organic compounds
of a second polymorph of tetrakis(pyridin-2-yl)methane
aInstitute of Natural Sciences, Senshu University, Higashimita 2-1-1, Kawasaki, Kanagawa 214-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: matsumoto@isc.senshu-u.ac.jp
A second polymorph of the title compound, C21H16N4, is reported. The original polymorph was solved by our group [Matsumoto et al. (2003). Tetrahedron Lett. 44, 2861–2864] in the monoclinic C2/c and refined to R = 0.050. Now the of a tetragonal polymorph (space group P-421c) has been solved and refined to R = 0.036. In the crystal, there are no strong intermolecular interactions. Reflecting the high symmetry of the molecular structure, the is a quarter of the molecule, and the molecule exhibits S4 symmetry along the c axis in the crystal.
Keywords: crystal structure; pyridine; bridging ligands; S4 symmetry; polymorph.
CCDC reference: 1034349
1. Related literature
For a recent review on related bridging ligands, see: Sumby (2011). For the synthesis of the title compound, see: Matsumoto et al. (2003); Abu-Shanab (2007). For transition metal complexes of the title compound, see: Matsumoto et al. (2004); Okazawa et al. (2004, 2005, 2006); Ishikawa et al. (2009); Hirosawa et al. (2012).
2. Experimental
2.1. Crystal data
|
2.2. Data collection
|
2.3. Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2014 (Burla et al., 2012, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1034349
10.1107/S1600536814025057/pk2537sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814025057/pk2537Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814025057/pk2537Isup3.cml
The title compound was synthesized by the reported procedure (Matsumoto et al., 2003). Crystallization from methanol/chloroform (1/1) gave colorless crystals, which were used for X-ray analysis.
Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and Uiso = 1.2 Ueq(C).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2014 (Burla et al., 2012, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).An ellipsoid plot of the title compound (viewed down the c axis). Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) y, -x, -z + 1; (ii) -x, -y, z; (iii) -y, x, -z + 1. Three kinds of coordination patterns of the title compound. (a) Two-fold bidentate, (b) bidentate, and (c) tripodal. M represents a transition metal ion. |
C21H16N4 | Melting point: 259 K |
Mr = 324.38 | Mo Kα radiation, λ = 0.71075 Å |
Tetragonal, P421c | Cell parameters from 6223 reflections |
a = 10.60 (1) Å | θ = 3.5–27.5° |
c = 7.03 (1) Å | µ = 0.08 mm−1 |
V = 790 (2) Å3 | T = 200 K |
Z = 2 | Prism, colourless |
F(000) = 340 | 0.5 × 0.5 × 0.4 mm |
Dx = 1.364 Mg m−3 |
Rigaku R-AXIS RAPID imaging plate diffractometer | Rint = 0.046 |
Detector resolution: 10.00 pixels mm-1 | θmax = 27.5°, θmin = 3.5° |
ω scans | h = −10→13 |
7257 measured reflections | k = −12→13 |
904 independent reflections | l = −9→9 |
858 reflections with I > 2σ(I) |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0438P)2 + 0.1368P] where P = (Fo2 + 2Fc2)/3 |
904 reflections | (Δ/σ)max < 0.001 |
57 parameters | Δρmax = 0.14 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C21H16N4 | Z = 2 |
Mr = 324.38 | Mo Kα radiation |
Tetragonal, P421c | µ = 0.08 mm−1 |
a = 10.60 (1) Å | T = 200 K |
c = 7.03 (1) Å | 0.5 × 0.5 × 0.4 mm |
V = 790 (2) Å3 |
Rigaku R-AXIS RAPID imaging plate diffractometer | 858 reflections with I > 2σ(I) |
7257 measured reflections | Rint = 0.046 |
904 independent reflections |
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.090 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.14 e Å−3 |
904 reflections | Δρmin = −0.24 e Å−3 |
57 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.0000 | 0.0000 | 0.5000 | 0.0209 (6) | |
C2 | −0.02294 (14) | 0.11449 (14) | 0.3685 (2) | 0.0224 (4) | |
C3 | −0.11972 (16) | 0.10889 (16) | 0.2328 (3) | 0.0290 (4) | |
H1 | −0.1706 | 0.0355 | 0.2218 | 0.035* | |
C4 | −0.14016 (17) | 0.21120 (17) | 0.1155 (3) | 0.0340 (4) | |
H2 | −0.2061 | 0.2101 | 0.0241 | 0.041* | |
C5 | −0.06207 (18) | 0.31595 (17) | 0.1342 (3) | 0.0337 (4) | |
H3 | −0.0741 | 0.3884 | 0.0567 | 0.040* | |
C6 | 0.03280 (17) | 0.31239 (17) | 0.2670 (3) | 0.0345 (5) | |
H4 | 0.0873 | 0.3833 | 0.2765 | 0.041* | |
N1 | 0.05294 (13) | 0.21395 (13) | 0.3845 (2) | 0.0283 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0205 (9) | 0.0205 (9) | 0.0216 (14) | 0.000 | 0.000 | 0.000 |
C2 | 0.0216 (7) | 0.0233 (7) | 0.0222 (7) | 0.0020 (5) | 0.0033 (6) | 0.0006 (7) |
C3 | 0.0279 (8) | 0.0315 (8) | 0.0275 (8) | −0.0007 (6) | −0.0028 (7) | 0.0007 (7) |
C4 | 0.0310 (9) | 0.0430 (10) | 0.0280 (8) | 0.0076 (7) | −0.0026 (8) | 0.0038 (8) |
C5 | 0.0393 (9) | 0.0316 (9) | 0.0302 (9) | 0.0077 (7) | 0.0046 (8) | 0.0093 (8) |
C6 | 0.0382 (10) | 0.0268 (9) | 0.0386 (10) | −0.0028 (7) | 0.0025 (8) | 0.0075 (7) |
N1 | 0.0294 (7) | 0.0257 (7) | 0.0299 (7) | −0.0022 (5) | −0.0014 (6) | 0.0039 (6) |
C1—C2i | 1.545 (2) | C3—H1 | 0.9500 |
C1—C2ii | 1.545 (2) | C4—C5 | 1.391 (3) |
C1—C2iii | 1.545 (2) | C4—H2 | 0.9500 |
C1—C2 | 1.545 (2) | C5—C6 | 1.373 (3) |
C2—N1 | 1.330 (3) | C5—H3 | 0.9500 |
C2—C3 | 1.402 (3) | C6—N1 | 1.348 (3) |
C3—C4 | 1.380 (3) | C6—H4 | 0.9500 |
C2i—C1—C2ii | 111.01 (8) | C2—C3—H1 | 120.4 |
C2i—C1—C2iii | 106.43 (16) | C3—C4—C5 | 118.52 (16) |
C2ii—C1—C2iii | 111.01 (8) | C3—C4—H2 | 120.7 |
C2i—C1—C2 | 111.01 (8) | C5—C4—H2 | 120.7 |
C2ii—C1—C2 | 106.43 (16) | C6—C5—C4 | 118.55 (15) |
C2iii—C1—C2 | 111.01 (8) | C6—C5—H3 | 120.7 |
N1—C2—C3 | 122.22 (15) | C4—C5—H3 | 120.7 |
N1—C2—C1 | 118.44 (13) | N1—C6—C5 | 123.68 (17) |
C3—C2—C1 | 119.30 (14) | N1—C6—H4 | 118.2 |
C4—C3—C2 | 119.26 (17) | C5—C6—H4 | 118.2 |
C4—C3—H1 | 120.4 | C2—N1—C6 | 117.72 (15) |
C2i—C1—C2—N1 | −0.78 (13) | C1—C2—C3—C4 | 179.97 (14) |
C2ii—C1—C2—N1 | −121.70 (15) | C2—C3—C4—C5 | 1.1 (3) |
C2iii—C1—C2—N1 | 117.39 (18) | C3—C4—C5—C6 | 0.7 (3) |
C2i—C1—C2—C3 | 177.21 (14) | C4—C5—C6—N1 | −1.8 (3) |
C2ii—C1—C2—C3 | 56.30 (12) | C3—C2—N1—C6 | 1.2 (2) |
C2iii—C1—C2—C3 | −64.62 (12) | C1—C2—N1—C6 | 179.09 (13) |
N1—C2—C3—C4 | −2.1 (2) | C5—C6—N1—C2 | 0.8 (3) |
Symmetry codes: (i) y, −x, −z+1; (ii) −x, −y, z; (iii) −y, x, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C21H16N4 |
Mr | 324.38 |
Crystal system, space group | Tetragonal, P421c |
Temperature (K) | 200 |
a, c (Å) | 10.60 (1), 7.03 (1) |
V (Å3) | 790 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.5 × 0.5 × 0.4 |
Data collection | |
Diffractometer | Rigaku R-AXIS RAPID imaging plate diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7257, 904, 858 |
Rint | 0.046 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.090, 1.07 |
No. of reflections | 904 |
No. of parameters | 57 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.14, −0.24 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2014 (Burla et al., 2012, 2014), SHELXL2014 (Sheldrick, 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research (No. 24550049) from the Japan Society for the Promotion of Science.
References
Abu-Shanab, F. A. (2007). J. Sulfur Chem. 28, 519–526. CAS Google Scholar
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361. Web of Science CrossRef CAS IUCr Journals Google Scholar
Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). J. Appl. Cryst. Submitted. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Hirosawa, N., Oso, Y. & Ishida, T. (2012). Chem. Lett. 41, 716–718. Web of Science CSD CrossRef CAS Google Scholar
Ishikawa, R., Matsumoto, K., Onishi, K., Kubo, T., Fuyuhiro, A., Hayami, S., Inoue, K., Kaizaki, S. & Kawata, S. (2009). Chem. Lett. 38, 620–621. Web of Science CSD CrossRef CAS Google Scholar
Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224. CrossRef Google Scholar
Matsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861–2864. Web of Science CSD CrossRef CAS Google Scholar
Matsumoto, K., Kannami, M. & Oda, M. (2004). Chem. Lett. 33, 1096–1097. Web of Science CSD CrossRef CAS Google Scholar
Okazawa, A., Ishida, T. & Nogami, T. (2004). Chem. Lett. 33, 1478–1479. Web of Science CSD CrossRef CAS Google Scholar
Okazawa, A., Ishida, T. & Nogami, T. (2005). Polyhedron, 24, 2584–2587. Web of Science CSD CrossRef CAS Google Scholar
Okazawa, A., Nogami, T. & Ishida, T. (2006). Chem. Phys. Lett. 427, 333–337. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sumby, C. J. (2011). Coord. Chem. Rev. 255, 1937–1967. Web of Science CrossRef CAS Google Scholar
Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari . Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Bridging ligands that possess more than one coordination site have attracted considerable attention in relation to multinuclear metallosupramolecular assemblies and coordination polymers (Sumby, 2011). The title compound (Fig. 1) is a typical tetrahedral bridging ligand when it binds to two metal ions in a two-fold bidentate fashion (Fig. 2a). The title compound was first synthesized by the reaction of tris(pyridin-2-yl)methyl anion with 2-chloropyridine (Matsumoto et al., 2003). More recently, Abu-Shanab reported that the treatment of 2-picoline with excess of lithium diisopropylamide followed by 2-bromopyridine yielded the title compound as the main product (Abu-Shanab, 2007). The title compound takes on S4 symmetry along the c axis in the crystal (Fig. 1), reflecting the highly symmetric molecular structure.
The silver complex of the title compound forms a one-dimensional coordination polymer in which the title compound acts as a two-fold bidentate bridging ligand (Matsumoto et al., 2004). This coordination pattern was also observed in a dinuclear Mn(II) complex (Okazawa et al., 2004) and dinuclear Ni(II) complex (Okazawa et al., 2006). On the other hand, the title compound often takes bidentate (Fig. 2b) or tripodal coordination patterns (Fig. 2c) to bind only one metal ion. The bidentate coordination pattern was observed in the Cu(II) complexes of the title compound (Matsumoto et al., 2004; Okazawa et al., 2005) and tripodal coordination patterns were observed in Cu(II), Fe(II), and Co(II) complexes (Matsumoto et al., 2004; Ishikawa et al., 2009; Hirosawa et al., 2012).