research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Definitive crystal structure of 1,1′-bis­­[1,2-dicarba-closo-dodeca­borane(11)]

aInstitute of Chemical Sciences, Perkin Building, School of Engineering & Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, Scotland
*Correspondence e-mail: A.J.Welch@hw.ac.uk

Edited by S. Parkin, University of Kentucky, USA (Received 28 October 2014; accepted 29 October 2014; online 5 November 2014)

In the title compound, C4H22B20, the two {1,2-closo-C2B10H11} cages are linked across a centre of inversion with a C—C distance of 1.5339 (11) Å. By careful analysis of the structure, it is established that the non-linking cage C atom is equally disordered over cage vertices 2 and 3.

1. Chemical context

The chemistry of single-cage carboranes is now regarded as a mature subject (Grimes, 2011[Grimes, R. N. (2011). Carboranes, 2nd ed. Oxford: Academic Press.]) but that of bis­(carboranes), two discrete carborane units connected via a two-centre–two-electron bond, is far from fully developed. For bis­(carboranes) composed of two C2B10 icosa­hedra, there are several possible isomers of which 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)] (Dupont & Hawthorne, 1964[Dupont, J. A. & Hawthorne, M. F. (1964). J. Am. Chem. Soc. 86, 1643.]) is the best known. Aspects of the chemistry of this species have been partially explored (Hawthorne & Owen, 1971[Hawthorne, M. F. & Owen, D. A. (1971). J. Am. Chem. Soc. 93, 873-880.]; Yanovsky et al., 1979[Yanovsky, A. I., Furmanova, N. G., Struchkov, Yu. T., Shemyakin, N. F. & Zakharkin, L. I. (1979). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1523-1528.]; Harwell et al., 1996[Harwell, D. E., Mortimer, M. D., Knobler, C. B., Anet, F. A. L. & Hawthorne, M. F. (1996). J. Am. Chem. Soc. 118, 2679-2685.], 1997[Harwell, D. E., McMillan, J., Knobler, C. B. & Hawthorne, M. F. (1997). Inorg. Chem. 36, 5951-5955.]; Herzog et al., 1999[Herzog, A., Maderna, A., Harakas, G. N., Knobler, C. B. & Hawthorne, M. F. (1999). Chem. Eur. J. 5, 1212-1217.]; Ellis et al., 2010a[Ellis, D., McKay, D., Macgregor, S. A., Rosair, G. M. & Welch, A. J. (2010a). Angew. Chem. Int. Ed. Engl. 49, 4943-4945.],b[Ellis, D., Rosair, G. M. & Welch, A. J. (2010b). Chem. Commun. 46, 7394-7396.]) but there is still considerable scope for further development.

[Scheme 1]

The two structural studies of 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)] so far reported for which atomic coordin­ates are available (Hall et al., 1965[Hall, L. H., Perloff, A., Mauer, F. A. & Block, S. (1965). J. Chem. Phys. 43, 3911-3917.]; Ren & Xie, 2008[Ren, S. & Xie, Z. (2008). Organometallics, 27, 5167-5168.]) agree that the overall mol­ecular structure is that of two 1,2-dicarba-closo-dodeca­borane(11) units linked via a C1—C1A bond across a centre of inversion. However they differ in their inter­pretation of the position of the non-linking carbon atom, C2 (and, by symmetry, C2A). In the earlier study, Hall et al. considered two models, one (Case I) in which C2 was disordered over two adjacent cage vertices and another (Case II) in which it was disordered over all five vertices to which C1 is connected, expressing a slight preference for the former model based on R factors, with supplementary evidence coming from inspection of temperature factors and the lengths of cage connectivities. In their later study, Ren & Xie considered only an ordered model, with C2 occupying one of the two C/B disordered sites in Case I of Hall et al., but no justification for this model was given. The two crystals used by Hall et al. and by Ren & Xie are isomorphous, and both data sets were collected at room temperature.

We have recently described two new methods, which distinguish CH from BH vertices in carboranes and heterocarboranes, the Vertex-to-Centroid Distance (VCD) method (McAnaw et al., 2013[McAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645-664.]) and the Boron–Hydrogen Distance (BHD) method (McAnaw et al., 2014[McAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095-5105.]). In the present communication, we apply these methods to a precise, low-temperature data set to unambiguously describe the crystal structure of the title compound, 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)].

2. Structural commentary

Mol­ecules of 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)] are composed of two {1,2-closo-C2B10H11} cages (the contents of one asymmetric fraction of the unit cell), linked across a crystallographic inversion centre by the C1–C1A bond [1.5339 (11) Å; symmetry code: (A) −x, −y + 2, −z + 2] (Fig. 1[link]). The two cages are essentially co-linear, with B12⋯C1—C1A = 175.14 (5)°.

[Figure 1]
Figure 1
Perspective view of the title compound, with displacement ellipsoids drawn at the 50% probability level. The label suffix `A' refers to the symmetry operation (−x, −y + 2, −z + 2).

The crystals used in this determination are also isomorphous with those studied by Hall et al. (1965[Hall, L. H., Perloff, A., Mauer, F. A. & Block, S. (1965). J. Chem. Phys. 43, 3911-3917.]) and by Ren & Xie (2008[Ren, S. & Xie, Z. (2008). Organometallics, 27, 5167-5168.]), so comment on the positioning of the non-linking cage C atom in all three determinations is warranted. Using the Vertex-to-Centroid Distance (VCD) method (McAnaw et al., 2013[McAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645-664.]) to analyse our Prostructure (only the linking atom C1 identified as carbon with all other cage atoms described as boron and with H atoms allowed positional refinement), we conclude that the second cage C atom is statistically disordered over vertices 2 and 3 (Table 1[link]). On assigning these positions as (essentially) 0.5C+0.5B and completing the refinement we note that all vertex–centroid distances barely change, confirming our contention (McAnaw et al., 2013[McAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645-664.]) that the conclusions from the VCD method are essentially independent of whether vertices have been refined as C or B and thus allowing the method to be applied to literature structures even if an incorrect C/B assignment has been made. Application of the VCD method to the structure of Hall et al. confirms that their partially disordered Case I model was correct, whilst application to the structure of Ren & Xie (which had the second C atom exclusively at vertex 3) shows that their model is incorrect. Boron–Hydrogen Distance (BHD) analysis (McAnaw et al., 2014[McAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095-5105.]) of our structure (Table 2[link]) also supports the conclusion that the non-linking C is disordered over vertices 2 and 3. The two shortest vertex–H distances in the Prostructure involve vertices 2 and 3, and when these vertices are assigned as (essentially) 0.5C+0.5B, the refined distances to H increase to values between those expected for 100% B and 100% C.

Table 1
Vertex-to-centroid distances (Å) in studies of 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)]

Vertex Hall et al. (1965[Hall, L. H., Perloff, A., Mauer, F. A. & Block, S. (1965). J. Chem. Phys. 43, 3911-3917.]) Ren & Zie (2008[Ren, S. & Xie, Z. (2008). Organometallics, 27, 5167-5168.]) This study (Prostructure) This study (final structure)
1 1.5890 (10) 1.590 (2) 1.5969 (8) 1.5975 (6)
2 1.6274 (13) 1.627 (2) 1.6385 (10) 1.6384 (7)
3 1.6291 (12) 1.632 (2) 1.6420 (9) 1.6418 (7)
4 1.6893 (13) 1.700 (2) 1.7129 (9) 1.7117 (7)
5 1.6938 (14) 1.692 (2) 1.7069 (9) 1.7054 (7)
6 1.6817 (13) 1.696 (2) 1.7145 (9) 1.7124 (7)
7 1.6904 (14) 1.694 (3) 1.7085 (9) 1.7086 (7)
8 1.6839 (15) 1.685 (3) 1.7002 (10) 1.7002 (7)
9 1.6740 (15) 1.681 (3) 1.6920 (10) 1.6920 (7)
10 1.6717 (15) 1.672 (3) 1.6900 (10) 1.6900 (8)
11 1.6888 (14) 1.685 (3) 1.7020 (10) 1.7019 (8)
12 1.6657 (16) 1.665 (3) 1.6779 (10) 1.6780 (8)

Table 2
Vertex-to-H distances (Å) in Prostructure and final structure of 1,1′-bis[1,2-dicarba-closo-dodecaborane(11)]

Vertex Distance (Prostructure) Distance (final structure)
2 0.842 (12) 1.030 (9)
3 0.902 (11) 1.006 (9)
4 1.066 (11) 1.083 (9)
5 1.105 (11) 1.094 (8)
6 1.088 (11) 1.096 (8)
7 1.110 (11) 1.089 (9)
8 1.088 (11) 1.069 (9)
9 1.043 (12) 1.080 (9)
10 1.164 (12) 1.108 (9)
11 1.118 (11) 1.096 (9)
12 1.086 (11) 1.108 (9)

The final structure determined for 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)] is the most precise to date. The e.s.d.'s on comparable mol­ecular parameters are ca half the magnitude of those of Hall et al. (which is nevertheless a remarkably good determination given the hardware used to collect data and the limited number of reflections measured) and ca a quarter of the magnitude of those of Ren & Xie. The present determination is the only one to have been carried out at low temperature (100 K).

The three C1—B distances span the range 1.7308 (9)–1.7427 (9) Å whilst the two C1—C/B connectivities are 1.6950 (8) and 1.6991 (8) Å. Of the remaining connectivities, C/B—C/B is shortest, 1.7215 (9) Å, C/B—B is inter­mediate, lying in the range 1.7353 (10)–1.7603 (9) Å, and B—B distances are the longest, spanning from 1.7775 (10) to 1.8015 (11) Å. The relative lengths of all of these connectivities are fully consistent with the fact that C has a smaller radius than B, which is the essential basis for the VCD method.

3. Supra­molecular features

The only H⋯H contact less than 2.40 Å is H3⋯H12B at 2.342 (13) Å [symmetry code: (B) −x + [1\over2], y + [1\over2], −z + [3\over2]]. Given that vertex B is 50% C and that CH units and BH units in carboranes are protonic and hydridic respectively, with the degree of hydridic character increasing with increasing distance from the C atoms, this might represent a weak di­hydrogen bond. The angles at H3 and H12B are 151.1 (7) and 123.2 (6)°, respectively.

4. Database survey

A search of the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for the 1,1′-bis­(1,2-dicarba-closo-dodeca­borane) unit using Conquest (Version 1.16) returns 13 hits. Of these, four are reported to be of the title compound (DOCBOR, DOCBOR01, DOCBOR02 and DOCBOR03). DOCBOR (Hall et al., 1965[Hall, L. H., Perloff, A., Mauer, F. A. & Block, S. (1965). J. Chem. Phys. 43, 3911-3917.]) represents an early (room-temperature data, point detector, <2000 reflections collected) yet remarkably precise determination. DOCBOR01 (Swanson et al., 1968[Swanson, H. E., McMurdie, H. F., Morris, M. C. & Evans, E. H. (1968). N. B. S. Monograph, Sect. 6, 7.]) appears to be a powder diffraction study and certainly no resulting atomic coordinates are deposited. DOCBOR02 (Yang et al., 1995[Yang, X., Jiang, W., Knobler, C. B., Mortimer, M. D. & Hawthorne, M. F. (1995). Inorg. Chim. Acta, 240, 371-378.]) is ambiguously recorded in the Database; the actual mol­ecule which is the subject of the crystallographic study (compound 2 in the relevant paper) is [1-(3′-1′,2′-closo-C2B10H11)-2-closo-C2B10H11] with a C1—B3′ inter­cluster bond whereas 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)] is [1-(1′-1′,2′-closo-C2B10H11)-2-closo-C2B10H11] with a C1—C1′ inter­cluster bond. Finally, the most recent published determination (DOCBOR03; Ren & Xie, 2008[Ren, S. & Xie, Z. (2008). Organometallics, 27, 5167-5168.]) involves data collected on a modern CCD-equipped diffractometer although also at room temperature.

Of the remaining nine hits revealed by Conquest, one (FASQAR; Herzog et al., 1999[Herzog, A., Maderna, A., Harakas, G. N., Knobler, C. B. & Hawthorne, M. F. (1999). Chem. Eur. J. 5, 1212-1217.]) relates to an octa­methyl derivative of 1,1′-bis­[1,2-dicarba-closo-dodeca­borane(11)] and eight are concerned with species in which the mol­ecule has been deprotonated at the C2 and C2′ positions, with the resulting dianion complexing either a transition metal or a main-group element.

5. Synthesis and crystallization

The compound was prepared by the CuI-mediated coupling of li­thia­ted ortho-carborane, a method first reported by Yang et al. (1995[Yang, X., Jiang, W., Knobler, C. B., Mortimer, M. D. & Hawthorne, M. F. (1995). Inorg. Chim. Acta, 240, 371-378.]) for para-carborane and later used by Ren & Xie (2008[Ren, S. & Xie, Z. (2008). Organometallics, 27, 5167-5168.]) for the coupling of ortho-carborane. Purity was confirmed by elemental microanalysis, mass spectrometry and NMR spectroscopy, the last by comparison with the data of Yang et al. (1995[Yang, X., Jiang, W., Knobler, C. B., Mortimer, M. D. & Hawthorne, M. F. (1995). Inorg. Chim. Acta, 240, 371-378.]). Single crystals for this study were afforded by cooling a solution of the compound in hexane to 243 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. The mol­ecule sits on a crystallographic centre of symmetry at the mid-point of the C1—C1A bond. Initially only the linking atom C1 was identified as carbon, with all other cage atoms described as boron and with H atoms allowed positional refinement. This model (the Prostructure) was refined and then analysed by both the VCD (McAnaw et al., 2013[McAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645-664.]) and the BHD (McAnaw et al., 2014[McAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095-5105.]) methods. Both methods led to the same conclusion regarding the location of the second C atom, which was found to be disordered between positions 2 and 3. These vertices were assigned boron and carbon occupancies of 0.5, treated as tied variables. Refinement was completed with H atoms continuing to be refined positionally and with Uiso(H) = 1.2Ueq(C,B). At convergence, cage position 2 is [0.503 (9) C + 0.497 (9) B] and cage position 3 [0.497 (9) C + 0.503 (9) B]; effectively positions 2 and 3 are both 50% C + 50% B.

Table 3
Experimental details

Crystal data
Chemical formula C4H22B20
Mr 286.41
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 7.0011 (5), 9.7667 (6), 12.4071 (8)
β (°) 90.375 (3)
V3) 848.35 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.05
Crystal size (mm) 0.38 × 0.34 × 0.32
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.706, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 22850, 3324, 2787
Rint 0.029
(sin θ/λ)max−1) 0.778
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.05
No. of reflections 3324
No. of parameters 143
H-atom treatment Only H-atom coordinates refined
Δρmax, Δρmin (e Å−3) 0.30, −0.22
Computer programs: SAINT and APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]).

Supporting information


Chemical context top

The chemistry of single-cage carboranes is now regarded as a mature subject (Grimes, 2011) but that of bis­(carboranes), two discrete carborane units connected via a two-centre–two-electron bond, is far from fully developed. For bis­(carboranes) composed of two C2B10 icosahedra, there are several possible isomers of which 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)] (Dupont & Hawthorne, 1964) is the best known. Aspects of the chemistry of this species have been partially explored (Hawthorne & Owen, 1971; Harwell et al., 1997, 1996; Yanovsky et al., 1979; Herzog et al., 1999; Ellis et al., 2010a,b) but there is still considerable scope for further development.

The two structural studies of 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)] so far reported for which atomic coordinates are available (Hall et al., 1965; Ren & Xie, 2008) agree that the overall molecular structure is that of two 1,2-dicarba-closo-dodecaborane(11) units linked via a C1—C1A bond across a centre of inversion. However they differ in their inter­pretation of the position of the non-linking carbon atom, C2 (and, by symmetry, C2A). In the earlier study, Hall et al. considered two models, one (Case I) in which C2 was disordered over two adjacent cage vertices and another (Case II) in which it was disordered over all five vertices to which C1 is connected, expressing a slight preference for the former model based on R factors, with supplementary evidence coming from inspection of temperature factors and the lengths of cage connectivities. In their later study, Ren & Xie considered only an ordered model, with C2 occupying one of the two C/B disordered sites in Case I of Hall et al., but no justification for this model was given. The two crystals used by Hall et al. and by Ren & Xie are isomorphous, and both data sets were collected at room temperature.

We have recently described two new methods, which distinguish CH from BH vertices in carboranes and heterocarboranes, the Vertex-to-Centroid Distance (VCD) method (McAnaw et al., 2013) and the Boron–Hydrogen Distance (BHD) method (McAnaw et al., 2014). In the present communication, we apply these methods to a precise, low-temperature data set to unambiguously describe the crystal structure of the title compound, 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)].

Structural commentary top

Molecules of 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)] are composed of two {1,2-closo-C2B10H11} cages (the contents of one asymmetric fraction of the unit cell), linked across a crystallographic inversion centre by the C1–C1A bond [1.5339 (11) Å; symmetry code: (A) -x, -y+2, -z+2] (Fig. 1). The two cages are essentially co-linear, with B12···C1—C1A = 175.14 (5)°.

The crystals used in this determination are also isomorphous with those studied by Hall et al. (1965) and by Ren & Xie (2008), so comment on the positioning of the non-linking cage C atom in all three determinations is warranted. Using the Vertex-to-Centroid Distance (VCD) method (McAnaw et al., 2013) to analyse our Prostructure (only the linking atom C1 identified as carbon with all other cage atoms described as boron and with H atoms allowed positional refinement), we conclude that the second cage C atom is statistically disordered over vertices 2 and 3 (Table 1). On assigning these positions as (essentially) 0.5C+0.5B and completing the refinement we note that all vertex–centroid distances barely change, confirming our contention (McAnaw et al., 2013) that the conclusions from the VCD method are essentially independent of whether vertices have been refined as C or B and thus allowing the method to be applied to literature structures even if an incorrect C/B assignment has been made. Application of the VCD method to the structure of Hall et al. confirms that their partially disordered Case I model was correct, whilst application to the structure of Ren & Xie (which had the second C atom exclusively at vertex 3) shows that their model is incorrect. Boron–Hydrogen Distance (BHD) analysis (McAnaw et al., 2014) of our structure (Table 2) also supports the conclusion that the non-linking C is disordered over vertices 2 and 3. The two shortest vertex–H distances in the Prostructure involve vertices 2 and 3, and when these vertices are assigned as (essentially) 0.5C+0.5B, the refined distances to H increase to values between those expected for 100% B and 100% C.

The final structure determined for 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)] is the most precise to date. The s.u.'s on comparable molecular parameters are ca half the magnitude of those of Hall et al. (which is nevertheless a remarkably good determination given the hardware used to collect data and the limited number of reflections measured) and ca a quarter of the magnitude of those of Ren & Xie. The present determination is the only one to have been carried out at low temperature (100 K).

The three C1—B distances span the range 1.7308 (9)–1.7427 (9) Å whilst the two C1—C/B connectivities are 1.6950 (8) and 1.6991 (8) Å. Of the remaining connectivities, C/B—C/B is shortest, 1.7215 (9) Å, C/B—B is inter­mediate, lying in the range 1.7353 (10)–1.7603 (9) Å, and B—B distances are the longest, spanning from 1.7775 (10) to 1.8015 (11) Å. The relative lengths of all of these connectivities are fully consistent with the fact that C has a smaller radius than B, which is the essential basis for the VCD method.

Supra­molecular features top

The only H···H contact less than 2.40 Å is H3···H12B at 2.342 (13) Å [symmetry code: (B) -x+1/2, y+1/2, -z+3/2]. Given that vertex B is 50% C and that CH units and BH units in carboranes are protonic and hydridic respectively, with the degree of hydridic character increasing with increasing distance from the C atoms, this might represent a weak di­hydrogen bond. The angles at H3 and H12B are 151.1 (7) and 123.2 (6)°, respectively.

Database survey top

A search of the Cambridge Structural Database (Groom & Allen, 2014) for the 1,1'-bis­(1,2-dicarba-closo-dodecaborane) unit using Conquest (Version 1.16) returns 13 hits. Of these, four are reported to be of the title compound (DOCBOR, DOCBOR01, DOCBOR02 and DOCBOR03). DOCBOR (Hall et al., 1965) represents an early (room-temperature data, point detector, <2000 reflections collected) yet remarkably precise determination. DOCBOR01 (Swanson et al., 1968) appears to be a powder diffraction study and certainly no resulting atomic coordinates are deposited. DOCBOR02 (Yang et al., 1995) is ambiguously recorded in the Database; the actual molecule which is the subject of the crystallographic study (compound 2 in the relevant paper) is [1-(3'-1',2'-closo-C2B10H11)-2-closo-C2B10H11] with a C1—B3' inter­cluster bond whereas 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)] is [1-(1'-1',2'-closo-C2B10H11)-2-closo-C2B10H11] with a C1—C1' inter­cluster bond. Finally, the most recent published determination (DOCBOR03; Ren & Xie, 2008) involves data collected on a modern CCD-equipped diffractometer although also at room temperature.

Of the remaining nine hits revealed by Conquest, one (FASQAR; Herzog et al., 1999) relates to an o­cta­methyl derivative of 1,1'-bis­[1,2-dicarba-closo-dodecaborane(11)] and eight are concerned with species in which the molecule has been deprotonated at the C2 and C2' positions, with the resulting dianion complexing either a transition metal or a main-group element.

Synthesis and crystallization top

The compound was prepared by the CuI-mediated coupling of li­thia­ted ortho-carborane, a method first reported by Yang et al. (1995) for para-carborane and later used by Ren & Xie (2008) for the coupling of ortho-carborane. Purity was confirmed by elemental microanalysis, mass spectrometry and NMR spectroscopy, the last by comparison with the data of Yang et al. (1995). Single crystals for this study were afforded by cooling a solution of the compound in hexane to 243 K.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. The molecule sits on a crystallographic centre of symmetry at the mid-point of the C1—C1A bond. Initially only the linking atom C1 was identified as carbon, with all other cage atoms described as boron and with H atoms allowed positional refinement. This model (the Prostructure) was refined and then analysed by both the VCD (McAnaw et al., 2013) and the BHD (McAnaw et al., 2014) methods. Both methods led to the same conclusion regarding the location of the second C atom, which was found to be disordered between positions 2 and 3. These vertices were assigned boron and carbon occupancies of 0.5, and treated as tied variables. Refinement was completed with H atoms continuing to be refined positionally and with Uiso(H) = 1.2Ueq(C,B). At convergence, cage position 2 is [0.503 (9) C + 0.497 (9) B] and cage position 3 [0.497 (9) C + 0.503 (9) B]; effectively positions 2 and 3 are both 50% C + 50% B.

Related literature top

For related literature, see: Dupont & Hawthorne (1964); Ellis et al. (2010a, 2010b); Grimes (2011); Groom & Allen (2014); Hall et al. (1965); Harwell et al. (1996, 1997); Herzog et al. (1999); McAnaw et al. (2013, 2014); Owen & Hawthorne (1971); Ren & Xie (2008); Swanson et al. (1968); Yang et al. (1995); Yanovsky et al. (1979).

Computing details top

Data collection: SAINT (Bruker, 2009); cell refinement: APEX2 (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
Perspective view of the title compound, with displacement ellipsoids drawn at the 50% probability level. The label suffix `A' refers to the symmetry operation (-x, -y+2, -z+2).
(I) top
Crystal data top
C4H22B20F(000) = 292
Mr = 286.41Dx = 1.121 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0011 (5) ÅCell parameters from 7872 reflections
b = 9.7667 (6) Åθ = 3.3–33.5°
c = 12.4071 (8) ŵ = 0.05 mm1
β = 90.375 (3)°T = 100 K
V = 848.35 (10) Å3BLOCK, colourless
Z = 20.38 × 0.34 × 0.32 mm
Data collection top
Bruker APEXII CCD
diffractometer
3324 independent reflections
Radiation source: sealed tube2787 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ϕ and ω scansθmax = 33.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.706, Tmax = 0.747k = 1415
22850 measured reflectionsl = 1919
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Only H-atom coordinates refined
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.1013P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max < 0.001
3324 reflectionsΔρmax = 0.30 e Å3
143 parametersΔρmin = 0.22 e Å3
Crystal data top
C4H22B20V = 848.35 (10) Å3
Mr = 286.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.0011 (5) ŵ = 0.05 mm1
b = 9.7667 (6) ÅT = 100 K
c = 12.4071 (8) Å0.38 × 0.34 × 0.32 mm
β = 90.375 (3)°
Data collection top
Bruker APEXII CCD
diffractometer
3324 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2787 reflections with I > 2σ(I)
Tmin = 0.706, Tmax = 0.747Rint = 0.029
22850 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.106Only H-atom coordinates refined
S = 1.05Δρmax = 0.30 e Å3
3324 reflectionsΔρmin = 0.22 e Å3
143 parameters
Special details top

Experimental. Absorption correction: SADABS-2008/1 (Bruker, 2008) was used for absorption correction. wR2(int) was 0.0508 before and 0.0428 after correction. The Ratio of minimum to maximum transmission is 0.9456. The λ/2 correction factor is 0.0015.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.00588 (8)0.94081 (6)0.95949 (4)0.01437 (11)
B20.07903 (9)0.98070 (7)0.83283 (5)0.01927 (14)0.497 (9)
H20.1071 (12)1.0828 (10)0.8194 (7)0.023*
B30.15654 (9)0.94099 (7)0.85833 (5)0.01846 (13)0.503 (9)
H30.2474 (12)1.0207 (9)0.8580 (7)0.022*
B40.17020 (10)0.81469 (7)0.95931 (5)0.01763 (13)
H40.2854 (12)0.8236 (9)1.0176 (7)0.021*
B50.07164 (10)0.77626 (7)0.99536 (5)0.01763 (13)
H50.1033 (12)0.7563 (9)1.0801 (7)0.021*
B60.22796 (9)0.88235 (7)0.91629 (5)0.01762 (13)
H60.3531 (12)0.9333 (9)0.9506 (7)0.021*
B70.04606 (10)0.87930 (7)0.74140 (5)0.01979 (14)
H70.0862 (12)0.9264 (9)0.6652 (7)0.024*
B80.20135 (10)0.77266 (7)0.82037 (6)0.01995 (14)
H80.3405 (12)0.7451 (10)0.7928 (7)0.024*
B90.05645 (11)0.66684 (7)0.90524 (6)0.02070 (14)
H90.1038 (12)0.5664 (9)0.9302 (7)0.025*
B100.19002 (11)0.70885 (7)0.87886 (6)0.02095 (14)
H100.3091 (13)0.6353 (10)0.8892 (7)0.025*
B110.19577 (10)0.84046 (8)0.77730 (6)0.02052 (14)
H110.3151 (12)0.8578 (10)0.7213 (7)0.025*
B120.02108 (11)0.70670 (7)0.77061 (6)0.02187 (14)
H120.0230 (12)0.6296 (10)0.7051 (7)0.026*
C20.07903 (9)0.98070 (7)0.83283 (5)0.01927 (14)0.503 (9)
C30.15654 (9)0.94099 (7)0.85833 (5)0.01846 (13)0.497 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0157 (2)0.0151 (2)0.0123 (2)0.00095 (18)0.00111 (17)0.00166 (16)
B20.0196 (3)0.0240 (3)0.0142 (3)0.0027 (2)0.0005 (2)0.0006 (2)
B30.0220 (3)0.0187 (3)0.0147 (3)0.0011 (2)0.0012 (2)0.0010 (2)
B40.0191 (3)0.0170 (3)0.0169 (3)0.0020 (2)0.0016 (2)0.0020 (2)
B50.0208 (3)0.0155 (3)0.0166 (3)0.0018 (2)0.0022 (2)0.0021 (2)
B60.0171 (3)0.0188 (3)0.0169 (3)0.0023 (2)0.0000 (2)0.0001 (2)
B70.0240 (3)0.0212 (3)0.0141 (3)0.0009 (2)0.0019 (2)0.0001 (2)
B80.0222 (3)0.0195 (3)0.0181 (3)0.0015 (2)0.0040 (2)0.0002 (2)
B90.0262 (3)0.0162 (3)0.0198 (3)0.0004 (2)0.0036 (2)0.0007 (2)
B100.0244 (3)0.0183 (3)0.0202 (3)0.0044 (2)0.0017 (2)0.0017 (2)
B110.0225 (3)0.0222 (3)0.0168 (3)0.0026 (2)0.0017 (2)0.0013 (2)
B120.0273 (3)0.0198 (3)0.0185 (3)0.0025 (3)0.0023 (2)0.0022 (2)
C20.0196 (3)0.0240 (3)0.0142 (3)0.0027 (2)0.0005 (2)0.0006 (2)
C30.0220 (3)0.0187 (3)0.0147 (3)0.0011 (2)0.0012 (2)0.0010 (2)
Geometric parameters (Å, º) top
C1—C1i1.5339 (11)B6—H61.096 (8)
C1—B21.6950 (8)B6—B101.7775 (10)
C1—B31.6991 (8)B6—B111.7881 (10)
C1—B41.7427 (9)B6—C21.7596 (9)
C1—B51.7308 (9)B7—H71.089 (9)
C1—B61.7378 (9)B7—B81.7924 (10)
C1—C21.6950 (8)B7—B111.7941 (10)
C1—C31.6991 (8)B7—B121.7877 (10)
B2—H21.030 (9)B7—C21.7457 (9)
B2—B61.7596 (9)B7—C31.7468 (9)
B2—B71.7457 (9)B8—H81.069 (9)
B2—B111.7353 (10)B8—B91.7944 (10)
B2—C31.7215 (9)B8—B121.7912 (11)
B3—H31.006 (9)B8—C31.7392 (10)
B3—B41.7603 (9)B9—H91.080 (9)
B3—B71.7468 (9)B9—B101.8015 (11)
B3—B81.7392 (10)B9—B121.7956 (10)
B3—C21.7215 (9)B10—H101.108 (9)
B4—H41.083 (9)B10—B111.8003 (10)
B4—B51.7937 (10)B10—B121.7956 (10)
B4—B81.7869 (10)B11—H111.096 (9)
B4—B91.7784 (10)B11—B121.7918 (11)
B4—C31.7603 (9)B11—C21.7353 (10)
B5—H51.094 (8)B12—H121.108 (9)
B5—B61.7944 (10)C2—H21.030 (9)
B5—B91.7915 (10)C3—H31.006 (9)
B5—B101.7871 (10)
C1i—C1—B2116.67 (6)C2—B7—B359.07 (4)
C1i—C1—B3116.75 (6)C2—B7—H7117.2 (5)
C1i—C1—B4119.91 (6)C2—B7—B8106.23 (5)
C1i—C1—B5123.00 (5)C2—B7—B1158.69 (4)
C1i—C1—B6119.59 (6)C2—B7—B12105.64 (5)
C1i—C1—C2116.67 (6)C3—B7—H7117.4 (5)
C1i—C1—C3116.75 (6)C3—B7—B858.85 (4)
B2—C1—B4111.76 (4)C3—B7—B11106.28 (5)
B2—C1—B5111.87 (4)C3—B7—B12105.81 (5)
B2—C1—B661.66 (4)B3—B8—B459.88 (4)
B2—C1—C360.96 (4)B3—B8—B759.27 (4)
B3—C1—B461.51 (4)B3—B8—H8119.4 (5)
B3—C1—B5111.80 (4)B3—B8—B9106.37 (5)
B3—C1—B6111.98 (4)B3—B8—B12105.98 (5)
B5—C1—B462.18 (4)B4—B8—B7108.45 (5)
B5—C1—B662.31 (4)B4—B8—H8118.9 (5)
B6—C1—B4113.51 (5)B4—B8—B959.55 (4)
C2—C1—B360.96 (4)B4—B8—B12107.69 (5)
C2—C1—B4111.76 (4)B7—B8—H8121.5 (5)
C2—C1—B5111.87 (4)B7—B8—B9108.19 (5)
C2—C1—B661.66 (4)B9—B8—H8124.3 (5)
C3—C1—B461.51 (4)B12—B8—B759.85 (4)
C3—C1—B5111.80 (4)B12—B8—H8126.2 (5)
C3—C1—B6111.98 (4)B12—B8—B960.10 (4)
C1—B2—H2115.4 (5)C3—B8—B459.88 (4)
C1—B2—B660.37 (4)C3—B8—B759.27 (4)
C1—B2—B7108.80 (5)C3—B8—H8119.4 (5)
C1—B2—B11108.99 (5)C3—B8—B9106.37 (5)
C1—B2—C359.64 (4)C3—B8—B12105.98 (5)
B6—B2—H2120.7 (5)B4—B9—B560.32 (4)
B7—B2—H2122.7 (5)B4—B9—B860.02 (4)
B7—B2—B6111.99 (5)B4—B9—H9119.6 (5)
B11—B2—H2127.7 (5)B4—B9—B10108.04 (5)
B11—B2—B661.54 (4)B4—B9—B12107.87 (5)
B11—B2—B762.04 (4)B5—B9—B8108.05 (5)
C3—B2—H2115.4 (5)B5—B9—H9121.1 (5)
C3—B2—B6109.85 (5)B5—B9—B1059.65 (4)
C3—B2—B760.50 (4)B5—B9—B12107.56 (5)
C3—B2—B11110.08 (5)B8—B9—H9121.2 (5)
C1—B3—H3115.5 (5)B8—B9—B10107.86 (5)
C1—B3—B460.47 (4)B8—B9—B1259.86 (4)
C1—B3—B7108.56 (5)B10—B9—H9123.4 (5)
C1—B3—B8108.78 (5)B12—B9—H9123.6 (5)
C1—B3—C259.40 (3)B12—B9—B1059.89 (4)
B4—B3—H3120.9 (5)B5—B10—B959.89 (4)
B7—B3—H3122.7 (5)B5—B10—H10119.4 (5)
B7—B3—B4111.79 (5)B5—B10—B11108.13 (5)
B8—B3—H3128.0 (5)B5—B10—B12107.76 (5)
B8—B3—B461.40 (4)B6—B10—B560.45 (4)
B8—B3—B761.88 (4)B6—B10—B9108.32 (5)
C2—B3—H3115.5 (5)B6—B10—H10118.3 (5)
C2—B3—B4109.64 (5)B6—B10—B1159.97 (4)
C2—B3—B760.44 (4)B6—B10—B12107.87 (5)
C2—B3—B8109.72 (5)B9—B10—H10123.5 (5)
C1—B4—B358.03 (3)B11—B10—B9107.86 (5)
C1—B4—H4117.8 (5)B11—B10—H10122.0 (5)
C1—B4—B558.58 (4)B12—B10—B959.89 (4)
C1—B4—B8104.74 (4)B12—B10—H10125.3 (5)
C1—B4—B9105.03 (5)B12—B10—B1159.77 (4)
C1—B4—C358.03 (3)B2—B11—B659.90 (4)
B3—B4—H4117.1 (5)B2—B11—B759.26 (4)
B3—B4—B5106.09 (5)B2—B11—B10106.10 (5)
B3—B4—B858.72 (4)B2—B11—H11119.0 (5)
B3—B4—B9106.16 (5)B2—B11—B12105.90 (5)
B5—B4—H4123.4 (5)B6—B11—B7108.43 (5)
B8—B4—H4124.6 (5)B6—B11—B1059.38 (4)
B8—B4—B5108.29 (5)B6—B11—H11118.4 (5)
B9—B4—H4130.3 (5)B6—B11—B12107.57 (5)
B9—B4—B560.20 (4)B7—B11—B10107.93 (5)
B9—B4—B860.44 (4)B7—B11—H11121.8 (5)
C3—B4—H4117.1 (5)B10—B11—H11124.6 (5)
C3—B4—B5106.09 (5)B12—B11—B759.81 (4)
C3—B4—B858.72 (4)B12—B11—B1059.98 (4)
C3—B4—B9106.16 (5)B12—B11—H11126.9 (5)
C1—B5—B459.23 (3)C2—B11—B659.90 (4)
C1—B5—H5117.9 (5)C2—B11—B759.26 (4)
C1—B5—B659.04 (4)C2—B11—B10106.10 (5)
C1—B5—B9104.97 (4)C2—B11—H11119.0 (5)
C1—B5—B10104.88 (4)C2—B11—B12105.90 (5)
B4—B5—H5118.3 (4)B7—B12—B860.11 (4)
B4—B5—B6108.43 (4)B7—B12—B9108.34 (5)
B6—B5—H5120.1 (5)B7—B12—B10108.42 (5)
B9—B5—B459.47 (4)B7—B12—B1160.16 (4)
B9—B5—H5126.8 (5)B7—B12—H12119.6 (5)
B9—B5—B6108.01 (5)B8—B12—B960.04 (4)
B10—B5—B4108.00 (5)B8—B12—B10108.27 (5)
B10—B5—H5128.1 (5)B8—B12—B11108.30 (5)
B10—B5—B659.51 (4)B8—B12—H12120.2 (5)
B10—B5—B960.45 (4)B9—B12—H12122.5 (5)
C1—B6—B257.98 (3)B10—B12—B960.22 (4)
C1—B6—B558.66 (3)B10—B12—H12123.5 (5)
C1—B6—H6116.6 (5)B11—B12—B9108.50 (5)
C1—B6—B10105.00 (5)B11—B12—B1060.24 (4)
C1—B6—B11104.74 (4)B11—B12—H12121.6 (5)
C1—B6—C257.98 (3)C1—C2—H2115.4 (5)
B2—B6—B5105.98 (4)C1—C2—B359.64 (4)
B2—B6—H6117.3 (5)C1—C2—B660.37 (4)
B2—B6—B10106.05 (5)C1—C2—B7108.80 (5)
B2—B6—B1158.56 (4)C1—C2—B11108.99 (5)
B5—B6—H6122.4 (4)B3—C2—H2115.4 (5)
B10—B6—B560.04 (4)B3—C2—B6109.85 (5)
B10—B6—H6131.0 (5)B3—C2—B760.50 (4)
B10—B6—B1160.65 (4)B3—C2—B11110.08 (5)
B11—B6—B5108.35 (5)B6—C2—H2120.7 (5)
B11—B6—H6125.8 (4)B7—C2—H2122.7 (5)
C2—B6—B5105.98 (4)B7—C2—B6111.99 (5)
C2—B6—H6117.3 (5)B11—C2—H2127.7 (5)
C2—B6—B10106.05 (5)B11—C2—B661.54 (4)
C2—B6—B1158.56 (4)B11—C2—B762.04 (4)
B2—B7—H7117.2 (5)C1—C3—B259.40 (3)
B2—B7—B8106.23 (5)C1—C3—H3115.5 (5)
B2—B7—B1158.69 (4)C1—C3—B460.47 (4)
B2—B7—B12105.64 (5)C1—C3—B7108.56 (5)
B2—B7—C359.07 (4)C1—C3—B8108.78 (5)
B3—B7—H7117.4 (5)B2—C3—H3115.5 (5)
B3—B7—B858.85 (4)B2—C3—B4109.64 (5)
B3—B7—B11106.28 (5)B2—C3—B760.44 (4)
B3—B7—B12105.81 (5)B2—C3—B8109.72 (5)
B8—B7—H7124.1 (5)B4—C3—H3120.9 (5)
B8—B7—B11108.15 (5)B7—C3—H3122.7 (5)
B11—B7—H7123.6 (5)B7—C3—B4111.79 (5)
B12—B7—H7130.0 (5)B8—C3—H3128.0 (5)
B12—B7—B860.04 (4)B8—C3—B461.40 (4)
B12—B7—B1160.03 (4)B8—C3—B761.88 (4)
C1i—C1—B2—B6110.91 (7)B6—B2—B11—B7140.34 (5)
C1i—C1—B2—B7143.93 (6)B6—B2—B11—B1038.74 (5)
C1i—C1—B2—B11150.06 (6)B6—B2—B11—B12101.40 (5)
C1i—C1—B2—C3107.28 (6)B6—B2—C3—C134.85 (4)
C1i—C1—B3—B4111.21 (7)B6—B2—C3—B40.16 (6)
C1i—C1—B3—B7143.73 (6)B6—B2—C3—B7104.67 (5)
C1i—C1—B3—B8150.53 (6)B6—B2—C3—B865.83 (6)
C1i—C1—B3—C2107.17 (7)B6—B5—B9—B4101.20 (5)
C1i—C1—B4—B3106.17 (7)B6—B5—B9—B863.45 (6)
C1i—C1—B4—B5114.01 (7)B6—B5—B9—B1037.09 (4)
C1i—C1—B4—B8143.31 (6)B6—B5—B9—B120.25 (6)
C1i—C1—B4—B9153.92 (6)B6—B5—B10—B9138.27 (5)
C1i—C1—B4—C3106.17 (7)B6—B5—B10—B1137.71 (4)
C1i—C1—B5—B4109.25 (7)B6—B5—B10—B12100.89 (5)
C1i—C1—B5—B6108.91 (7)B6—B10—B11—B238.98 (5)
C1i—C1—B5—B9148.80 (6)B6—B10—B11—B7101.22 (5)
C1i—C1—B5—B10148.40 (6)B6—B10—B11—B12138.33 (5)
C1i—C1—B6—B2106.28 (7)B6—B10—B11—C238.98 (5)
C1i—C1—B6—B5114.16 (7)B6—B10—B12—B70.18 (7)
C1i—C1—B6—B10153.94 (6)B6—B10—B12—B863.87 (6)
C1i—C1—B6—B11143.08 (6)B6—B10—B12—B9101.23 (5)
C1i—C1—B6—C2106.28 (7)B6—B10—B12—B1137.21 (5)
C1i—C1—C2—B3107.28 (6)B6—B11—B12—B7101.50 (5)
C1i—C1—C2—B6110.91 (7)B6—B11—B12—B864.15 (6)
C1i—C1—C2—B7143.93 (6)B6—B11—B12—B90.51 (7)
C1i—C1—C2—B11150.06 (6)B6—B11—B12—B1036.88 (5)
C1i—C1—C3—B2107.17 (7)B6—B11—C2—C138.62 (4)
C1i—C1—C3—B4111.21 (7)B6—B11—C2—B3102.30 (5)
C1i—C1—C3—B7143.73 (6)B6—B11—C2—B7140.34 (5)
C1i—C1—C3—B8150.53 (6)B7—B2—B6—C199.79 (5)
C1—B2—B6—B535.18 (4)B7—B2—B6—B564.61 (6)
C1—B2—B6—B1097.92 (5)B7—B2—B6—B101.87 (6)
C1—B2—B6—B11137.24 (5)B7—B2—B6—B1137.44 (5)
C1—B2—B7—B80.34 (6)B7—B2—B11—B6140.34 (5)
C1—B2—B7—B11102.03 (5)B7—B2—B11—B10101.61 (5)
C1—B2—B7—B1263.05 (6)B7—B2—B11—B1238.94 (5)
C1—B2—B7—C336.28 (4)B7—B2—C3—C1139.51 (5)
C1—B2—B11—B638.62 (4)B7—B2—C3—B4104.51 (5)
C1—B2—B11—B7101.72 (5)B7—B2—C3—B838.84 (4)
C1—B2—B11—B100.12 (6)B7—B3—B4—C199.64 (5)
C1—B2—B11—B1262.78 (6)B7—B3—B4—B564.68 (6)
C1—B2—C3—B435.00 (4)B7—B3—B4—B837.26 (5)
C1—B2—C3—B7139.51 (5)B7—B3—B4—B91.74 (6)
C1—B2—C3—B8100.68 (5)B7—B3—B8—B4140.40 (5)
C1—B3—B4—B534.96 (4)B7—B3—B8—B9101.77 (5)
C1—B3—B4—B8136.90 (5)B7—B3—B8—B1238.91 (4)
C1—B3—B4—B997.90 (5)B7—B3—C2—C1139.51 (5)
C1—B3—B7—B8101.86 (5)B7—B3—C2—B6104.67 (5)
C1—B3—B7—B110.17 (6)B7—B3—C2—B1138.71 (5)
C1—B3—B7—B1262.90 (6)B7—B8—B9—B4101.14 (5)
C1—B3—B7—C236.13 (4)B7—B8—B9—B563.25 (6)
C1—B3—B8—B438.89 (4)B7—B8—B9—B100.21 (6)
C1—B3—B8—B7101.51 (5)B7—B8—B9—B1236.99 (5)
C1—B3—B8—B90.26 (6)B7—B8—B12—B9138.63 (5)
C1—B3—B8—B1262.60 (6)B7—B8—B12—B10101.19 (5)
C1—B3—C2—B634.85 (4)B7—B8—B12—B1137.38 (5)
C1—B3—C2—B7139.51 (5)B7—B8—C3—C1101.51 (5)
C1—B3—C2—B11100.80 (5)B7—B8—C3—B238.20 (4)
C1—B4—B5—B633.95 (4)B7—B8—C3—B4140.40 (5)
C1—B4—B5—B9134.43 (5)B7—B11—B12—B837.35 (5)
C1—B4—B5—B1096.94 (5)B7—B11—B12—B9100.99 (5)
C1—B4—B8—B336.82 (4)B7—B11—B12—B10138.38 (5)
C1—B4—B8—B71.54 (6)B7—B11—C2—C1101.72 (5)
C1—B4—B8—B999.16 (5)B7—B11—C2—B338.04 (5)
C1—B4—B8—B1261.75 (6)B7—B11—C2—B6140.34 (5)
C1—B4—B8—C336.82 (4)B8—B3—B4—C1136.90 (5)
C1—B4—B9—B539.12 (4)B8—B3—B4—B5101.94 (5)
C1—B4—B9—B898.66 (5)B8—B3—B4—B939.00 (5)
C1—B4—B9—B101.98 (6)B8—B3—B7—B11101.70 (5)
C1—B4—B9—B1261.32 (6)B8—B3—B7—B1238.96 (5)
C1—B4—C3—B234.58 (4)B8—B3—B7—C2137.99 (5)
C1—B4—C3—B799.64 (5)B8—B3—C2—C1100.68 (5)
C1—B4—C3—B8136.90 (5)B8—B3—C2—B665.83 (6)
C1—B5—B6—B234.89 (4)B8—B3—C2—B738.84 (4)
C1—B5—B6—B10134.50 (5)B8—B3—C2—B110.12 (6)
C1—B5—B6—B1196.43 (5)B8—B4—B5—C196.44 (5)
C1—B5—B6—C234.89 (4)B8—B4—B5—B662.49 (6)
C1—B5—B9—B439.43 (4)B8—B4—B5—B937.99 (5)
C1—B5—B9—B81.68 (6)B8—B4—B5—B100.51 (6)
C1—B5—B9—B1098.86 (5)B8—B4—B9—B5137.78 (5)
C1—B5—B9—B1261.52 (6)B8—B4—B9—B10100.64 (5)
C1—B5—B10—B639.26 (4)B8—B4—B9—B1237.34 (5)
C1—B5—B10—B999.01 (5)B8—B4—C3—C1136.90 (5)
C1—B5—B10—B111.55 (6)B8—B4—C3—B2102.33 (5)
C1—B5—B10—B1261.62 (6)B8—B4—C3—B737.26 (5)
C1—B6—B10—B539.10 (4)B8—B7—B11—B298.33 (5)
C1—B6—B10—B91.76 (6)B8—B7—B11—B662.75 (6)
C1—B6—B10—B1198.72 (5)B8—B7—B11—B100.10 (6)
C1—B6—B10—B1261.59 (6)B8—B7—B11—B1237.29 (5)
C1—B6—B11—B236.53 (4)B8—B7—B11—C298.33 (5)
C1—B6—B11—B71.21 (6)B8—B7—B12—B937.11 (5)
C1—B6—B11—B1099.16 (5)B8—B7—B12—B10100.93 (5)
C1—B6—B11—B1262.01 (6)B8—B7—B12—B11138.36 (5)
C1—B6—B11—C236.53 (4)B8—B7—C2—C10.34 (6)
C1—B6—C2—B334.55 (4)B8—B7—C2—B336.63 (4)
C1—B6—C2—B799.79 (5)B8—B7—C2—B664.46 (6)
C1—B6—C2—B11137.24 (5)B8—B7—C2—B11101.69 (5)
B2—C1—B4—B5104.06 (5)B8—B7—C3—C1101.86 (5)
B2—C1—B4—B81.38 (6)B8—B7—C3—B2137.99 (5)
B2—C1—B4—B964.14 (5)B8—B7—C3—B437.06 (5)
B2—C1—B4—C335.77 (4)B8—B9—B10—B5100.87 (5)
B2—C1—B5—B4103.88 (5)B8—B9—B10—B663.29 (6)
B2—C1—B5—B637.96 (4)B8—B9—B10—B110.15 (6)
B2—C1—B5—B964.33 (6)B8—B9—B10—B1237.18 (5)
B2—C1—B5—B101.53 (6)B8—B9—B12—B737.14 (5)
B2—C1—B6—B5139.56 (5)B8—B9—B12—B10138.31 (5)
B2—C1—B6—B1099.79 (5)B8—B9—B12—B11100.91 (5)
B2—C1—B6—B1136.80 (4)B9—B4—B5—C1134.43 (5)
B2—C1—C3—B4141.62 (5)B9—B4—B5—B6100.48 (5)
B2—C1—C3—B736.56 (4)B9—B4—B5—B1037.49 (5)
B2—C1—C3—B8102.30 (5)B9—B4—B8—B3135.98 (5)
B2—B6—B10—B599.49 (5)B9—B4—B8—B7100.70 (5)
B2—B6—B10—B962.15 (6)B9—B4—B8—B1237.40 (5)
B2—B6—B10—B1138.33 (4)B9—B4—B8—C3135.98 (5)
B2—B6—B10—B121.21 (6)B9—B4—C3—C197.90 (5)
B2—B6—B11—B735.32 (5)B9—B4—C3—B263.32 (6)
B2—B6—B11—B10135.69 (5)B9—B4—C3—B71.74 (6)
B2—B6—B11—B1298.55 (5)B9—B4—C3—B839.00 (5)
B2—B7—B8—B41.19 (6)B9—B5—B6—C196.99 (5)
B2—B7—B8—B961.89 (6)B9—B5—B6—B262.10 (6)
B2—B7—B8—B1298.99 (5)B9—B5—B6—B1037.51 (5)
B2—B7—B8—C336.72 (4)B9—B5—B6—B110.56 (6)
B2—B7—B11—B635.59 (5)B9—B5—B6—C262.10 (6)
B2—B7—B11—B1098.43 (5)B9—B5—B10—B6138.27 (5)
B2—B7—B11—B12135.62 (5)B9—B5—B10—B11100.56 (5)
B2—B7—B12—B8100.01 (5)B9—B5—B10—B1237.39 (5)
B2—B7—B12—B962.90 (6)B9—B8—B12—B7138.63 (5)
B2—B7—B12—B100.92 (6)B9—B8—B12—B1037.44 (5)
B2—B7—B12—B1138.35 (4)B9—B8—B12—B11101.25 (5)
B2—B7—C3—C136.13 (4)B9—B8—C3—C10.26 (6)
B2—B7—C3—B4100.92 (5)B9—B8—C3—B263.56 (6)
B2—B7—C3—B8137.99 (5)B9—B8—C3—B438.64 (5)
B2—B11—B12—B738.68 (4)B9—B8—C3—B7101.77 (5)
B2—B11—B12—B81.33 (6)B9—B10—B11—B262.27 (6)
B2—B11—B12—B962.31 (6)B9—B10—B11—B6101.25 (5)
B2—B11—B12—B1099.69 (5)B9—B10—B11—B70.03 (6)
B3—C1—B4—B5139.82 (5)B9—B10—B11—B1237.09 (5)
B3—C1—B4—B837.14 (4)B9—B10—B11—C262.27 (6)
B3—C1—B4—B999.91 (5)B9—B10—B12—B7101.04 (5)
B3—C1—B5—B437.64 (4)B9—B10—B12—B837.36 (5)
B3—C1—B5—B6104.20 (5)B9—B10—B12—B11138.44 (5)
B3—C1—B5—B91.91 (6)B10—B5—B6—C1134.50 (5)
B3—C1—B5—B1064.71 (6)B10—B5—B6—B299.61 (5)
B3—C1—B6—B5103.91 (5)B10—B5—B6—B1138.07 (5)
B3—C1—B6—B1064.13 (5)B10—B5—B6—C299.61 (5)
B3—C1—B6—B111.15 (6)B10—B5—B9—B4138.29 (5)
B3—C1—B6—C235.66 (5)B10—B5—B9—B8100.55 (5)
B3—C1—C2—B6141.81 (5)B10—B5—B9—B1237.34 (5)
B3—C1—C2—B736.65 (4)B10—B6—B11—B2135.69 (5)
B3—C1—C2—B11102.66 (5)B10—B6—B11—B7100.36 (5)
B3—B4—B5—C134.72 (4)B10—B6—B11—B1237.14 (5)
B3—B4—B5—B60.77 (6)B10—B6—B11—C2135.69 (5)
B3—B4—B5—B999.71 (5)B10—B6—C2—C197.92 (5)
B3—B4—B5—B1062.22 (6)B10—B6—C2—B363.36 (6)
B3—B4—B8—B735.28 (5)B10—B6—C2—B71.87 (6)
B3—B4—B8—B9135.98 (5)B10—B6—C2—B1139.32 (5)
B3—B4—B8—B1298.57 (5)B10—B9—B12—B7101.17 (5)
B3—B4—B9—B599.59 (5)B10—B9—B12—B8138.31 (5)
B3—B4—B9—B838.20 (4)B10—B9—B12—B1137.40 (5)
B3—B4—B9—B1062.44 (6)B10—B11—B12—B7138.38 (5)
B3—B4—B9—B120.86 (6)B10—B11—B12—B8101.02 (5)
B3—B7—B8—B435.53 (5)B10—B11—B12—B937.39 (5)
B3—B7—B8—B998.61 (5)B10—B11—C2—C10.12 (6)
B3—B7—B8—B12135.71 (5)B10—B11—C2—B363.57 (6)
B3—B7—B11—B60.87 (6)B10—B11—C2—B638.74 (5)
B3—B7—B11—B1061.97 (6)B10—B11—C2—B7101.61 (5)
B3—B7—B11—B1299.17 (5)B11—B2—B6—C1137.24 (5)
B3—B7—B11—C236.46 (4)B11—B2—B6—B5102.05 (5)
B3—B7—B12—B838.40 (4)B11—B2—B6—B1039.32 (5)
B3—B7—B12—B91.30 (6)B11—B2—B7—B8101.69 (5)
B3—B7—B12—B1062.53 (6)B11—B2—B7—B1238.99 (5)
B3—B7—B12—B1199.96 (5)B11—B2—B7—C3138.32 (5)
B3—B7—C2—C136.28 (4)B11—B2—C3—C1100.80 (5)
B3—B7—C2—B6101.08 (5)B11—B2—C3—B465.80 (6)
B3—B7—C2—B11138.32 (5)B11—B2—C3—B738.71 (5)
B3—B8—B9—B438.79 (4)B11—B2—C3—B80.12 (6)
B3—B8—B9—B50.91 (6)B11—B6—B10—B5137.82 (5)
B3—B8—B9—B1062.14 (6)B11—B6—B10—B9100.48 (5)
B3—B8—B9—B1299.33 (5)B11—B6—B10—B1237.12 (5)
B3—B8—B12—B738.64 (4)B11—B6—C2—C1137.24 (5)
B3—B8—B12—B999.99 (5)B11—B6—C2—B3102.68 (5)
B3—B8—B12—B1062.55 (6)B11—B6—C2—B737.44 (5)
B3—B8—B12—B111.26 (6)B11—B7—B8—B398.42 (5)
B4—C1—B2—B6105.82 (5)B11—B7—B8—B462.89 (6)
B4—C1—B2—B70.67 (6)B11—B7—B8—B90.19 (6)
B4—C1—B2—B1166.68 (6)B11—B7—B8—B1237.28 (5)
B4—C1—B2—C335.98 (5)B11—B7—B8—C398.42 (5)
B4—C1—B3—B7105.05 (5)B11—B7—B12—B8138.36 (5)
B4—C1—B3—B839.32 (5)B11—B7—B12—B9101.25 (5)
B4—C1—B3—C2141.62 (5)B11—B7—B12—B1037.43 (5)
B4—C1—B5—B6141.84 (5)B11—B7—C2—C1102.03 (5)
B4—C1—B5—B939.55 (4)B11—B7—C2—B3138.32 (5)
B4—C1—B5—B10102.35 (5)B11—B7—C2—B637.24 (5)
B4—C1—B6—B2102.98 (5)B11—B7—C3—C10.17 (6)
B4—C1—B6—B536.58 (4)B11—B7—C3—B236.29 (5)
B4—C1—B6—B103.20 (6)B11—B7—C3—B464.63 (6)
B4—C1—B6—B1166.18 (6)B11—B7—C3—B8101.70 (5)
B4—C1—B6—C2102.98 (5)B11—B10—B12—B737.39 (5)
B4—C1—C2—B335.98 (5)B11—B10—B12—B8101.08 (5)
B4—C1—C2—B6105.82 (5)B11—B10—B12—B9138.44 (5)
B4—C1—C2—B70.67 (6)B12—B7—B8—B3135.71 (5)
B4—C1—C2—B1166.68 (6)B12—B7—B8—B4100.17 (5)
B4—C1—C3—B2141.62 (5)B12—B7—B8—B937.10 (5)
B4—C1—C3—B7105.05 (5)B12—B7—B8—C3135.71 (5)
B4—C1—C3—B839.32 (5)B12—B7—B11—B2135.62 (5)
B4—B3—B7—B837.06 (5)B12—B7—B11—B6100.04 (5)
B4—B3—B7—B1164.63 (6)B12—B7—B11—B1037.19 (5)
B4—B3—B7—B121.90 (6)B12—B7—B11—C2135.62 (5)
B4—B3—B7—C2100.92 (5)B12—B7—C2—C163.05 (6)
B4—B3—B8—B7140.40 (5)B12—B7—C2—B399.33 (5)
B4—B3—B8—B938.64 (5)B12—B7—C2—B61.75 (6)
B4—B3—B8—B12101.49 (5)B12—B7—C2—B1138.99 (5)
B4—B3—C2—C135.00 (4)B12—B7—C3—C162.90 (6)
B4—B3—C2—B60.16 (6)B12—B7—C3—B299.02 (5)
B4—B3—C2—B7104.51 (5)B12—B7—C3—B41.90 (6)
B4—B3—C2—B1165.80 (6)B12—B7—C3—B838.96 (5)
B4—B5—B6—C134.03 (4)B12—B8—B9—B4138.12 (5)
B4—B5—B6—B20.86 (6)B12—B8—B9—B5100.24 (5)
B4—B5—B6—B10100.47 (5)B12—B8—B9—B1037.19 (5)
B4—B5—B6—B1162.40 (6)B12—B8—C3—C162.60 (6)
B4—B5—B6—C20.86 (6)B12—B8—C3—B20.71 (6)
B4—B5—B9—B837.75 (5)B12—B8—C3—B4101.49 (5)
B4—B5—B9—B10138.29 (5)B12—B8—C3—B738.91 (4)
B4—B5—B9—B12100.95 (5)B12—B9—B10—B5138.05 (5)
B4—B5—B10—B6101.22 (5)B12—B9—B10—B6100.47 (5)
B4—B5—B10—B937.06 (4)B12—B9—B10—B1137.03 (5)
B4—B5—B10—B1163.50 (6)B12—B10—B11—B299.36 (5)
B4—B5—B10—B120.33 (6)B12—B10—B11—B6138.33 (5)
B4—B8—B9—B537.88 (5)B12—B10—B11—B737.12 (5)
B4—B8—B9—B10100.93 (5)B12—B10—B11—C299.36 (5)
B4—B8—B9—B12138.12 (5)B12—B11—C2—C162.78 (6)
B4—B8—B12—B7101.47 (5)B12—B11—C2—B30.90 (6)
B4—B8—B12—B937.16 (5)B12—B11—C2—B6101.40 (5)
B4—B8—B12—B100.28 (7)B12—B11—C2—B738.94 (5)
B4—B8—B12—B1164.09 (6)C2—C1—B3—B4141.62 (5)
B4—B8—C3—C138.89 (4)C2—C1—B3—B736.56 (4)
B4—B8—C3—B2102.20 (5)C2—C1—B3—B8102.30 (5)
B4—B8—C3—B7140.40 (5)C2—C1—B4—B335.77 (4)
B4—B9—B10—B537.44 (4)C2—C1—B4—B5104.06 (5)
B4—B9—B10—B60.14 (6)C2—C1—B4—B81.38 (6)
B4—B9—B10—B1163.58 (6)C2—C1—B4—B964.14 (5)
B4—B9—B10—B12100.61 (5)C2—C1—B5—B4103.88 (5)
B4—B9—B12—B70.27 (7)C2—C1—B5—B637.96 (4)
B4—B9—B12—B837.41 (5)C2—C1—B5—B964.33 (6)
B4—B9—B12—B10100.90 (5)C2—C1—B5—B101.53 (6)
B4—B9—B12—B1163.50 (6)C2—C1—B6—B5139.56 (5)
B5—C1—B2—B638.23 (4)C2—C1—B6—B1099.79 (5)
B5—C1—B2—B766.93 (6)C2—C1—B6—B1136.80 (4)
B5—C1—B2—B110.91 (6)C2—B3—B4—C134.58 (4)
B5—C1—B2—C3103.58 (5)C2—B3—B4—B50.39 (6)
B5—C1—B3—B437.92 (5)C2—B3—B4—B8102.33 (5)
B5—C1—B3—B767.14 (6)C2—B3—B4—B963.32 (6)
B5—C1—B3—B81.40 (6)C2—B3—B7—B8137.99 (5)
B5—C1—B3—C2103.70 (5)C2—B3—B7—B1136.29 (5)
B5—C1—B4—B3139.82 (5)C2—B3—B7—B1299.02 (5)
B5—C1—B4—B8102.68 (5)C2—B3—B8—B4102.20 (5)
B5—C1—B4—B939.91 (4)C2—B3—B8—B738.20 (4)
B5—C1—B4—C3139.82 (5)C2—B3—B8—B963.56 (6)
B5—C1—B6—B2139.56 (5)C2—B3—B8—B120.71 (6)
B5—C1—B6—B1039.78 (4)C2—B6—B10—B599.49 (5)
B5—C1—B6—B11102.76 (5)C2—B6—B10—B962.15 (6)
B5—C1—B6—C2139.56 (5)C2—B6—B10—B1138.33 (4)
B5—C1—C2—B3103.58 (5)C2—B6—B10—B121.21 (6)
B5—C1—C2—B638.23 (4)C2—B6—B11—B735.32 (5)
B5—C1—C2—B766.93 (6)C2—B6—B11—B10135.69 (5)
B5—C1—C2—B110.91 (6)C2—B6—B11—B1298.55 (5)
B5—C1—C3—B2103.70 (5)C2—B7—B8—B336.72 (4)
B5—C1—C3—B437.92 (5)C2—B7—B8—B41.19 (6)
B5—C1—C3—B767.14 (6)C2—B7—B8—B961.89 (6)
B5—C1—C3—B81.40 (6)C2—B7—B8—B1298.99 (5)
B5—B4—B8—B398.09 (5)C2—B7—B11—B635.59 (5)
B5—B4—B8—B762.81 (6)C2—B7—B11—B1098.43 (5)
B5—B4—B8—B937.89 (5)C2—B7—B11—B12135.62 (5)
B5—B4—B8—B120.49 (6)C2—B7—B12—B8100.01 (5)
B5—B4—B8—C398.09 (5)C2—B7—B12—B962.90 (6)
B5—B4—B9—B8137.78 (5)C2—B7—B12—B100.92 (6)
B5—B4—B9—B1037.15 (4)C2—B7—B12—B1138.35 (4)
B5—B4—B9—B12100.44 (5)C2—B11—B12—B738.68 (4)
B5—B4—C3—C134.96 (4)C2—B11—B12—B81.33 (6)
B5—B4—C3—B20.39 (6)C2—B11—B12—B962.31 (6)
B5—B4—C3—B764.68 (6)C2—B11—B12—B1099.69 (5)
B5—B4—C3—B8101.94 (5)C3—C1—B2—B6141.81 (5)
B5—B6—B10—B937.34 (4)C3—C1—B2—B736.65 (4)
B5—B6—B10—B11137.82 (5)C3—C1—B2—B11102.66 (5)
B5—B6—B10—B12100.70 (5)C3—C1—B4—B5139.82 (5)
B5—B6—B11—B297.88 (5)C3—C1—B4—B837.14 (4)
B5—B6—B11—B762.56 (6)C3—C1—B4—B999.91 (5)
B5—B6—B11—B1037.80 (5)C3—C1—B5—B437.64 (4)
B5—B6—B11—B120.66 (6)C3—C1—B5—B6104.20 (5)
B5—B6—B11—C297.88 (5)C3—C1—B5—B91.91 (6)
B5—B6—C2—C135.18 (4)C3—C1—B5—B1064.71 (6)
B5—B6—C2—B30.63 (6)C3—C1—B6—B235.66 (5)
B5—B6—C2—B764.61 (6)C3—C1—B6—B5103.91 (5)
B5—B6—C2—B11102.05 (5)C3—C1—B6—B1064.13 (5)
B5—B9—B10—B637.58 (4)C3—C1—B6—B111.15 (6)
B5—B9—B10—B11101.02 (5)C3—B2—B6—C134.55 (4)
B5—B9—B10—B12138.05 (5)C3—B2—B6—B50.63 (6)
B5—B9—B12—B763.94 (6)C3—B2—B6—B1063.36 (6)
B5—B9—B12—B8101.08 (5)C3—B2—B6—B11102.68 (5)
B5—B9—B12—B1037.23 (5)C3—B2—B7—B836.63 (4)
B5—B9—B12—B110.16 (7)C3—B2—B7—B11138.32 (5)
B5—B10—B11—B21.05 (6)C3—B2—B7—B1299.33 (5)
B5—B10—B11—B637.93 (4)C3—B2—B11—B6102.30 (5)
B5—B10—B11—B763.29 (6)C3—B2—B11—B738.04 (5)
B5—B10—B11—B12100.41 (5)C3—B2—B11—B1063.57 (6)
B5—B10—B11—C21.05 (6)C3—B2—B11—B120.90 (6)
B5—B10—B12—B763.66 (6)C3—B4—B5—C134.72 (4)
B5—B10—B12—B80.03 (7)C3—B4—B5—B60.77 (6)
B5—B10—B12—B937.39 (5)C3—B4—B5—B999.71 (5)
B5—B10—B12—B11101.05 (5)C3—B4—B5—B1062.22 (6)
B6—C1—B2—B7105.16 (5)C3—B4—B8—B735.28 (5)
B6—C1—B2—B1139.15 (5)C3—B4—B8—B9135.98 (5)
B6—C1—B2—C3141.81 (5)C3—B4—B8—B1298.57 (5)
B6—C1—B3—B4105.69 (5)C3—B4—B9—B599.59 (5)
B6—C1—B3—B70.63 (6)C3—B4—B9—B838.20 (4)
B6—C1—B3—B866.37 (6)C3—B4—B9—B1062.44 (6)
B6—C1—B3—C235.93 (5)C3—B4—B9—B120.86 (6)
B6—C1—B4—B3103.20 (5)C3—B7—B8—B435.53 (5)
B6—C1—B4—B536.63 (4)C3—B7—B8—B998.61 (5)
B6—C1—B4—B866.05 (6)C3—B7—B8—B12135.71 (5)
B6—C1—B4—B93.29 (6)C3—B7—B11—B236.46 (4)
B6—C1—B4—C3103.20 (5)C3—B7—B11—B60.87 (6)
B6—C1—B5—B4141.84 (5)C3—B7—B11—B1061.97 (6)
B6—C1—B5—B9102.29 (5)C3—B7—B11—B1299.17 (5)
B6—C1—B5—B1039.49 (4)C3—B7—B12—B838.40 (4)
B6—C1—C2—B3141.81 (5)C3—B7—B12—B91.30 (6)
B6—C1—C2—B7105.16 (5)C3—B7—B12—B1062.53 (6)
B6—C1—C2—B1139.15 (5)C3—B7—B12—B1199.96 (5)
B6—C1—C3—B235.93 (5)C3—B8—B9—B438.79 (4)
B6—C1—C3—B4105.69 (5)C3—B8—B9—B50.91 (6)
B6—C1—C3—B70.63 (6)C3—B8—B9—B1062.14 (6)
B6—C1—C3—B866.37 (6)C3—B8—B9—B1299.33 (5)
B6—B2—B7—B864.46 (6)C3—B8—B12—B738.64 (4)
B6—B2—B7—B1137.24 (5)C3—B8—B12—B999.99 (5)
B6—B2—B7—B121.75 (6)C3—B8—B12—B1062.55 (6)
B6—B2—B7—C3101.08 (5)C3—B8—B12—B111.26 (6)
Symmetry code: (i) x, y+2, z+2.
Vertex-to-centroid distances (Å) in studies of 1,1'-bis[1,2-dicarba-closo-dodecaborane(11)] top
VertexHall et al. (1965)Ren & Zie (2008)This study (Prostructure)This study (final structure)
11.5890 (10)1.590 (2)1.5969 (8)1.5975 (6)
21.6274 (13)1.627 (2)1.6385 (10)1.6384 (7)
31.6291 (12)1.632 (2)1.6420 (9)1.6418 (7)
41.6893 (13)1.700 (2)1.7129 (9)1.7117 (7)
51.6938 (14)1.692 (2)1.7069 (9)1.7054 (7)
61.6817 (13)1.696 (2)1.7145 (9)1.7124 (7)
71.6904 (14)1.694 (3)1.7085 (9)1.7086 (7)
81.6839 (15)1.685 (3)1.7002 (10)1.7002 (7)
91.6740 (15)1.681 (3)1.6920 (10)1.6920 (7)
101.6717 (15)1.672 (3)1.6900 (10)1.6900 (8)
111.6888 (14)1.685 (3)1.7020 (10)1.7019 (8)
121.6657 (16)1.665 (3)1.6779 (10)1.6780 (8)
Vertex-to-H distances (Å) in Prostructure and final structure of 1,1'-bis[1,2-dicarba-closo-dodecaborane(11)] top
VertexDistance (Prostructure)Distance (final structure)
20.842 (12)1.030 (9)
30.902 (11)1.006 (9)
41.066 (11)1.083 (9)
51.105 (11)1.094 (8)
61.088 (11)1.096 (8)
71.110 (11)1.089 (9)
81.088 (11)1.069 (9)
91.043 (12)1.080 (9)
101.164 (12)1.108 (9)
111.118 (11)1.096 (9)
121.086 (11)1.108 (9)

Experimental details

Crystal data
Chemical formulaC4H22B20
Mr286.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)7.0011 (5), 9.7667 (6), 12.4071 (8)
β (°) 90.375 (3)
V3)848.35 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.05
Crystal size (mm)0.38 × 0.34 × 0.32
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.706, 0.747
No. of measured, independent and
observed [I > 2σ(I)] reflections
22850, 3324, 2787
Rint0.029
(sin θ/λ)max1)0.778
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.106, 1.05
No. of reflections3324
No. of parameters143
H-atom treatmentOnly H-atom coordinates refined
Δρmax, Δρmin (e Å3)0.30, 0.22

Computer programs: SAINT (Bruker, 2009), APEX2 (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Acknowledgements

We would like to thank the EPSRC (project EP/I031545/1) for support.

References

First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDupont, J. A. & Hawthorne, M. F. (1964). J. Am. Chem. Soc. 86, 1643.  CrossRef Web of Science Google Scholar
First citationEllis, D., McKay, D., Macgregor, S. A., Rosair, G. M. & Welch, A. J. (2010a). Angew. Chem. Int. Ed. Engl. 49, 4943–4945.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationEllis, D., Rosair, G. M. & Welch, A. J. (2010b). Chem. Commun. 46, 7394–7396.  Web of Science CSD CrossRef CAS Google Scholar
First citationGrimes, R. N. (2011). Carboranes, 2nd ed. Oxford: Academic Press.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHall, L. H., Perloff, A., Mauer, F. A. & Block, S. (1965). J. Chem. Phys. 43, 3911–3917.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarwell, D. E., McMillan, J., Knobler, C. B. & Hawthorne, M. F. (1997). Inorg. Chem. 36, 5951–5955.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationHarwell, D. E., Mortimer, M. D., Knobler, C. B., Anet, F. A. L. & Hawthorne, M. F. (1996). J. Am. Chem. Soc. 118, 2679–2685.  CSD CrossRef CAS Web of Science Google Scholar
First citationHawthorne, M. F. & Owen, D. A. (1971). J. Am. Chem. Soc. 93, 873–880.  CrossRef CAS Google Scholar
First citationHerzog, A., Maderna, A., Harakas, G. N., Knobler, C. B. & Hawthorne, M. F. (1999). Chem. Eur. J. 5, 1212–1217.  CrossRef CAS Google Scholar
First citationMcAnaw, A., Lopez, M. E., Ellis, D., Rosair, G. M. & Welch, A. J. (2014). Dalton Trans. 43, 5095–5105.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationMcAnaw, A., Scott, G., Elrick, L., Rosair, G. M. & Welch, A. J. (2013). Dalton Trans. 42, 645–664.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationRen, S. & Xie, Z. (2008). Organometallics, 27, 5167–5168.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwanson, H. E., McMurdie, H. F., Morris, M. C. & Evans, E. H. (1968). N. B. S. Monograph, Sect. 6, 7.  Google Scholar
First citationYang, X., Jiang, W., Knobler, C. B., Mortimer, M. D. & Hawthorne, M. F. (1995). Inorg. Chim. Acta, 240, 371–378.  CSD CrossRef CAS Web of Science Google Scholar
First citationYanovsky, A. I., Furmanova, N. G., Struchkov, Yu. T., Shemyakin, N. F. & Zakharkin, L. I. (1979). Izv. Akad. Nauk SSSR Ser. Khim. pp. 1523–1528.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds