organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1277-o1278

Crystal structure of a second polymorph of tetra­kis­(pyridin-2-yl)methane

aInstitute of Natural Sciences, Senshu University, Higashimita 2-1-1, Kawasaki, Kanagawa 214-8580, Japan, and bDepartment of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Correspondence e-mail: matsumoto@isc.senshu-u.ac.jp

Edited by S. Parkin, University of Kentucky, USA (Received 31 October 2014; accepted 15 November 2014; online 21 November 2014)

A second polymorph of the title compound, C21H16N4, is reported. The original polymorph was solved by our group [Matsumoto et al. (2003[Matsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861-2864.]). Tetra­hedron Lett. 44, 2861–2864] in the monoclinic space group C2/c and refined to R = 0.050. Now the crystal structure of a tetra­gonal polymorph (space group P-421c) has been solved and refined to R = 0.036. In the crystal, there are no strong inter­molecular inter­actions. Reflecting the high symmetry of the mol­ecular structure, the asymmetric unit is a quarter of the mol­ecule, and the mol­ecule exhibits S4 symmetry along the c axis in the crystal.

1. Related literature

For a recent review on related bridging ligands, see: Sumby (2011[Sumby, C. J. (2011). Coord. Chem. Rev. 255, 1937-1967.]). For the synthesis of the title compound, see: Matsumoto et al. (2003[Matsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861-2864.]); Abu-Shanab (2007[Abu-Shanab, F. A. (2007). J. Sulfur Chem. 28, 519-526.]). For transition metal complexes of the title compound, see: Matsumoto et al. (2004[Matsumoto, K., Kannami, M. & Oda, M. (2004). Chem. Lett. 33, 1096-1097.]); Okazawa et al. (2004[Okazawa, A., Ishida, T. & Nogami, T. (2004). Chem. Lett. 33, 1478-1479.], 2005[Okazawa, A., Ishida, T. & Nogami, T. (2005). Polyhedron, 24, 2584-2587.], 2006[Okazawa, A., Nogami, T. & Ishida, T. (2006). Chem. Phys. Lett. 427, 333-337.]); Ishikawa et al. (2009[Ishikawa, R., Matsumoto, K., Onishi, K., Kubo, T., Fuyuhiro, A., Hayami, S., Inoue, K., Kaizaki, S. & Kawata, S. (2009). Chem. Lett. 38, 620-621.]); Hirosawa et al. (2012[Hirosawa, N., Oso, Y. & Ishida, T. (2012). Chem. Lett. 41, 716-718.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C21H16N4

  • Mr = 324.38

  • Tetragonal, [P \overline 42_1 c ]

  • a = 10.60 (1) Å

  • c = 7.03 (1) Å

  • V = 790 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 200 K

  • 0.5 × 0.5 × 0.4 mm

2.2. Data collection

  • Rigaku R-AXIS RAPID imaging plate diffractometer

  • 7257 measured reflections

  • 904 independent reflections

  • 858 reflections with I > 2σ(I)

  • Rint = 0.046

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.090

  • S = 1.07

  • 904 reflections

  • 57 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2014 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.], 2014[Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). J. Appl. Cryst. Submitted.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Yadokari-XG 2009 (Wakita, 2001[Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari .]; Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218-224.]) and ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: Yadokari-XG 2009 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Bridging ligands that possess more than one coordination site have attracted considerable attention in relation to multinuclear metallosupramolecular assemblies and coordination polymers (Sumby, 2011). The title compound (Fig. 1) is a typical tetrahedral bridging ligand when it binds to two metal ions in a two-fold bidentate fashion (Fig. 2a). The title compound was first synthesized by the reaction of tris(pyridin-2-yl)methyl anion with 2-chloropyridine (Matsumoto et al., 2003). More recently, Abu-Shanab reported that the treatment of 2-picoline with excess of lithium diisopropylamide followed by 2-bromopyridine yielded the title compound as the main product (Abu-Shanab, 2007). The title compound takes on S4 symmetry along the c axis in the crystal (Fig. 1), reflecting the highly symmetric molecular structure.

The silver complex of the title compound forms a one-dimensional coordination polymer in which the title compound acts as a two-fold bidentate bridging ligand (Matsumoto et al., 2004). This coordination pattern was also observed in a dinuclear Mn(II) complex (Okazawa et al., 2004) and dinuclear Ni(II) complex (Okazawa et al., 2006). On the other hand, the title compound often takes bidentate (Fig. 2b) or tripodal coordination patterns (Fig. 2c) to bind only one metal ion. The bidentate coordination pattern was observed in the Cu(II) complexes of the title compound (Matsumoto et al., 2004; Okazawa et al., 2005) and tripodal coordination patterns were observed in Cu(II), Fe(II), and Co(II) complexes (Matsumoto et al., 2004; Ishikawa et al., 2009; Hirosawa et al., 2012).

Related literature top

For a recent review on related bridging ligands, see: Sumby (2011). For the synthesis of the title compound, see: Matsumoto et al. (2003); Abu-Shanab (2007). For transition metal complexes of the title compound, see: Matsumoto et al. (2004); Okazawa et al. (2004, 2005, 2006); Ishikawa et al. (2009); Hirosawa et al. (2012).

Experimental top

The title compound was synthesized by the reported procedure (Matsumoto et al., 2003). Crystallization from methanol/chloroform (1/1) gave colorless crystals, which were used for X-ray analysis.

Refinement top

Aromatic H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 Å and Uiso = 1.2 Ueq(C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2014 (Burla et al., 2012, 2014); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
An ellipsoid plot of the title compound (viewed down the c axis). Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) y, -x, -z + 1; (ii) -x, -y, z; (iii) -y, x, -z + 1.

Three kinds of coordination patterns of the title compound. (a) Two-fold bidentate, (b) bidentate, and (c) tripodal. M represents a transition metal ion.
Tetrakis(pyridin-2-yl)methane top
Crystal data top
C21H16N4Melting point: 259 K
Mr = 324.38Mo Kα radiation, λ = 0.71075 Å
Tetragonal, P421cCell parameters from 6223 reflections
a = 10.60 (1) Åθ = 3.5–27.5°
c = 7.03 (1) ŵ = 0.08 mm1
V = 790 (2) Å3T = 200 K
Z = 2Prism, colourless
F(000) = 3400.5 × 0.5 × 0.4 mm
Dx = 1.364 Mg m3
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
Rint = 0.046
Detector resolution: 10.00 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 1013
7257 measured reflectionsk = 1213
904 independent reflectionsl = 99
858 reflections with I > 2σ(I)
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.1368P]
where P = (Fo2 + 2Fc2)/3
904 reflections(Δ/σ)max < 0.001
57 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C21H16N4Z = 2
Mr = 324.38Mo Kα radiation
Tetragonal, P421cµ = 0.08 mm1
a = 10.60 (1) ÅT = 200 K
c = 7.03 (1) Å0.5 × 0.5 × 0.4 mm
V = 790 (2) Å3
Data collection top
Rigaku R-AXIS RAPID imaging plate
diffractometer
858 reflections with I > 2σ(I)
7257 measured reflectionsRint = 0.046
904 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.07Δρmax = 0.14 e Å3
904 reflectionsΔρmin = 0.24 e Å3
57 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.00000.00000.50000.0209 (6)
C20.02294 (14)0.11449 (14)0.3685 (2)0.0224 (4)
C30.11972 (16)0.10889 (16)0.2328 (3)0.0290 (4)
H10.17060.03550.22180.035*
C40.14016 (17)0.21120 (17)0.1155 (3)0.0340 (4)
H20.20610.21010.02410.041*
C50.06207 (18)0.31595 (17)0.1342 (3)0.0337 (4)
H30.07410.38840.05670.040*
C60.03280 (17)0.31239 (17)0.2670 (3)0.0345 (5)
H40.08730.38330.27650.041*
N10.05294 (13)0.21395 (13)0.3845 (2)0.0283 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0205 (9)0.0205 (9)0.0216 (14)0.0000.0000.000
C20.0216 (7)0.0233 (7)0.0222 (7)0.0020 (5)0.0033 (6)0.0006 (7)
C30.0279 (8)0.0315 (8)0.0275 (8)0.0007 (6)0.0028 (7)0.0007 (7)
C40.0310 (9)0.0430 (10)0.0280 (8)0.0076 (7)0.0026 (8)0.0038 (8)
C50.0393 (9)0.0316 (9)0.0302 (9)0.0077 (7)0.0046 (8)0.0093 (8)
C60.0382 (10)0.0268 (9)0.0386 (10)0.0028 (7)0.0025 (8)0.0075 (7)
N10.0294 (7)0.0257 (7)0.0299 (7)0.0022 (5)0.0014 (6)0.0039 (6)
Geometric parameters (Å, º) top
C1—C2i1.545 (2)C3—H10.9500
C1—C2ii1.545 (2)C4—C51.391 (3)
C1—C2iii1.545 (2)C4—H20.9500
C1—C21.545 (2)C5—C61.373 (3)
C2—N11.330 (3)C5—H30.9500
C2—C31.402 (3)C6—N11.348 (3)
C3—C41.380 (3)C6—H40.9500
C2i—C1—C2ii111.01 (8)C2—C3—H1120.4
C2i—C1—C2iii106.43 (16)C3—C4—C5118.52 (16)
C2ii—C1—C2iii111.01 (8)C3—C4—H2120.7
C2i—C1—C2111.01 (8)C5—C4—H2120.7
C2ii—C1—C2106.43 (16)C6—C5—C4118.55 (15)
C2iii—C1—C2111.01 (8)C6—C5—H3120.7
N1—C2—C3122.22 (15)C4—C5—H3120.7
N1—C2—C1118.44 (13)N1—C6—C5123.68 (17)
C3—C2—C1119.30 (14)N1—C6—H4118.2
C4—C3—C2119.26 (17)C5—C6—H4118.2
C4—C3—H1120.4C2—N1—C6117.72 (15)
C2i—C1—C2—N10.78 (13)C1—C2—C3—C4179.97 (14)
C2ii—C1—C2—N1121.70 (15)C2—C3—C4—C51.1 (3)
C2iii—C1—C2—N1117.39 (18)C3—C4—C5—C60.7 (3)
C2i—C1—C2—C3177.21 (14)C4—C5—C6—N11.8 (3)
C2ii—C1—C2—C356.30 (12)C3—C2—N1—C61.2 (2)
C2iii—C1—C2—C364.62 (12)C1—C2—N1—C6179.09 (13)
N1—C2—C3—C42.1 (2)C5—C6—N1—C20.8 (3)
Symmetry codes: (i) y, x, z+1; (ii) x, y, z; (iii) y, x, z+1.

Experimental details

Crystal data
Chemical formulaC21H16N4
Mr324.38
Crystal system, space groupTetragonal, P421c
Temperature (K)200
a, c (Å)10.60 (1), 7.03 (1)
V3)790 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.5 × 0.5 × 0.4
Data collection
DiffractometerRigaku R-AXIS RAPID imaging plate
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7257, 904, 858
Rint0.046
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.090, 1.07
No. of reflections904
No. of parameters57
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.14, 0.24

Computer programs: PROCESS-AUTO (Rigaku, 1998), SIR2014 (Burla et al., 2012, 2014), SHELXL2014 (Sheldrick, 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and ORTEP-3 for Windows (Farrugia, 2012), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (No. 24550049) from the Japan Society for the Promotion of Science.

References

First citationAbu-Shanab, F. A. (2007). J. Sulfur Chem. 28, 519–526.  CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBurla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2014). J. Appl. Cryst. Submitted.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHirosawa, N., Oso, Y. & Ishida, T. (2012). Chem. Lett. 41, 716–718.  Web of Science CSD CrossRef CAS Google Scholar
First citationIshikawa, R., Matsumoto, K., Onishi, K., Kubo, T., Fuyuhiro, A., Hayami, S., Inoue, K., Kaizaki, S. & Kawata, S. (2009). Chem. Lett. 38, 620–621.  Web of Science CSD CrossRef CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Crystallogr. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMatsumoto, K., Kannami, M. & Oda, M. (2003). Tetrahedron Lett. 44, 2861–2864.  Web of Science CSD CrossRef CAS Google Scholar
First citationMatsumoto, K., Kannami, M. & Oda, M. (2004). Chem. Lett. 33, 1096–1097.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkazawa, A., Ishida, T. & Nogami, T. (2004). Chem. Lett. 33, 1478–1479.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkazawa, A., Ishida, T. & Nogami, T. (2005). Polyhedron, 24, 2584–2587.  Web of Science CSD CrossRef CAS Google Scholar
First citationOkazawa, A., Nogami, T. & Ishida, T. (2006). Chem. Phys. Lett. 427, 333–337.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSumby, C. J. (2011). Coord. Chem. Rev. 255, 1937–1967.  Web of Science CrossRef CAS Google Scholar
First citationWakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokariGoogle Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1277-o1278
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds