organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1231-o1232

Crystal structure of 2-(adamantan-1-yl)-5-(4-bromo­phen­yl)-1,3,4-oxa­diazole

aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riaydh 11451, Saudi Arabia, bKing Abdullah Institute for Nanotechnology (KAIN), King Saud University, Riyadh 11451, Saudi Arabia, cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and dDepartment of Chemistry, Alva's Institute of Engineering & Technology, Mijar, Moodbidri 574225, Karnataka, India
*Correspondence e-mail: elemam5@hotmail.com, hfun.c@ksu.edu.sa

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 23 October 2014; accepted 29 October 2014; online 5 November 2014)

In the title mol­ecule, C18H19BrN2O, the benzene ring is inclined to the oxa­diazole ring by 10.44 (8)°. In the crystal, C—H⋯π inter­actions link the mol­ecules in a head-to-tail fashion, forming chains extending along the c-axis direction. The chains are further connected by ππ stacking inter­actions, with centroid–centroid distances of 3.6385 (7) Å, forming layers parallel to the bc plane.

1. Related literature

For the biological activity of adamantane derivatives, see: Al-Abdullah et al. (2014[Al-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505-518.]); Vernier et al. (1969[Vernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642-665.]); El-Emam et al. (2013[El-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96-102.]); Kadi et al. (2010[Kadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006-5011.]); Balzarini et al. (2009[Balzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303-311.]). For the biological activity of adamantyl-1,3,4- oxa­diazole derivatives, see: Al-Deeb et al. (2006[Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40-47.]); El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]). For related adamantyl 1,3,4-oxa­diazole structures, see: El-Emam et al. (2012[El-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.]); Al-Omary et al. (2014[Al-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766-o767.]). For related 2,5-disubstituted 1,3,4-oxa­diazole structures, see: Cordes et al. (2011[Cordes, D. B., Hua, G., Slawin, A. M. Z. & Woollins, J. D. (2011). Acta Cryst. E67, o1757.]); Franco et al. (2003[Franco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219-230.]). For the synthesis of the title compound, see: Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H19BrN2O

  • Mr = 359.26

  • Monoclinic, P 21 /c

  • a = 13.2571 (5) Å

  • b = 6.4753 (3) Å

  • c = 19.6761 (7) Å

  • β = 114.924 (2)°

  • V = 1531.76 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.69 mm−1

  • T = 293 K

  • 0.28 × 0.22 × 0.10 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.520, Tmax = 0.779

  • 39946 measured reflections

  • 4678 independent reflections

  • 3996 reflections with I > 2σ(I)

  • Rint = 0.033

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.06

  • 4678 reflections

  • 199 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18BCg1i 0.97 2.74 3.6709 (19) 162
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Adamantane derivatives have long been known for their diverse biological activities including antiviral activity against the influenza (Vernier et al., 1969) and HIV viruses (El-Emam et al., 2004; Balzarini et al., 2009). In addition, Adamantyl 1,3,4-oxadiazole derivative were reported to exhibit marked antibacterial and anti-inflammatory activities (Kadi et al., 2007, 2010). In continuation to our interest in the chemical and structural properties of adamantane derivatives (El-Emam et al., 2012; Al-Omary et al., 2014) the title compound (I) was prepared as potential bioactive agent.

In the title compound (Fig. 1), the benzene (C1–C6) ring is inclined relative to the oxadiazole (O1/N1/N2/C7/C8) ring by a dihedral angle of 10.44 (8)%. Bond lengths (Allen et al., 1987) and angles in the title compound are within normal ranges and are comparable with those reported earlier for the structure of related compounds (Cordes et al., 2011; Franco et al., 2003). In the crystal structure, the molecules are connected into head-to-tail fashion to form chains extending along the c axis via C–H···π interactions (Table 1, Fig. 2) involving the centroid of the C1–C6 benzene ring (Cg1). In addition, ππ interactions (Cg1··· Cg1i = 3.6385 (7) Å; symmetry code: (i) -x, -y, 1-z) link the chains into layers parallel to the bc plane.

Related literature top

For the biological activity of adamantane derivatives, see: Al-Abdullah et al. (2014); Vernier et al. (1969); El-Emam et al. (2013); Kadi et al. (2010); Balzarini et al. (2009). For the biological activity of adamantyl-1,3,4- oxadiazole derivatives, see: Al-Deeb et al. (2006); El-Emam et al. (2004); Kadi et al. (2007). For related adamantyl 1,3,4-oxadiazole structures, see: El-Emam et al. (2012); Al-Omary et al. (2014). For related 2,5-disubstituted 1,3,4-oxadiazole structures, see: Cordes et al. (2011); Franco et al. (2003). For the synthesis of the title compound, see: Kadi et al. (2007).

Experimental top

The title compound was prepared following our previously described method (Kadi et al., 2007). A mixture of the 4-bromobenzoic acid hydrazide (2.15 g, 0.01 mol), 1-adamantane carboxylic acid (1.8 g, 0.01 mol) and phosphorus oxychloride (8 ml) was heated under reflux for 1 h. On cooling, crushed ice (50 g) was added cautiously and the mixture was stirred for 30 min. The separated crude product was filtered, washed with water, then with a saturated sodium hydrogen carbonate solution and finally with water, dried and crystallized from EtOH/CHCl3 (1:1 v/v) to yield 3.16 g (88%) of the title compound (C18H19BrN2O) as colorless crystals. M. p.: 188–190 °C.

1H NMR (CDCl3): δ 1.81 (s, 6H, Adamantane-H), 2.15 (s, 9H, Adamantane-H), 7.64 (d, 2H, Ar—H, J = 8.1 Hz), 7.92 (d, 2H, Ar—H, J = 8.1 Hz). 13 C NMR: δ 27.74, 34.45, 36.29, 39.96 (Adamantane-C), 123.26, 125.99, 128.23, 132.28 (Ar—C), 163.56 (Oxadiazole C-5), 172.85 (Oxadiazole C-2).

Refinement top

All the H atoms were positioned geometrically (C=H 0.93–0.98 Å) and refined using a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with 50% probability displacement ellipsoids.

Fig. 2. Crystal packing of the title compound, showing the C–H···π interactions as dashed lines. Other H-atoms are omitted for clarity.
2-(Adamantan-1-yl)-5-(4-bromophenyl)-1,3,4-oxadiazole top
Crystal data top
C18H19BrN2OF(000) = 736
Mr = 359.26Dx = 1.558 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9861 reflections
a = 13.2571 (5) Åθ = 2.3–30.5°
b = 6.4753 (3) ŵ = 2.69 mm1
c = 19.6761 (7) ÅT = 293 K
β = 114.924 (2)°Block, colourless
V = 1531.76 (11) Å30.28 × 0.22 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4678 independent reflections
Radiation source: fine-focus sealed tube3996 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
ϕ and ω scansθmax = 30.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1818
Tmin = 0.520, Tmax = 0.779k = 99
39946 measured reflectionsl = 2828
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0261P)2 + 1.1502P]
where P = (Fo2 + 2Fc2)/3
4678 reflections(Δ/σ)max = 0.001
199 parametersΔρmax = 0.40 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C18H19BrN2OV = 1531.76 (11) Å3
Mr = 359.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.2571 (5) ŵ = 2.69 mm1
b = 6.4753 (3) ÅT = 293 K
c = 19.6761 (7) Å0.28 × 0.22 × 0.10 mm
β = 114.924 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
4678 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3996 reflections with I > 2σ(I)
Tmin = 0.520, Tmax = 0.779Rint = 0.033
39946 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.06Δρmax = 0.40 e Å3
4678 reflectionsΔρmin = 0.50 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.032308 (13)0.26186 (3)0.704343 (9)0.02674 (6)
O10.23225 (9)0.17552 (15)0.46715 (6)0.0156 (2)
N10.16178 (12)0.4626 (2)0.48948 (8)0.0232 (3)
N20.21377 (12)0.5092 (2)0.44146 (8)0.0220 (3)
C10.06684 (12)0.2219 (2)0.57759 (8)0.0182 (3)
H1A0.04030.35600.56520.022*
C20.03445 (12)0.1033 (3)0.62379 (8)0.0204 (3)
H2A0.01390.15680.64250.025*
C30.07532 (12)0.0960 (2)0.64159 (8)0.0184 (3)
C40.14611 (13)0.1809 (2)0.61362 (8)0.0190 (3)
H4A0.17220.31530.62600.023*
C50.17744 (12)0.0626 (2)0.56699 (8)0.0184 (3)
H5A0.22400.11840.54720.022*
C60.13929 (12)0.1400 (2)0.54964 (8)0.0150 (3)
C70.17477 (12)0.2668 (2)0.50242 (8)0.0155 (3)
C80.25323 (12)0.3371 (2)0.43018 (8)0.0149 (3)
C90.32131 (11)0.2945 (2)0.38782 (7)0.0129 (2)
C100.43936 (12)0.2361 (2)0.44483 (8)0.0163 (3)
H10A0.47020.34730.48070.020*
H10B0.43610.11320.47200.020*
C110.51455 (12)0.1961 (2)0.40472 (9)0.0192 (3)
H11A0.58960.16130.44170.023*
C120.51921 (13)0.3889 (2)0.36103 (9)0.0220 (3)
H12A0.56680.36340.33560.026*
H12B0.55010.50360.39530.026*
C130.40153 (13)0.4430 (2)0.30350 (9)0.0202 (3)
H13A0.40460.56590.27530.024*
C140.32711 (13)0.4874 (2)0.34404 (8)0.0182 (3)
H14A0.25300.52450.30780.022*
H14B0.35720.60250.37830.022*
C150.27356 (12)0.1114 (2)0.33328 (8)0.0181 (3)
H15A0.26980.01050.36080.022*
H15B0.19890.14390.29680.022*
C160.34879 (13)0.0691 (2)0.29311 (9)0.0210 (3)
H16A0.31850.04680.25830.025*
C170.46678 (13)0.0156 (2)0.35028 (9)0.0217 (3)
H17A0.46500.10760.37780.026*
H17B0.51370.01170.32450.026*
C180.35327 (14)0.2619 (3)0.24913 (9)0.0240 (3)
H18A0.39940.23500.22280.029*
H18B0.27900.29620.21240.029*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02327 (9)0.03737 (10)0.02322 (8)0.00111 (7)0.01336 (6)0.00809 (7)
O10.0214 (5)0.0128 (4)0.0179 (5)0.0028 (4)0.0133 (4)0.0014 (4)
N10.0332 (7)0.0170 (6)0.0291 (7)0.0049 (5)0.0227 (6)0.0016 (5)
N20.0305 (7)0.0158 (6)0.0276 (7)0.0048 (5)0.0201 (6)0.0023 (5)
C10.0185 (6)0.0197 (7)0.0187 (6)0.0043 (5)0.0101 (5)0.0008 (5)
C20.0185 (7)0.0274 (8)0.0183 (7)0.0044 (6)0.0107 (6)0.0005 (6)
C30.0167 (6)0.0261 (7)0.0136 (6)0.0029 (6)0.0076 (5)0.0011 (5)
C40.0206 (7)0.0174 (6)0.0202 (7)0.0021 (6)0.0096 (6)0.0013 (5)
C50.0196 (7)0.0186 (7)0.0205 (7)0.0028 (5)0.0118 (6)0.0005 (5)
C60.0157 (6)0.0166 (6)0.0135 (6)0.0013 (5)0.0068 (5)0.0013 (5)
C70.0164 (6)0.0160 (6)0.0163 (6)0.0025 (5)0.0089 (5)0.0018 (5)
C80.0168 (6)0.0129 (6)0.0150 (6)0.0003 (5)0.0067 (5)0.0010 (5)
C90.0147 (6)0.0108 (6)0.0139 (6)0.0006 (5)0.0068 (5)0.0005 (4)
C100.0164 (6)0.0165 (6)0.0152 (6)0.0014 (5)0.0060 (5)0.0021 (5)
C110.0147 (6)0.0208 (7)0.0223 (7)0.0026 (5)0.0081 (6)0.0046 (6)
C120.0221 (7)0.0193 (7)0.0296 (8)0.0039 (6)0.0158 (6)0.0005 (6)
C130.0269 (8)0.0165 (6)0.0226 (7)0.0027 (6)0.0156 (6)0.0064 (5)
C140.0224 (7)0.0137 (6)0.0212 (7)0.0042 (5)0.0117 (6)0.0050 (5)
C150.0176 (7)0.0185 (7)0.0193 (7)0.0047 (5)0.0089 (6)0.0057 (5)
C160.0270 (8)0.0188 (7)0.0224 (7)0.0040 (6)0.0153 (6)0.0074 (6)
C170.0279 (8)0.0150 (6)0.0314 (8)0.0052 (6)0.0214 (7)0.0029 (6)
C180.0278 (8)0.0306 (8)0.0173 (7)0.0027 (7)0.0130 (6)0.0013 (6)
Geometric parameters (Å, º) top
Br1—C31.8965 (14)C10—H10B0.9700
O1—C71.3629 (16)C11—C171.530 (2)
O1—C81.3682 (17)C11—C121.532 (2)
N1—C71.2902 (19)C11—H11A0.9800
N1—N21.4169 (18)C12—C131.533 (2)
N2—C81.2891 (18)C12—H12A0.9700
C1—C21.389 (2)C12—H12B0.9700
C1—C61.3968 (19)C13—C181.534 (2)
C1—H1A0.9300C13—C141.535 (2)
C2—C31.386 (2)C13—H13A0.9800
C2—H2A0.9300C14—H14A0.9700
C3—C41.386 (2)C14—H14B0.9700
C4—C51.386 (2)C15—C161.536 (2)
C4—H4A0.9300C15—H15A0.9700
C5—C61.396 (2)C15—H15B0.9700
C5—H5A0.9300C16—C171.533 (2)
C6—C71.4584 (19)C16—C181.534 (2)
C8—C91.4899 (19)C16—H16A0.9800
C9—C141.5376 (19)C17—H17A0.9700
C9—C101.5397 (19)C17—H17B0.9700
C9—C151.5447 (19)C18—H18A0.9700
C10—C111.532 (2)C18—H18B0.9700
C10—H10A0.9700
C7—O1—C8102.80 (11)C12—C11—H11A109.6
C7—N1—N2106.19 (12)C11—C12—C13109.36 (12)
C8—N2—N1106.11 (12)C11—C12—H12A109.8
C2—C1—C6120.09 (14)C13—C12—H12A109.8
C2—C1—H1A120.0C11—C12—H12B109.8
C6—C1—H1A120.0C13—C12—H12B109.8
C3—C2—C1118.96 (13)H12A—C12—H12B108.3
C3—C2—H2A120.5C12—C13—C18109.63 (13)
C1—C2—H2A120.5C12—C13—C14109.63 (12)
C4—C3—C2121.79 (14)C18—C13—C14109.58 (13)
C4—C3—Br1118.26 (12)C12—C13—H13A109.3
C2—C3—Br1119.93 (11)C18—C13—H13A109.3
C3—C4—C5119.04 (14)C14—C13—H13A109.3
C3—C4—H4A120.5C13—C14—C9109.50 (11)
C5—C4—H4A120.5C13—C14—H14A109.8
C4—C5—C6120.16 (13)C9—C14—H14A109.8
C4—C5—H5A119.9C13—C14—H14B109.8
C6—C5—H5A119.9C9—C14—H14B109.8
C5—C6—C1119.93 (13)H14A—C14—H14B108.2
C5—C6—C7120.28 (13)C16—C15—C9109.24 (12)
C1—C6—C7119.80 (13)C16—C15—H15A109.8
N1—C7—O1112.48 (13)C9—C15—H15A109.8
N1—C7—C6128.83 (13)C16—C15—H15B109.8
O1—C7—C6118.67 (12)C9—C15—H15B109.8
N2—C8—O1112.42 (12)H15A—C15—H15B108.3
N2—C8—C9129.92 (13)C17—C16—C18109.12 (13)
O1—C8—C9117.56 (12)C17—C16—C15110.23 (12)
C8—C9—C14110.37 (11)C18—C16—C15109.44 (13)
C8—C9—C10107.90 (11)C17—C16—H16A109.3
C14—C9—C10109.40 (11)C18—C16—H16A109.3
C8—C9—C15111.30 (11)C15—C16—H16A109.3
C14—C9—C15109.70 (12)C11—C17—C16109.56 (12)
C10—C9—C15108.11 (11)C11—C17—H17A109.8
C11—C10—C9110.40 (11)C16—C17—H17A109.8
C11—C10—H10A109.6C11—C17—H17B109.8
C9—C10—H10A109.6C16—C17—H17B109.8
C11—C10—H10B109.6H17A—C17—H17B108.2
C9—C10—H10B109.6C13—C18—C16109.45 (12)
H10A—C10—H10B108.1C13—C18—H18A109.8
C17—C11—C10108.83 (12)C16—C18—H18A109.8
C17—C11—C12109.40 (13)C13—C18—H18B109.8
C10—C11—C12109.87 (12)C16—C18—H18B109.8
C17—C11—H11A109.6H18A—C18—H18B108.2
C10—C11—H11A109.6
C7—N1—N2—C80.10 (18)O1—C8—C9—C1552.62 (16)
C6—C1—C2—C30.1 (2)C8—C9—C10—C11178.46 (11)
C1—C2—C3—C41.0 (2)C14—C9—C10—C1158.36 (15)
C1—C2—C3—Br1179.84 (11)C15—C9—C10—C1161.06 (15)
C2—C3—C4—C50.4 (2)C9—C10—C11—C1761.10 (15)
Br1—C3—C4—C5179.30 (11)C9—C10—C11—C1258.67 (16)
C3—C4—C5—C61.0 (2)C17—C11—C12—C1360.01 (16)
C4—C5—C6—C11.8 (2)C10—C11—C12—C1359.40 (16)
C4—C5—C6—C7178.16 (14)C11—C12—C13—C1859.80 (16)
C2—C1—C6—C51.3 (2)C11—C12—C13—C1460.53 (16)
C2—C1—C6—C7178.74 (14)C12—C13—C14—C960.59 (16)
N2—N1—C7—O10.28 (18)C18—C13—C14—C959.77 (16)
N2—N1—C7—C6178.56 (14)C8—C9—C14—C13177.65 (12)
C8—O1—C7—N10.34 (16)C10—C9—C14—C1359.08 (15)
C8—O1—C7—C6178.81 (12)C15—C9—C14—C1359.35 (15)
C5—C6—C7—N1168.91 (16)C8—C9—C15—C16178.05 (12)
C1—C6—C7—N111.1 (2)C14—C9—C15—C1659.51 (15)
C5—C6—C7—O19.3 (2)C10—C9—C15—C1659.72 (15)
C1—C6—C7—O1170.73 (13)C9—C15—C16—C1759.96 (16)
N1—N2—C8—O10.12 (17)C9—C15—C16—C1860.05 (16)
N1—N2—C8—C9176.25 (14)C10—C11—C17—C1659.51 (15)
C7—O1—C8—N20.27 (16)C12—C11—C17—C1660.55 (15)
C7—O1—C8—C9176.93 (12)C18—C16—C17—C1160.45 (15)
N2—C8—C9—C149.4 (2)C15—C16—C17—C1159.76 (16)
O1—C8—C9—C14174.68 (12)C12—C13—C18—C1659.93 (16)
N2—C8—C9—C10110.13 (17)C14—C13—C18—C1660.43 (16)
O1—C8—C9—C1065.84 (15)C17—C16—C18—C1360.03 (16)
N2—C8—C9—C15131.41 (16)C15—C16—C18—C1360.66 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cg1i0.972.743.6709 (19)162
Symmetry code: (i) x, y1/2, z3/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C18—H18B···Cg1i0.97002.743.6709 (19)162.00
Symmetry code: (i) x, y1/2, z3/2.
 

Footnotes

Thomson Reuters ResearcherID: C-3194-2011.

§Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

The financial support of the Deanship of Scientific Research and the Research Center for Female Scientific and Medical Colleges, King Saud University is greatly appreciated. CSCK thanks Universiti Sains Malaysia (USM) for a postdoctoral research fellowship.

References

First citationAl-Abdullah, E. S., Asiri, H. H., Lahsasni, S., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2014). Drug Des. Dev. Ther. 8, 505–518.  CAS Google Scholar
First citationAl-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47.  CAS Google Scholar
First citationAl-Omary, F. A. M., Ghabbour, H. A., El-Emam, A. A., Chidan Kumar, C. S. & Fun, H.-K. (2014). Acta Cryst. E70, o766–o767.  CSD CrossRef IUCr Journals Google Scholar
First citationBalzarini, J., Orzeszko-Krzesińska, B., Maurin, J. K. & Orzeszko, A. (2009). Eur. J. Med. Chem. 44, 303–311.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCordes, D. B., Hua, G., Slawin, A. M. Z. & Woollins, J. D. (2011). Acta Cryst. E67, o1757.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omar, M. A. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEl-Emam, A. A., Al-Tamimi, A.-S., Al-Omar, M. A., Alrashood, K. A. & Habib, E. E. (2013). Eur. J. Med. Chem. 68, 96–102.  CAS PubMed Google Scholar
First citationEl-Emam, A. A., Kadi, A. A., El-Brollosy, N. R., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o795.  CSD CrossRef IUCr Journals Google Scholar
First citationFranco, O., Reck, G., Orgzall, I., Schulz, B. W. & Schulz, B. (2003). J. Mol. Struct. 649, 219–230.  Web of Science CSD CrossRef CAS Google Scholar
First citationKadi, A. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2010). Eur. J. Med. Chem. 45, 5006–5011.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVernier, V. G., Harmon, J. B., Stump, J. M., Lynes, T. L., Marvel, M. P. & Smith, D. H. (1969). Toxicol. Appl. Pharmacol. 15, 642–665.  CrossRef CAS PubMed Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1231-o1232
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds