5–1) and the State of Schleswig–Holstein. We thank Professor Dr Wolfgang Bensch for access to his experimental facilities.

References

First citationBanerjee, S., Wu, B., Lassahn, P.-G., Janiak, C. & Ghosh, A. (2005). Inorg. Chim. Acta, 358, 535–544.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationReinert, T., Jess, I. & Näther, C. (2012a). Acta Cryst. E68, m1372.  CSD CrossRef IUCr Journals Google Scholar
First citationReinert, T., Jess, I. & Näther, C. (2012b). Acta Cryst. E68, m1333.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2008). X-AREA, X-RED32 and X-SHAPE. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationTahli, A., Maclaren, J. K., Boldog, I. & Janiak, C. (2011). Inorg. Chim. Acta, 374, 506–513.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m403-m404
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds