organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1237-o1238

Crystal structure of 2-{[1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-yl­­oxy]carbon­yl}benzoic acid

aDepartment of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Gulshan-e-Iqbal, Karachi 75300, Pakistan, bAtta-ur-Rahman Institute for Natural Product Discovery, Universiti Teknologi MARA (UiTM), Puncak Alam Campus, 42300 Bandar Puncak Alam, Selangor D. E., Malaysia, cFaculty of Pharmacy, Universiti Tecknologi MARA, Puncak Alam, 42300 Selangor, Malaysia, and dFaculty of Applied Sciences, Universiti Teknologi MARA (UiTM), 40450 Shah Alam, Malaysia
*Correspondence e-mail: humera@salam.uitm.edu.my

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 23 October 2014; accepted 30 October 2014; online 5 November 2014)

In the title compound, C15H15N3O6, the dihedral angle between the planes of the benzene and imidazole rings is 34.93 (10)°. An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal, O—H⋯N hydrogen bonds link the mol­ecules into chains parallel to the c axis.

1. Related literature

For the applications and biological activities of nitro­imidazole and its derivatives, see: Maeda et al. (1953[Maeda, K., Osato, T. & Umezawa, H. (1953). J. Antibiot. 6, 182.]); Larina & Lopyrev (2009[Larina, L. & Lopyrev, V. (2009). Nitroazoles: Synthesis, Structure and Applications, pp. 407-432: New York: Springer.]); Zhang et al. (2014[Zhang, L., Peng, X.-M., Damu, G. L. V., Geng, R.-X. & Zhou, C.-H. (2014). Med. Res. Rev. 34, 340-437.]); Gillis & Wiseman (1996[Gillis, J. C. & Wiseman, L. R. (1996). Drugs, 51, 621-638.]). For the crystal structure of related compounds, see: Xiao et al. (2008[Tao, X., Yuan, L., Zhang, X.-Q. & Wang, J.-T. (2008). Acta Cryst. E64, o472.]); Shahid et al. (2014[Shahid, H. A., Hussain, E., Jahangir, S. & Yousuf, S. (2014). Acta Cryst. E70, o294.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H15N3O6

  • Mr = 333.30

  • Monoclinic, P 21 /c

  • a = 11.189 (3) Å

  • b = 6.9489 (17) Å

  • c = 19.979 (5) Å

  • β = 98.056 (10)°

  • V = 1538.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.50 × 0.50 × 0.38 mm

2.2. Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.946, Tmax = 0.958

  • 20047 measured reflections

  • 2865 independent reflections

  • 2515 reflections with I > 2σ(I)

  • Rint = 0.082

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.119

  • S = 1.07

  • 2865 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9A⋯O5 0.98 2.53 3.115 (3) 118
O1—H1D⋯N1i 0.96 (3) 1.78 (3) 2.730 (2) 175 (3)
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitroimidazoles are well recognized as antibacterial agents since the early 1950s as azomycin, i.e. 2-nitroimidazole, was discovered (Maeda et al., 1953). The imidazole moiety has a wide range of biological activities such as anticancer, antifungal, antibacterial, antitubercular, antiparasitic, antihistaminic, antineuropathic, antihypertensive, anti-inflammatory, antiobesity, antiviral, antitumor, antihelmintic, antiallergic, antineoplastic, local analgesic, and spazmolytic activities (Larina & Lopyrev, 2009; Zhang et al., 2014). Nowadays, various drugs are available which belongs to the nitroimidazole class such as secnidazole (Flagentyl), metronidazole (Flagyl), ornidazole (Xynor), tinidazole (Fasigyn) and others. Secnidazole is an efficient drug in the treatment of protozoal infections. Secnidazole has been explored for the treatment of amoebiasis, giardiasis, urogenital trichomoniasis and nonspecific bacterial vaginosis (Gillis & Wiseman, 1996).

In the title compound (Fig. 1), the mean planes through the benzene (C2–C7) and imidazole (N2/C11/N1/C12/C13) rings form a dihedral angle of 34.93 (10)°. The bond lengths and angles are within the normal ranges and in agreement with those observed in related compounds (Xiao et al., 2008; Shahid et al.; 2014). The molecular conformation is stabilized by a non-classical C—H···O hydrogen bond (Table 1). In the crystal, molecules are linked into chains parallel to the c axis via intermolecular O—H···N hydrogen bonds (Table 1, Fig. 2).

Related literature top

For the applications and biological activities of nitroimidazole and its derivatives, see: Maeda et al. (1953); Larina & Lopyrev (2009); Zhang et al. (2014); Gillis & Wiseman (1996). For the crystal structure of related compounds, see: Xiao et al. (2008); Shahid et al. (2014).

Experimental top

For the synthesis of title compound, 10.8 mmol of secnidazole (2 g) and 10.8 mmol of phthalic anhydride (1.6 g) were dissolved in a mixture of acetone (15 ml) and pyridine (1 ml). The reaction mixture was allowed to reflux for 12 h. After completion of the reaction, the solvent was evaporated under vacuum and the crude product was washed with little amounts of pure water, methanol and toluene to get colourless crystals in 63% yield. M. p.: 461-463 K. 1H NMR (500 MHz, DMSO-d6): δ 8.044 (s, 1 H, imidazole H), 7.782–7.756 (m, 1 H, Ar H), 7.639–7.595 (m, 2 H, ArH), 7.295–7.263 (m, 1 H, Ar H), 5.397–5.334 (m, 1 H, CH), 4.650–4.421 (m, 2 H, CH2), 2.320 (s, 3 H, CH3), 1.392–1.379 (d, J=6.5 Hz, 3 H, CH3). 13C NMR (125 MHz, DMSO-d6): δ 167.93 (C—O), 167.60 (C—O), 152.08 (C—N), 139.02 (C—NO2), 133.65 (imidazole CH), 132.81, 132.03, 131.72, 131.52, 129.57, 127.83 (aromatic C), 70.70 (O—CH), 49.85 (N—CH2), 17.09 and 14.40 (CH3).

Refinement top

The hydroxyl H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions and refined using a riding model approximation, with C—H = 0.93–0.98 Å and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 50% probability level.

Fig. 2. Crystal packing of the title compound viewed down the b axis. Only hydrogen atoms involved in O—H···N hydrogen bonds (dashed lines) are shown.
2-{[1-(2-Methyl-5-nitro-1H-imidazol-1-yl)propan-2-yloxy]carbonyl}benzoic acid top
Crystal data top
C15H15N3O6Dx = 1.439 Mg m3
Mr = 333.30Melting point = 461–463 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.189 (3) ÅCell parameters from 9799 reflections
b = 6.9489 (17) Åθ = 3.1–28.3°
c = 19.979 (5) ŵ = 0.11 mm1
β = 98.056 (10)°T = 296 K
V = 1538.0 (6) Å3Block, colourless
Z = 40.50 × 0.50 × 0.38 mm
F(000) = 696
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2865 independent reflections
Radiation source: fine-focus sealed tube2515 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
ϕ and ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.946, Tmax = 0.958k = 88
20047 measured reflectionsl = 2424
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0414P)2 + 0.8462P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2865 reflectionsΔρmax = 0.31 e Å3
222 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL2013 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0086 (17)
Crystal data top
C15H15N3O6V = 1538.0 (6) Å3
Mr = 333.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.189 (3) ŵ = 0.11 mm1
b = 6.9489 (17) ÅT = 296 K
c = 19.979 (5) Å0.50 × 0.50 × 0.38 mm
β = 98.056 (10)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
2865 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2515 reflections with I > 2σ(I)
Tmin = 0.946, Tmax = 0.958Rint = 0.082
20047 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.31 e Å3
2865 reflectionsΔρmin = 0.22 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.06727 (13)0.4222 (2)0.34680 (7)0.0516 (4)
O20.23305 (12)0.4311 (2)0.29641 (7)0.0545 (4)
O30.28516 (14)0.5351 (2)0.15189 (11)0.0768 (6)
O40.26149 (10)0.22096 (17)0.17394 (6)0.0375 (3)
O50.58254 (14)0.2723 (3)0.08232 (9)0.0720 (5)
O60.57286 (14)0.3388 (2)0.02413 (9)0.0636 (5)
N10.23187 (14)0.1045 (2)0.03904 (8)0.0441 (4)
N20.35718 (12)0.0837 (2)0.05685 (7)0.0329 (3)
N30.52989 (14)0.2715 (2)0.02452 (9)0.0469 (4)
C10.12441 (16)0.4255 (3)0.29324 (9)0.0382 (4)
C20.04179 (15)0.4222 (2)0.22764 (9)0.0346 (4)
C30.08314 (16)0.4269 (3)0.22600 (10)0.0429 (4)
H3A0.11610.43220.26620.051*
C40.15808 (17)0.4237 (3)0.16484 (11)0.0501 (5)
H4A0.24140.42460.16400.060*
C50.10993 (18)0.4191 (3)0.10507 (10)0.0514 (5)
H5A0.16080.41880.06400.062*
C60.01374 (17)0.4148 (3)0.10593 (10)0.0447 (5)
H6A0.04580.41200.06540.054*
C70.09033 (15)0.4146 (2)0.16701 (9)0.0349 (4)
C80.22351 (16)0.4028 (3)0.16476 (9)0.0386 (4)
C90.39058 (15)0.1846 (3)0.17704 (9)0.0382 (4)
H9A0.43200.30150.16530.046*
C100.40426 (15)0.0266 (3)0.12629 (8)0.0356 (4)
H10A0.48900.00630.12860.043*
H10B0.36160.08720.13820.043*
C110.24736 (15)0.0342 (3)0.02342 (9)0.0353 (4)
C120.33437 (17)0.2007 (3)0.04698 (9)0.0447 (5)
H12A0.34870.26400.08610.054*
C130.41269 (15)0.1901 (3)0.01123 (9)0.0364 (4)
C140.4392 (2)0.1213 (4)0.24794 (10)0.0598 (6)
H14A0.42990.22390.27900.090*
H14B0.52310.08950.25020.090*
H14C0.39530.01040.25970.090*
C150.15837 (17)0.0872 (3)0.05232 (10)0.0472 (5)
H15A0.08770.10300.01950.071*
H15B0.13660.02630.09200.071*
H15C0.19320.21100.06410.071*
H1D0.122 (3)0.417 (4)0.3880 (16)0.086 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0439 (7)0.0761 (10)0.0338 (7)0.0032 (7)0.0023 (6)0.0029 (7)
O20.0375 (8)0.0856 (11)0.0385 (7)0.0068 (7)0.0017 (5)0.0163 (7)
O30.0471 (9)0.0618 (10)0.1214 (16)0.0013 (8)0.0111 (9)0.0439 (10)
O40.0314 (6)0.0397 (7)0.0410 (7)0.0046 (5)0.0036 (5)0.0054 (5)
O50.0431 (8)0.0934 (13)0.0748 (11)0.0162 (8)0.0079 (8)0.0043 (10)
O60.0605 (9)0.0540 (9)0.0847 (12)0.0030 (7)0.0398 (9)0.0002 (8)
N10.0427 (9)0.0556 (10)0.0325 (8)0.0053 (7)0.0001 (6)0.0022 (7)
N20.0314 (7)0.0358 (7)0.0310 (7)0.0046 (6)0.0019 (5)0.0011 (6)
N30.0384 (9)0.0403 (9)0.0641 (11)0.0026 (7)0.0148 (8)0.0033 (8)
C10.0386 (10)0.0386 (9)0.0361 (9)0.0061 (7)0.0011 (7)0.0065 (7)
C20.0361 (9)0.0308 (8)0.0354 (9)0.0042 (7)0.0001 (7)0.0030 (7)
C30.0366 (9)0.0469 (11)0.0448 (10)0.0057 (8)0.0047 (8)0.0063 (8)
C40.0311 (9)0.0573 (12)0.0591 (12)0.0067 (9)0.0037 (8)0.0077 (10)
C50.0462 (11)0.0580 (12)0.0445 (11)0.0091 (9)0.0133 (8)0.0067 (9)
C60.0462 (11)0.0503 (11)0.0356 (9)0.0089 (9)0.0011 (8)0.0017 (8)
C70.0356 (9)0.0305 (8)0.0368 (9)0.0043 (7)0.0014 (7)0.0005 (7)
C80.0390 (10)0.0418 (10)0.0338 (9)0.0023 (8)0.0013 (7)0.0070 (7)
C90.0296 (9)0.0463 (10)0.0367 (9)0.0053 (7)0.0021 (7)0.0069 (8)
C100.0334 (9)0.0404 (9)0.0312 (9)0.0086 (7)0.0021 (7)0.0013 (7)
C110.0323 (8)0.0395 (9)0.0331 (9)0.0058 (7)0.0007 (7)0.0038 (7)
C120.0480 (11)0.0508 (11)0.0365 (10)0.0058 (9)0.0102 (8)0.0077 (8)
C130.0343 (9)0.0355 (9)0.0404 (9)0.0035 (7)0.0093 (7)0.0001 (7)
C140.0537 (12)0.0858 (17)0.0354 (10)0.0165 (12)0.0089 (9)0.0103 (10)
C150.0399 (10)0.0554 (12)0.0451 (10)0.0058 (9)0.0013 (8)0.0002 (9)
Geometric parameters (Å, º) top
O1—C11.321 (2)C4—H4A0.9300
O1—H1D0.96 (3)C5—C61.382 (3)
O2—C11.209 (2)C5—H5A0.9300
O3—C81.199 (2)C6—C71.389 (2)
O4—C81.337 (2)C6—H6A0.9300
O4—C91.459 (2)C7—C81.499 (2)
O5—N31.221 (2)C9—C141.510 (3)
O6—N31.235 (2)C9—C101.517 (2)
N1—C111.329 (2)C9—H9A0.9800
N1—C121.356 (3)C10—H10A0.9700
N2—C111.358 (2)C10—H10B0.9700
N2—C131.386 (2)C11—C151.482 (3)
N2—C101.468 (2)C12—C131.356 (3)
N3—C131.418 (2)C12—H12A0.9300
C1—C21.494 (2)C14—H14A0.9600
C2—C31.394 (2)C14—H14B0.9600
C2—C71.396 (3)C14—H14C0.9600
C3—C41.382 (3)C15—H15A0.9600
C3—H3A0.9300C15—H15B0.9600
C4—C51.377 (3)C15—H15C0.9600
C1—O1—H1D111.9 (17)O4—C9—C14108.32 (15)
C8—O4—C9117.58 (14)O4—C9—C10106.80 (13)
C11—N1—C12106.87 (15)C14—C9—C10111.08 (16)
C11—N2—C13105.64 (14)O4—C9—H9A110.2
C11—N2—C10125.19 (15)C14—C9—H9A110.2
C13—N2—C10129.14 (14)C10—C9—H9A110.2
O5—N3—O6123.59 (18)N2—C10—C9112.30 (14)
O5—N3—C13119.33 (17)N2—C10—H10A109.1
O6—N3—C13117.08 (18)C9—C10—H10A109.1
O2—C1—O1123.72 (16)N2—C10—H10B109.1
O2—C1—C2122.70 (16)C9—C10—H10B109.1
O1—C1—C2113.58 (15)H10A—C10—H10B107.9
C3—C2—C7119.43 (16)N1—C11—N2111.01 (16)
C3—C2—C1121.00 (16)N1—C11—C15124.67 (16)
C7—C2—C1119.57 (15)N2—C11—C15124.30 (16)
C4—C3—C2120.16 (18)N1—C12—C13109.17 (16)
C4—C3—H3A119.9N1—C12—H12A125.4
C2—C3—H3A119.9C13—C12—H12A125.4
C5—C4—C3120.29 (18)C12—C13—N2107.31 (15)
C5—C4—H4A119.9C12—C13—N3127.45 (17)
C3—C4—H4A119.9N2—C13—N3125.24 (16)
C4—C5—C6120.17 (18)C9—C14—H14A109.5
C4—C5—H5A119.9C9—C14—H14B109.5
C6—C5—H5A119.9H14A—C14—H14B109.5
C5—C6—C7120.27 (18)C9—C14—H14C109.5
C5—C6—H6A119.9H14A—C14—H14C109.5
C7—C6—H6A119.9H14B—C14—H14C109.5
C6—C7—C2119.67 (16)C11—C15—H15A109.5
C6—C7—C8117.84 (16)C11—C15—H15B109.5
C2—C7—C8122.49 (15)H15A—C15—H15B109.5
O3—C8—O4124.94 (17)C11—C15—H15C109.5
O3—C8—C7124.65 (17)H15A—C15—H15C109.5
O4—C8—C7110.22 (15)H15B—C15—H15C109.5
O2—C1—C2—C3176.28 (18)C8—O4—C9—C10127.65 (16)
O1—C1—C2—C33.6 (2)C11—N2—C10—C999.49 (19)
O2—C1—C2—C73.6 (3)C13—N2—C10—C982.8 (2)
O1—C1—C2—C7176.53 (16)O4—C9—C10—N261.80 (19)
C7—C2—C3—C40.1 (3)C14—C9—C10—N2179.71 (16)
C1—C2—C3—C4179.99 (17)C12—N1—C11—N20.6 (2)
C2—C3—C4—C51.1 (3)C12—N1—C11—C15177.69 (17)
C3—C4—C5—C60.9 (3)C13—N2—C11—N10.60 (19)
C4—C5—C6—C70.2 (3)C10—N2—C11—N1178.73 (15)
C5—C6—C7—C21.1 (3)C13—N2—C11—C15177.73 (17)
C5—C6—C7—C8177.87 (18)C10—N2—C11—C150.4 (3)
C3—C2—C7—C61.0 (3)C11—N1—C12—C130.4 (2)
C1—C2—C7—C6178.91 (16)N1—C12—C13—N20.0 (2)
C3—C2—C7—C8177.98 (16)N1—C12—C13—N3179.84 (17)
C1—C2—C7—C82.1 (3)C11—N2—C13—C120.33 (19)
C9—O4—C8—O38.2 (3)C10—N2—C13—C12178.35 (16)
C9—O4—C8—C7176.63 (13)C11—N2—C13—N3179.79 (16)
C6—C7—C8—O377.9 (3)C10—N2—C13—N31.8 (3)
C2—C7—C8—O3103.1 (2)O5—N3—C13—C12169.8 (2)
C6—C7—C8—O497.27 (19)O6—N3—C13—C1210.0 (3)
C2—C7—C8—O481.7 (2)O5—N3—C13—N210.1 (3)
C8—O4—C9—C14112.64 (19)O6—N3—C13—N2170.11 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O50.982.533.115 (3)118
O1—H1D···N1i0.96 (3)1.78 (3)2.730 (2)175 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9A···O50.982.533.115 (3)118
O1—H1D···N1i0.96 (3)1.78 (3)2.730 (2)175 (3)
Symmetry code: (i) x, y+1/2, z+1/2.
 

Acknowledgements

The authors would like to acknowledge Nabiqasim Pharmaceutical Industries (PVT) Ltd for the financial support during the research work. HAS is grateful to Nasir Ahmed Shamsi MD for moral support and SAAS would like to acknowledge the Ministry of Higher Education (MOHE) for financial support under the Fundamental Research Grant Scheme (FRGS) with reference numbers 600-RMI/FRGS 5/3 (12/2012).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGillis, J. C. & Wiseman, L. R. (1996). Drugs, 51, 621–638.  CrossRef CAS PubMed Google Scholar
First citationLarina, L. & Lopyrev, V. (2009). Nitroazoles: Synthesis, Structure and Applications, pp. 407–432: New York: Springer.  Google Scholar
First citationMaeda, K., Osato, T. & Umezawa, H. (1953). J. Antibiot. 6, 182.  PubMed Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationShahid, H. A., Hussain, E., Jahangir, S. & Yousuf, S. (2014). Acta Cryst. E70, o294.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, X., Yuan, L., Zhang, X.-Q. & Wang, J.-T. (2008). Acta Cryst. E64, o472.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Peng, X.-M., Damu, G. L. V., Geng, R.-X. & Zhou, C.-H. (2014). Med. Res. Rev. 34, 340–437.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1237-o1238
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds