research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tricarbon­yl(N-di­phenyl­phosphanyl-N,N′-diiso­propyl-P-phenyl­phospho­nous di­amide-κ2P,P′)cobalt(I) tetra­carbonyl­cobaltate(−I) toluene 0.25-solvate

aLeibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany
*Correspondence e-mail: torsten.beweries@catalysis.de

Edited by C. Rizzoli, Universita degli Studi di Parma, Italy (Received 29 October 2014; accepted 13 November 2014; online 19 November 2014)

The asymmetric unit of the title compound, [Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8, consists of two crystallographically independent cations with similar conformations, two anions, and one-half of a toluene mol­ecule disordered about an inversion centre. In the cations, a Co/P/N/P four-membered slightly bent metallacycle is the key structural element. The pendant NH group is not coordinated to the CoI atom, which displays a distorted trigonal–bipyramidal coordination geometry. Weak inter­ionic hydrogen bonds are observed between the NH groups and a carbonyl group of the tetrahedral [Co(CO)4] anions.

1. Chemical context

Reaction of the PNPNH ligand N-(diphenylphosphanyl)-N,N′-diisopropyl-di­amino­phenyl­phosphine, Ph2PN(i-Pr)P(Ph)N(H)i-Pr, with the cobalt precursor Co2(CO)8 was performed to prepare a noble-metal-free catalyst for light-driven water reduction to produce hydrogen. These compounds are attractive in terms of environmental acceptability as well as for economic reasons. Several very active inter­molecular water-reduction systems using 3d metal complexes as catalytically active centres are known, examples include work on iron (e.g. Mejía et al., 2013[Mejía, E., Luo, S.-P., Karnahl, M., Friedrich, A., Tschierlei, S., Surkus, A.-E., Junge, H., Gladiali, S., Lochbrunner, S. & Beller, M. (2013). Chem. Eur. J. 19, 15972-15978.]), nickel (e.g. Zhang et al., 2011[Zhang, W., Hong, J., Zheng, J., Huang, Z., Zhou, J. (S.) & Xu, R. (2011). J. Am. Chem. Soc. 133, 20680-20683.]) and cobalt (e.g. Tong et al., 2014[Tong, L., Zong, R. & Thummel, R. P. (2014). J. Am. Chem. Soc. 136, 4881-4884.]) complexes. It is likely that the NH group of the ligand and the Co atom cooperate in the proton-reduction process as has been reported for other water-reduction complexes (Han et al., 2012[Han, Z., McNamara, W. R., Eum, M.-S., Holland, P. L. & Eisenberg, R. (2012). Angew. Chem. Int. Ed. 51, 1667-1670.]). We found that, apart from the previously described catalytically active dinuclear CO-bridged product Co2(CO)6(PNPNH) (Hansen et al., 2013[Hansen, S., Pohl, M.-M., Klahn, M., Spannenberg, A. & Beweries, T. (2013). ChemSusChem, 6, 92-101.]), an ionic complex is also formed in this reaction. Both complexes can be separated by fractionated crystallization from toluene. It should be noted that in solution, the title compound is rapidly converted into the neutral dinuclear species Co2(CO)6(PNPNH) and therefore the IR and NMR spectra were measured only from freshly prepared samples.

[Scheme 1]

2. Structural commentary

The title compound crystallizes in the monoclinic space group P21/n with eight cations, eight anions as well as two mol­ecules of toluene in the unit cell. The toluene solvent mol­ecules are found to be disordered about inversion centres. The asymmetric unit is shown in Fig. 1[link]. In the cation, the CoI atom is fivefold coordinated by three carbonyl ligands and the PNPNH ligand, which is bound via both P atoms (Fig. 2[link]). Thus, the bidentate ligand forms a four-membered metallacycle at the CoI atom with the central N atom being tilted out of the plane formed by the Co and the two P atoms [the dihedral angles between the CoP2 and NP2 planes are 15.73 (10) and 14.44 (9)°]. The terminal secondary amine is not involved in complexation with the CoI atom and acts as a spectator group. In the cyclic units the following bond lengths are observed: Co1—P1 2.1948 (7), P1—N2 1.698 (2), N2—P2 1.695 (2), P2—Co1 2.1800 (7), Co2—P3 2.1884 (7), P3—N4 1.695 (2), N4—P4 1.702 (2), P4—Co2 2.1971 (7) Å. A similar coordination mode was previously found for this ligand in a variety of transition metal complexes (Aluri et al., 2010[Aluri, B., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). Dalton Trans. 39, 7911-7920.]). In the cationic parts, one of the Co—C distances [Co1—C3 1.821 (3) and Co2—C30 1.832 (3) Å] is slightly longer than the other two values. In the anion, the geometry at the cobalt atom is found to be distorted tetra­hedral; all C—Co—C angles are found to be between 105.75 (13) and 111.89 (14)°, thus indicating a minor deviation from ideal Td symmetry. The Co—C bond lengths in the anions vary from 1.754 (4)–1.770 (3) Å and are comparable to those observed for a range of complexes displaying tetra­carbonyl­cobaltate anions (vide supra), including ionic salts of tetra­carbonyl­cobaltate with alkali (Klüfers, 1984a[Klüfers, P. (1984a). Z. Kristallogr. 167, 253-260.],b[Klüfers, P. (1984b). Z. Kristallogr. 167, 275-286.]) and ammonium cations (Brammer et al. 1992[Brammer, L., McCann, M. C., Bullock, R. M., McMullan, R. K. & Sherwood, P. (1992). Organometallics, 11, 2339-2341.]; Brammer & Zhao, 1995[Brammer, L. & Zhao, D. (1995). Acta Cryst. C51, 45-48.]).

[Figure 1]
Figure 1
The asymmetric unit of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids correspond to the 30% probability level. Only one orientation of the disordered toluene mol­ecule is shown.
[Figure 2]
Figure 2
Inter­ionic N—H⋯O hydrogen bond (dashed line) connecting an ion-pair in the title compound. Hydrogen atoms not involved in hydrogen bonding, the co-crystallized toluene mol­ecule and the second ion-pair of the asymmetric unit are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

A weak hydrogen-bonding inter­action is observed between the NH group of the cation and one of the O atoms of the tetra­carbonyl­cobaltate(−I) anions (Table 1[link]). Other than in the literature-known compound [Et3NH][Co(CO)4] (Brammer et al., 1992[Brammer, L., McCann, M. C., Bullock, R. M., McMullan, R. K. & Sherwood, P. (1992). Organometallics, 11, 2339-2341.]), no 3c–4e hydrogen-bond-like N—H⋯Co inter­action has been found.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O10i 0.87 (1) 2.22 (2) 3.041 (3) 159 (3)
N3—H3⋯O13ii 0.86 (1) 2.27 (1) 3.101 (3) 163 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1.

4. Database survey

For a similar, carbonyl-bridged dinuclear cobalt complex with this PNPNH ligand, see: Hansen et al. (2013[Hansen, S., Pohl, M.-M., Klahn, M., Spannenberg, A. & Beweries, T. (2013). ChemSusChem, 6, 92-101.]). Examples for structural reports of other CoI–Co−I ion-pair complexes can be found in Fellmann et al. (1983[Fellmann, J. D., Garrou, P. E., Withers, H. P., Seyferth, D. & Traficante, D. D. (1983). Organometallics, 2, 818-825.]), Bockman & Kochi (1989[Bockman, T. M. & Kochi, J. K. (1989). J. Am. Chem. Soc. 111, 4669-4683.]), Zhang et al. (1994[Zhang, Z.-Z., Yu, A., Xi, H.-P., Wang, R.-J. & Wang, H.-G. (1994). J. Organomet. Chem. 470, 223-229.]), Uehara et al. (2005[Uehara, K., Hikichi, S., Inagaki, A. & Akita, M. (2005). Chem. Eur. J. 11, 2788-2809.]), van Rensburg et al. (2007[Rensburg, H. van, Tooze, R. P., Foster, D. F. & Otto, S. (2007). Inorg. Chem. 46, 1963-1965.]) and Azhakar et al. (2012[Azhakar, R., Ghadwal, R. S., Roesky, H. W., Hey, J. & Stalke, D. (2012). Chem. Asian J. 7, 528-533.]). Other transition metal complexes with this ligand are described in Aluri et al. (2010[Aluri, B., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). Dalton Trans. 39, 7911-7920.]) and Dulai et al. (2011[Dulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935-941.]).

5. Synthesis and crystallization

General: N-(diphenylphosphanyl)-N,N′-diisopropyl-di­amino­phenyl­phosphine was synthesized by a literature method (Peitz et al., 2010[Peitz, S., Peulecke, N., Aluri, B. R., Hansen, S., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). Eur. J. Inorg. Chem. pp. 1167-1171.]). Co2(CO)8 was purchased from Strem and used without further purification. Toluene was dried over CaH2 and distilled prior to use. Synthesis: A solution of Co2(CO)8 (0.30 g, 0.88 mmol) in toluene (10 ml) was added to N-(diphenylphosphanyl)-N,N′-diisopropyl-di­amino­phenyl­phos­phine, Ph2PN(i-Pr)P(Ph)N(H)i-Pr (0.36 g, 0.88 mmol) in a glove box. After gas evolution subsided, the 50 ml Schlenk flask was closed and heated to 383 K for 35 min without stirring to preserve the two-phase system. After crystallization from toluene at room temperature for three days, two crystal fractions were separated from the solvent and washed with n-hexane (2 × 5 ml). The fraction of cubic brown crystals showed space-group and lattice parameters identical to X-ray diffraction data published previously (Hansen et al., 2013[Hansen, S., Pohl, M.-M., Klahn, M., Spannenberg, A. & Beweries, T. (2013). ChemSusChem, 6, 92-101.]). The second fraction contained yellow needles with the crystal structure presented here. Further isolation of this new complex was not possible as it inevitably forms the known dinuclear product when dissolved in organic solvents. Manual picking of the crystals was difficult as the material proved too delicate. Analytics: 31P NMR (297 K, THF-d8, 162 Hz): δ (p.p.m) 61.8 (d, J = 150 Hz), 59.9 (d, J = 150 Hz); IR (ATR, THF): ν−1 [cm−1] 3335 (w), 3191 (w), 3058 (w), 2975 (m), 2869 (m), 2081 [s, Co(CO)3+], 2021 [s, Co(CO)3+], 1979 (w), 1872 [s, Co(CO)4], 1586 (w), 1462 (w), 1436 (m), 1390 (w), 1369 (w), 1311(w), 1165 (w), 1125 (m), 1097 (m), 1064 (m), 999 (w), 896 (m), 869 (m), 747 (m), 716 (w), 694 (m), 631 (w), 612 (w), 550 (s), 501 (m), 426 (m).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms H1 and H3 were located in a difference Fourier map and their coordinates were refined with the restraint N—H = 0.87 (1) Å. All other H atoms were placed in idealized positions with d(C—H) = 0.95–1.00 (CH) and 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and 1.5 Ueq(C) for CH3. The ring of the half-occupied toluene mol­ecule was constrained to resemble an ideal hexa­gon with C—C distances of 1.39 Å. SADI instructions were used to improve the geometry of one phenyl ring (C24–C25, C25–C26) and one i-propyl group (C13–C14, C13–C15).

Table 2
Experimental details

Crystal data
Chemical formula [Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8
Mr 745.40
Crystal system, space group Monoclinic, P21/n
Temperature (K) 150
a, b, c (Å) 22.1602 (6), 12.9730 (3), 24.7883 (6)
β (°) 103.9330 (12)
V3) 6916.6 (3)
Z 8
Radiation type Cu Kα
μ (mm−1) 8.79
Crystal size (mm) 0.43 × 0.11 × 0.05
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.12, 0.65
No. of measured, independent and observed [I > 2σ(I)] reflections 89837, 12171, 11080
Rint 0.044
(sin θ/λ)max−1) 0.595
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.03
No. of reflections 12171
No. of parameters 825
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.93, −0.57
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL2014 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Chemical context top

The reaction of the PNPNH ligand N-(di­phenyl­phosphino)-N,N'-diiso­propyl- di­amino­phenyl­phosphine, Ph2PN(i-Pr)P(Ph)N(H)i-Pr, with the cobalt precursor Co2(CO)8 was performed to prepare a noble-metal-free catalyst for light-driven water reduction to produce hydrogen. These compounds are attractive in terms of environmental acceptability as well as for economic reasons. Several very active inter­molecular water-reduction systems using 3d metal complexes as catalytically active centres are known, examples include work on iron (e.g. Mejía et al., 2013), nickel (e.g. Zhang et al., 2011) and cobalt (e.g. Tong et al., 2014) complexes. It is likely that the NH group of the ligand and the Co centre cooperate in the proton-reduction process as has been reported for other water-reduction complexes (Han et al., 2012). We found that, apart from the previously described catalytically active dinuclear CO-bridged product Co2(CO)6(PNPNH) (Hansen et al., 2013), an ionic complex is also formed in this reaction. Both complexes can be separated by fractionated crystallization from toluene. It should be noted that in solution, the title compound is rapidly converted into the neutral dinuclear species Co2(CO)6(PNPNH) and therefore the IR and NMR spectra were measured only from freshly prepared samples.

Structural commentary top

The title compound crystallizes in the monoclinic space group P21/n with eight cations, eight anions as well as two molecules of toluene in the unit cell. The toluene solvent molecules are found to be disordered about inversion centres. The asymmetric unit is shown in Fig. 1. In the cation, the CoI atom is fivefold coordinated by three carbonyl ligands and the PNPNH ligand, which is bound via both P atoms (Fig. 2). Thus, the bidentate ligand forms a four-membered metallacycle at the CoI atom with the central N atom being tilted out of the plane formed by the Co and the two P atoms [the dihedral angles between the CoP2 and NP2 planes are 15.73 (10) and 14.44 (9)°]. The terminal secondary amine is not involved in complexation with the CoI atom and acts as a spe­cta­tor group. In the cyclic units the following bond lengths are observed: Co1—P1 2.1948 (7), P1—N2 1.698 (2), N2—P2 1.695 (2), P2—Co1 2.1800 (7), Co2—P3 2.1884 (7), P3—N4 1.695 (2), N4—P4 1.702 (2), P4—Co2 2.1971 (7) Å. A similar coordination mode was previously found for this ligand in a variety of transition metal complexes (Aluri et al., 2010). In the cationic parts, one of the Co—C distances [Co1—C3 1.821 (3) and Co2—C30 1.832 (3) Å] is slightly longer than the other two values. In the anion, the geometry at the cobalt centre is found to be distorted tetra­hedral; all C—Co—C angles are found to be between 105.75 (13) and 111.89 (14)°, thus indicating a minor deviation from ideal Td symmetry. The Co—C bond lengths in the anions vary from 1.754 (4)–1.770 (3) Å and are comparable to those observed for a range of complexes displaying tetra­carbonyl­cobalt anions (vide supra), including ionic salts of tetra­carbonyl­cobaltate with alkali (Klüfers, 1984a,b) and ammonium cations (Brammer et al. 1992; Brammer & Zhao, 1995).

Supra­molecular features top

A weak hydrogen-bonding inter­action is observed between the NH group of the cation and one of the O atoms of the tetra­carbonyl­cobalt(-I) anions (Table 1). Other than in the literature-known compound [Et3NH][Co(CO)4] (Brammer et al., 1992), no 3c--4e hydrogen-bond-like N—H···Co inter­action has been found.

Database survey top

For a similar, carbonyl-bridged dinuclear cobalt complex with this PNP ligand, see: Hansen et al. (2013). Examples for structural reports of other CoI–Co—I ion-pair complexes can be found in Fellmann et al. (1983), Bockman & Kochi (1989), Zhang et al. (1994), Uehara et al. (2005), van Rensburg et al. (2007) and Azhakar et al. (2012). Other transition metal complexes with this ligand are described in Aluri et al. (2010) and Dulai et al. (2011).

Synthesis and crystallization top

\ Generale: N-(di­phenyl­phosphino)-N,N'-diiso­propyl-\ di­amino­phenyl­phosphine was synthesized as published before (Peitz et al., 2010). Co2(CO)8 was purchased from Strem and used without further purification. Toluene was dried over CaH2 and distilled prior to use. Synthesis: A solution of Co2(CO)8 (0.30g, 0.88mmol) in toluene (10 mL) was added to N-(di­phenyl­phosphino)-N,N'-diiso­propyl-\ di­amino­phenyl­phosphine, Ph2PN(i-Pr)P(Ph)N(H)i-Pr (0.36 g, 0.88 mmol) in a glove box. After gas evolution subsided, the 50 mL Schlenk flask was closed and heated to 383 K for 35 min without stirring to preserve the two-phase system. After crystallization from toluene at room temperature for three days, two crystal fractions were separated from the solvent and washed with n-hexane (2 × 5 mL). The fraction of cubic brown crystals showed space-group and lattice parameters identical to X-ray diffraction data published previously (Hansen et al., 2013). The second fraction contained yellow needles with the crystal structure presented here. Further isolation of this new complex was not possible as it inevitably forms the known dinuclear product when dissolved in organic solvents. Manual picking of the crystals was difficult as the material proved too delicate. Analytics: 31P NMR (297 K, THF-d8, 162 Hz): δ (p.p.m) 61.8 (d, J = 150 Hz), 59.9 (d, J = 150 Hz); IR (ATR, THF): ν-1 [cm-1] 3335 (w), 3191 (w), 3058 (w), 2975 (m), 2869 (m), 2081 [s, Co(CO)3+], 2021 [s, Co(CO)3+], 1979 (w), 1872 [s, Co(CO)4-], 1586 (w), 1462 (w), 1436 (m), 1390 (w), 1369 (w), 1311(w), 1165 (w), 1125 (m), 1097 (m), 1064 (m), 999 (w), 896 (m), 869 (m), 747 (m), 716 (w), 694 (m), 631 (w), 612 (w), 550 (s), 501 (m), 426 (m).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms H1 and H3 were located in a difference Fourier map and their coordinates were refined with the restraint N—H = 0.87 (1) Å. All other H atoms were placed in idealized positions with d(C—H) = 0.95–1.00 (CH) and 0.98 Å (CH3) and refined using a riding model with Uiso(H) fixed at 1.2 Ueq(C) for CH and 1.5 Ueq(C) for CH3. The ring of the half-occupied toluene molecule was constrained to resemble an ideal hexagon with C—C distances of 1.39 Å. SADI instructions were used to improve the geometry of one phenyl ring (C24–C25, C25–C26) and one i-propyl group (C13–C14, C13–C15).

Related literature top

For related literature, see: Aluri et al. (2010); Azhakar et al. (2012); Bockman & Kochi (1989) Brammer & Zhao (1995); Brammer et al. (1992); Dulai et al. (2011); Fellmann et al. (1983); Han et al. (2012); Hansen et al. (2013); Klüfers (1984a, 1984b); Mejía et al. (2013); Peitz et al. (2010); Rensburg et al. (2007) Tong et al. (2014); Uehara et al. (2005); Zhang et al. (1994); Zhang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
Figure 1. The asymmetric unit of the title compound. Hydrogen atoms are omitted for clarity. Displacement ellipsoids correspond to 30% probability. Only one orientation of the disordered toluene molecule is shown.

Figure 2. Interionic N—H···O hydrogen bond (dashed line) connecting an ion-pair in the title compound. Hydrogen atoms not involved in hydrogen bonding, the co-crystallized toluene molecule and the second ion-pair of the asymmetric unit are omitted for clarity. Displacement ellipsoids are drawn at the 30% probability level.
Tricarbonyl(N-diphenylphosphanyl-N,N'-diisopropyl-P-phenylphosphonous diamide-κ2P,P')cobalt(I) tetracarbonylcobaltate(-I) toluene 0.25-solvate top
Crystal data top
[Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8F(000) = 3060
Mr = 745.40Dx = 1.432 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
a = 22.1602 (6) ÅCell parameters from 9777 reflections
b = 12.9730 (3) Åθ = 3.7–66.7°
c = 24.7883 (6) ŵ = 8.79 mm1
β = 103.9330 (12)°T = 150 K
V = 6916.6 (3) Å3Needle, yellow
Z = 80.43 × 0.11 × 0.05 mm
Data collection top
Bruker Kappa APEXII DUO
diffractometer
12171 independent reflections
Radiation source: microfocus11080 reflections with I > 2σ(I)
Multilayer monochromatorRint = 0.044
Detector resolution: 8.3333 pixels mm-1θmax = 66.5°, θmin = 2.4°
ϕ and ω scansh = 2625
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
k = 1514
Tmin = 0.12, Tmax = 0.65l = 2329
89837 measured reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0494P)2 + 7.7784P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
12171 reflectionsΔρmax = 0.93 e Å3
825 parametersΔρmin = 0.57 e Å3
Crystal data top
[Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8V = 6916.6 (3) Å3
Mr = 745.40Z = 8
Monoclinic, P21/nCu Kα radiation
a = 22.1602 (6) ŵ = 8.79 mm1
b = 12.9730 (3) ÅT = 150 K
c = 24.7883 (6) Å0.43 × 0.11 × 0.05 mm
β = 103.9330 (12)°
Data collection top
Bruker Kappa APEXII DUO
diffractometer
12171 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
11080 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.65Rint = 0.044
89837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0384 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.93 e Å3
12171 reflectionsΔρmin = 0.57 e Å3
825 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.26645 (13)0.8434 (2)0.15492 (12)0.0349 (6)
C20.25541 (13)0.7575 (2)0.05615 (13)0.0368 (7)
C30.25514 (13)0.6280 (2)0.15325 (14)0.0384 (7)
C40.12520 (16)0.9773 (2)0.10407 (12)0.0387 (7)
H40.15330.94880.08160.046*
C50.1505 (2)1.0822 (3)0.12626 (17)0.0603 (11)
H5A0.12261.11320.14700.090*
H5B0.15311.12710.09510.090*
H5C0.19191.07370.15100.090*
C60.06036 (18)0.9842 (3)0.06670 (15)0.0571 (10)
H6A0.04720.91590.05140.086*
H6B0.06031.03240.03630.086*
H6C0.03151.00870.08830.086*
C70.15272 (13)0.7513 (2)0.22363 (11)0.0292 (6)
C80.13489 (14)0.6542 (2)0.23867 (12)0.0348 (6)
H80.11630.60620.21070.042*
C90.14415 (16)0.6277 (3)0.29406 (13)0.0446 (8)
H90.13150.56190.30400.053*
C100.17175 (17)0.6966 (3)0.33486 (13)0.0503 (9)
H100.17810.67820.37290.060*
C110.19017 (17)0.7918 (3)0.32061 (13)0.0480 (8)
H110.20940.83900.34890.058*
C120.18085 (14)0.8195 (2)0.26511 (12)0.0374 (7)
H120.19380.88540.25550.045*
C130.02566 (11)0.70193 (17)0.10262 (9)0.0246 (5)
H130.00720.74000.06740.029*
C140.00085 (14)0.7512 (3)0.14945 (13)0.0432 (8)
H14A0.01920.71640.18470.065*
H14B0.04450.74420.14090.065*
H14C0.01200.82440.15260.065*
C150.00114 (14)0.5900 (2)0.09563 (15)0.0422 (7)
H15A0.01620.55600.06610.063*
H15B0.04440.59060.08580.063*
H15C0.01610.55240.13060.063*
C160.09747 (12)0.72904 (19)0.00255 (10)0.0247 (5)
C170.11839 (13)0.8191 (2)0.02320 (11)0.0283 (6)
H170.15350.85460.00170.034*
C180.08784 (14)0.8567 (2)0.07507 (11)0.0337 (6)
H180.10260.91730.08910.040*
C190.03626 (14)0.8065 (2)0.10626 (12)0.0368 (7)
H190.01550.83260.14170.044*
C200.01487 (14)0.7183 (3)0.08597 (12)0.0392 (7)
H200.02090.68420.10730.047*
C210.04531 (13)0.6793 (2)0.03476 (11)0.0329 (6)
H210.03060.61800.02130.039*
C220.14085 (12)0.54130 (19)0.05436 (10)0.0237 (5)
C230.15779 (14)0.5072 (2)0.00688 (11)0.0329 (6)
H230.15930.55420.02210.039*
C240.17251 (16)0.4042 (2)0.00199 (12)0.0411 (7)
H240.18410.38080.03040.049*
C250.17039 (15)0.3355 (2)0.04412 (10)0.0421 (7)
H250.18050.26510.04070.050*
C260.15350 (15)0.3695 (2)0.09130 (12)0.0379 (7)
H260.15170.32200.12000.046*
C270.13923 (13)0.4717 (2)0.09699 (11)0.0299 (6)
H270.12830.49470.12980.036*
C280.58062 (13)0.4567 (2)0.27082 (11)0.0308 (6)
C290.67739 (12)0.5553 (2)0.25305 (10)0.0277 (6)
C300.69210 (14)0.3421 (2)0.26735 (11)0.0335 (6)
C310.58671 (12)0.6413 (2)0.12397 (11)0.0259 (5)
H310.56900.61430.15470.031*
C320.53701 (14)0.6327 (3)0.06988 (12)0.0399 (7)
H32A0.55350.65850.03920.060*
H32B0.50070.67370.07250.060*
H32C0.52480.56040.06310.060*
C330.60641 (15)0.7521 (2)0.13732 (13)0.0380 (7)
H33A0.63850.75450.17230.057*
H33B0.57040.79280.14100.057*
H33C0.62310.78060.10730.057*
C340.73787 (11)0.4484 (2)0.14454 (10)0.0238 (5)
C350.76054 (13)0.3498 (2)0.13827 (11)0.0320 (6)
H350.73370.29180.13480.038*
C360.82267 (14)0.3365 (3)0.13713 (12)0.0399 (7)
H360.83810.26940.13280.048*
C370.86170 (13)0.4201 (3)0.14227 (12)0.0406 (7)
H370.90390.41070.14120.049*
C380.83978 (13)0.5175 (3)0.14893 (12)0.0382 (7)
H380.86710.57500.15260.046*
C390.77817 (13)0.5323 (2)0.15025 (11)0.0296 (6)
H390.76340.59960.15500.036*
C400.59574 (12)0.3382 (2)0.05627 (10)0.0267 (5)
H400.55050.35510.04350.032*
C410.60339 (16)0.2242 (2)0.04650 (12)0.0372 (7)
H41A0.64740.20550.05870.056*
H41B0.58830.20890.00680.056*
H41C0.57940.18430.06770.056*
C420.63040 (15)0.4023 (2)0.02205 (11)0.0345 (6)
H42A0.62150.47550.02600.052*
H42B0.61680.38240.01720.052*
H42C0.67520.39020.03520.052*
C430.58053 (13)0.2016 (2)0.18317 (10)0.0276 (6)
C440.53245 (15)0.1575 (2)0.20273 (12)0.0364 (7)
H440.49730.19770.20510.044*
C450.53624 (17)0.0543 (3)0.21875 (13)0.0458 (8)
H450.50370.02400.23220.055*
C460.58709 (18)0.0042 (2)0.21511 (12)0.0458 (8)
H460.58920.07470.22570.055*
C470.63477 (16)0.0394 (2)0.19621 (12)0.0405 (7)
H470.66970.00130.19380.049*
C480.63226 (14)0.1421 (2)0.18073 (11)0.0332 (6)
H480.66570.17200.16850.040*
C490.49608 (12)0.3638 (2)0.13700 (10)0.0263 (5)
C500.46769 (12)0.4538 (2)0.14867 (11)0.0296 (6)
H500.48990.50050.17580.036*
C510.40676 (13)0.4755 (2)0.12067 (12)0.0367 (7)
H510.38750.53710.12860.044*
C520.37425 (14)0.4077 (3)0.08138 (13)0.0404 (7)
H520.33270.42300.06230.049*
C530.40198 (14)0.3178 (3)0.06969 (12)0.0397 (7)
H530.37940.27160.04250.048*
C540.46254 (13)0.2946 (2)0.09748 (11)0.0331 (6)
H540.48120.23220.08980.040*
C550.42419 (15)0.8392 (3)0.26588 (12)0.0401 (7)
C560.52940 (14)0.7284 (2)0.24900 (11)0.0316 (6)
C570.42198 (14)0.7594 (2)0.15653 (12)0.0349 (6)
C580.41993 (13)0.6173 (2)0.24610 (11)0.0338 (6)
C590.14719 (16)0.1170 (3)0.95283 (15)0.0474 (8)
C600.25789 (16)0.0432 (2)1.02628 (14)0.0439 (8)
C610.26473 (15)0.2103 (3)0.95163 (13)0.0412 (7)
C620.23996 (18)0.0006 (3)0.91221 (15)0.0587 (10)
Co10.22216 (2)0.74279 (3)0.11504 (2)0.02425 (10)
Co20.63667 (2)0.43778 (3)0.23007 (2)0.02064 (10)
Co30.44772 (2)0.73693 (3)0.22886 (2)0.02648 (11)
Co40.22726 (2)0.09426 (4)0.95973 (2)0.03635 (12)
N10.12681 (11)0.90667 (17)0.15071 (10)0.0306 (5)
N20.09256 (10)0.70471 (16)0.11124 (9)0.0243 (4)
N30.64182 (10)0.57857 (16)0.12197 (9)0.0234 (4)
N40.61636 (10)0.36438 (16)0.11707 (8)0.0218 (4)
O10.29238 (11)0.90745 (18)0.18266 (10)0.0517 (6)
O20.27494 (12)0.7675 (2)0.01802 (11)0.0610 (7)
O30.27388 (12)0.5557 (2)0.17721 (13)0.0676 (8)
O40.54660 (11)0.46924 (18)0.29796 (9)0.0458 (5)
O50.70530 (9)0.62862 (16)0.26537 (8)0.0380 (5)
O60.72663 (12)0.28503 (19)0.29185 (10)0.0553 (6)
O70.41050 (14)0.9060 (2)0.29101 (10)0.0648 (8)
O80.58259 (10)0.72001 (18)0.26369 (9)0.0455 (5)
O90.40486 (12)0.7722 (2)0.10943 (9)0.0554 (6)
O100.40428 (11)0.53707 (18)0.25765 (10)0.0492 (6)
O110.09514 (12)0.1332 (2)0.95002 (13)0.0701 (8)
O120.27831 (15)0.0082 (2)1.06974 (11)0.0703 (8)
O130.28943 (12)0.2881 (2)0.94823 (11)0.0555 (6)
O140.24920 (18)0.0636 (3)0.88265 (13)0.0971 (12)
P10.14487 (3)0.78514 (5)0.15180 (3)0.02196 (13)
P20.13585 (3)0.67810 (5)0.06516 (2)0.02233 (14)
P30.65869 (3)0.46497 (5)0.14979 (2)0.01982 (13)
P40.57780 (3)0.33814 (5)0.16712 (2)0.02187 (13)
H10.1107 (15)0.931 (3)0.1765 (11)0.046 (10)*
H30.6629 (13)0.603 (2)0.0999 (11)0.040 (9)*
C630.46917 (16)0.0090 (4)0.02383 (17)0.0476 (16)*0.5
C640.52811 (19)0.0277 (3)0.04918 (13)0.0308 (12)*0.5
H640.53810.04480.08760.037*0.5
C650.57243 (14)0.0394 (4)0.0184 (2)0.0521 (17)*0.5
H650.61270.06440.03570.062*0.5
C660.55781 (19)0.0143 (4)0.03781 (19)0.0560 (19)*0.5
H660.58810.02230.05890.067*0.5
C670.4989 (2)0.0223 (4)0.06317 (13)0.0567 (18)*0.5
H670.48890.03940.10160.068*0.5
C680.45455 (15)0.0340 (4)0.03235 (17)0.0410 (14)*0.5
H680.41430.05910.04970.049*0.5
C690.4213 (4)0.0175 (8)0.0563 (4)0.073 (2)*0.5
H69A0.38270.04440.03250.110*0.5
H69B0.41360.05070.07030.110*0.5
H69C0.43610.06440.08770.110*0.5
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0331 (15)0.0352 (16)0.0358 (15)0.0044 (13)0.0071 (12)0.0001 (13)
C20.0273 (14)0.0455 (18)0.0386 (16)0.0011 (13)0.0099 (13)0.0077 (14)
C30.0261 (14)0.0319 (16)0.0515 (18)0.0030 (12)0.0016 (13)0.0017 (14)
C40.0578 (19)0.0275 (15)0.0358 (15)0.0094 (14)0.0211 (14)0.0036 (12)
C50.103 (3)0.0238 (17)0.064 (2)0.0030 (18)0.040 (2)0.0042 (16)
C60.062 (2)0.063 (2)0.0479 (19)0.0244 (19)0.0146 (17)0.0098 (18)
C70.0313 (14)0.0300 (15)0.0259 (13)0.0053 (11)0.0062 (11)0.0057 (11)
C80.0430 (16)0.0257 (15)0.0365 (15)0.0071 (12)0.0114 (13)0.0033 (12)
C90.059 (2)0.0366 (17)0.0432 (18)0.0176 (15)0.0215 (15)0.0124 (14)
C100.068 (2)0.054 (2)0.0285 (16)0.0254 (18)0.0115 (15)0.0094 (15)
C110.060 (2)0.052 (2)0.0280 (15)0.0149 (17)0.0038 (14)0.0061 (14)
C120.0458 (17)0.0331 (16)0.0315 (15)0.0026 (13)0.0056 (13)0.0034 (12)
C130.0241 (12)0.0321 (14)0.0225 (12)0.0157 (11)0.0152 (10)0.0105 (11)
C140.0346 (16)0.0487 (19)0.0525 (19)0.0037 (14)0.0228 (14)0.0057 (15)
C150.0276 (15)0.0387 (17)0.061 (2)0.0103 (13)0.0125 (14)0.0064 (15)
C160.0299 (13)0.0203 (13)0.0244 (13)0.0029 (10)0.0074 (10)0.0026 (10)
C170.0325 (14)0.0262 (14)0.0280 (13)0.0012 (11)0.0107 (11)0.0032 (11)
C180.0467 (17)0.0284 (15)0.0294 (14)0.0079 (12)0.0156 (13)0.0052 (12)
C190.0421 (16)0.0413 (17)0.0254 (14)0.0169 (14)0.0051 (12)0.0010 (13)
C200.0347 (15)0.0440 (18)0.0341 (15)0.0054 (13)0.0013 (12)0.0081 (13)
C210.0358 (15)0.0302 (15)0.0305 (14)0.0014 (12)0.0038 (12)0.0034 (12)
C220.0263 (12)0.0168 (12)0.0266 (13)0.0023 (10)0.0035 (10)0.0057 (10)
C230.0431 (16)0.0297 (15)0.0260 (13)0.0050 (12)0.0086 (12)0.0016 (11)
C240.058 (2)0.0323 (16)0.0341 (16)0.0108 (14)0.0126 (14)0.0070 (13)
C250.0562 (19)0.0223 (15)0.0483 (18)0.0065 (13)0.0137 (15)0.0055 (13)
C260.0497 (18)0.0220 (14)0.0435 (17)0.0017 (13)0.0141 (14)0.0037 (12)
C270.0370 (15)0.0225 (14)0.0316 (14)0.0025 (11)0.0111 (11)0.0017 (11)
C280.0402 (16)0.0252 (14)0.0274 (13)0.0006 (12)0.0088 (12)0.0016 (11)
C290.0309 (14)0.0301 (15)0.0217 (12)0.0052 (12)0.0057 (10)0.0010 (11)
C300.0425 (16)0.0292 (15)0.0267 (14)0.0040 (13)0.0045 (12)0.0010 (12)
C310.0271 (13)0.0229 (13)0.0284 (13)0.0072 (10)0.0085 (10)0.0048 (11)
C320.0358 (16)0.0500 (19)0.0314 (15)0.0119 (14)0.0035 (12)0.0052 (14)
C330.0496 (18)0.0221 (14)0.0458 (17)0.0091 (13)0.0182 (14)0.0039 (13)
C340.0259 (13)0.0280 (14)0.0174 (11)0.0044 (10)0.0050 (10)0.0019 (10)
C350.0336 (14)0.0312 (15)0.0309 (14)0.0070 (12)0.0074 (11)0.0018 (12)
C360.0386 (16)0.0489 (19)0.0332 (15)0.0211 (15)0.0102 (12)0.0004 (14)
C370.0260 (14)0.065 (2)0.0319 (15)0.0107 (14)0.0091 (12)0.0035 (14)
C380.0265 (14)0.055 (2)0.0332 (15)0.0051 (13)0.0074 (11)0.0022 (14)
C390.0317 (14)0.0311 (15)0.0262 (13)0.0006 (11)0.0073 (11)0.0001 (11)
C400.0323 (14)0.0279 (14)0.0193 (12)0.0003 (11)0.0047 (10)0.0017 (10)
C410.0565 (19)0.0288 (15)0.0279 (14)0.0056 (13)0.0134 (13)0.0059 (12)
C420.0522 (18)0.0325 (16)0.0209 (13)0.0021 (13)0.0126 (12)0.0000 (11)
C430.0389 (15)0.0214 (13)0.0212 (12)0.0057 (11)0.0046 (11)0.0000 (10)
C440.0478 (17)0.0311 (16)0.0316 (14)0.0071 (13)0.0121 (13)0.0026 (12)
C450.065 (2)0.0358 (18)0.0384 (17)0.0171 (16)0.0149 (15)0.0074 (14)
C460.080 (2)0.0210 (15)0.0310 (15)0.0076 (16)0.0035 (15)0.0036 (12)
C470.060 (2)0.0227 (15)0.0348 (15)0.0058 (14)0.0037 (14)0.0009 (12)
C480.0438 (16)0.0224 (14)0.0315 (14)0.0005 (12)0.0052 (12)0.0007 (11)
C490.0276 (13)0.0278 (14)0.0244 (12)0.0022 (11)0.0083 (10)0.0028 (11)
C500.0294 (14)0.0310 (15)0.0299 (14)0.0017 (11)0.0098 (11)0.0022 (12)
C510.0325 (15)0.0393 (17)0.0399 (16)0.0047 (13)0.0120 (12)0.0091 (13)
C520.0286 (14)0.054 (2)0.0374 (16)0.0003 (14)0.0063 (12)0.0116 (14)
C530.0371 (16)0.0511 (19)0.0285 (14)0.0126 (14)0.0034 (12)0.0005 (14)
C540.0337 (15)0.0361 (16)0.0295 (14)0.0038 (12)0.0074 (11)0.0001 (12)
C550.0498 (18)0.0395 (18)0.0292 (15)0.0122 (14)0.0060 (13)0.0030 (14)
C560.0402 (17)0.0268 (14)0.0284 (14)0.0024 (12)0.0094 (12)0.0023 (11)
C570.0342 (15)0.0372 (16)0.0335 (16)0.0019 (12)0.0084 (12)0.0022 (13)
C580.0326 (14)0.0422 (18)0.0272 (14)0.0020 (13)0.0085 (11)0.0028 (13)
C590.046 (2)0.0408 (19)0.054 (2)0.0012 (15)0.0078 (15)0.0026 (15)
C600.057 (2)0.0323 (17)0.0434 (19)0.0089 (15)0.0130 (15)0.0044 (14)
C610.0395 (16)0.052 (2)0.0347 (16)0.0096 (15)0.0146 (13)0.0109 (15)
C620.058 (2)0.072 (3)0.0418 (19)0.015 (2)0.0039 (16)0.0135 (19)
Co10.0222 (2)0.0224 (2)0.0275 (2)0.00050 (16)0.00468 (17)0.00343 (17)
Co20.0264 (2)0.0172 (2)0.01802 (19)0.00094 (16)0.00476 (15)0.00057 (15)
Co30.0298 (2)0.0261 (2)0.0237 (2)0.00174 (17)0.00678 (17)0.00064 (17)
Co40.0363 (3)0.0368 (3)0.0357 (3)0.0031 (2)0.0083 (2)0.0046 (2)
N10.0434 (13)0.0199 (12)0.0313 (12)0.0052 (10)0.0147 (10)0.0033 (9)
N20.0260 (11)0.0217 (11)0.0251 (11)0.0002 (9)0.0061 (9)0.0036 (9)
N30.0268 (11)0.0207 (11)0.0249 (11)0.0044 (9)0.0105 (9)0.0044 (9)
N40.0285 (11)0.0184 (10)0.0191 (10)0.0001 (8)0.0067 (8)0.0001 (8)
O10.0507 (14)0.0445 (14)0.0541 (14)0.0169 (11)0.0014 (11)0.0130 (11)
O20.0473 (14)0.094 (2)0.0504 (14)0.0018 (13)0.0283 (12)0.0065 (14)
O30.0497 (14)0.0401 (14)0.097 (2)0.0078 (12)0.0137 (14)0.0197 (14)
O40.0544 (13)0.0510 (14)0.0409 (12)0.0026 (11)0.0290 (11)0.0010 (10)
O50.0402 (11)0.0326 (11)0.0392 (11)0.0102 (9)0.0055 (9)0.0072 (9)
O60.0651 (16)0.0451 (14)0.0465 (13)0.0258 (12)0.0048 (12)0.0053 (11)
O70.093 (2)0.0541 (16)0.0451 (14)0.0320 (15)0.0130 (13)0.0114 (12)
O80.0317 (12)0.0534 (14)0.0494 (13)0.0013 (10)0.0058 (10)0.0061 (11)
O90.0607 (15)0.0723 (18)0.0299 (12)0.0053 (13)0.0044 (11)0.0079 (11)
O100.0568 (14)0.0454 (14)0.0480 (13)0.0147 (11)0.0176 (11)0.0109 (11)
O110.0411 (15)0.0700 (19)0.097 (2)0.0080 (13)0.0119 (14)0.0024 (16)
O120.105 (2)0.0587 (17)0.0426 (15)0.0054 (16)0.0096 (14)0.0110 (13)
O130.0536 (14)0.0556 (16)0.0618 (16)0.0015 (12)0.0226 (12)0.0213 (13)
O140.112 (3)0.112 (3)0.0626 (19)0.035 (2)0.0114 (18)0.043 (2)
P10.0280 (3)0.0161 (3)0.0218 (3)0.0006 (2)0.0061 (2)0.0033 (2)
P20.0286 (3)0.0172 (3)0.0208 (3)0.0005 (2)0.0051 (2)0.0027 (2)
P30.0231 (3)0.0169 (3)0.0196 (3)0.0016 (2)0.0055 (2)0.0007 (2)
P40.0270 (3)0.0187 (3)0.0202 (3)0.0010 (2)0.0062 (2)0.0004 (2)
Geometric parameters (Å, º) top
C1—O11.142 (4)C37—C381.378 (5)
C1—Co11.782 (3)C37—H370.9500
C2—O21.138 (4)C38—C391.387 (4)
C2—Co11.797 (3)C38—H380.9500
C3—O31.134 (4)C39—H390.9500
C3—Co11.821 (3)C40—N41.505 (3)
C4—N11.469 (4)C40—C411.515 (4)
C4—C61.513 (5)C40—C421.521 (4)
C4—C51.523 (5)C40—H401.0000
C4—H41.0000C41—H41A0.9800
C5—H5A0.9800C41—H41B0.9800
C5—H5B0.9800C41—H41C0.9800
C5—H5C0.9800C42—H42A0.9800
C6—H6A0.9800C42—H42B0.9800
C6—H6B0.9800C42—H42C0.9800
C6—H6C0.9800C43—C441.395 (4)
C7—C121.386 (4)C43—C481.396 (4)
C7—C81.397 (4)C43—P41.813 (3)
C7—P11.801 (3)C44—C451.394 (4)
C8—C91.382 (4)C44—H440.9500
C8—H80.9500C45—C461.379 (5)
C9—C101.377 (5)C45—H450.9500
C9—H90.9500C46—C471.376 (5)
C10—C111.374 (5)C46—H460.9500
C10—H100.9500C47—C481.384 (4)
C11—C121.388 (4)C47—H470.9500
C11—H110.9500C48—H480.9500
C12—H120.9500C49—C501.389 (4)
C13—N21.446 (3)C49—C541.402 (4)
C13—C141.538 (3)C49—P41.816 (3)
C13—C151.546 (3)C50—C511.390 (4)
C13—H131.0000C50—H500.9500
C14—H14A0.9800C51—C521.379 (5)
C14—H14B0.9800C51—H510.9500
C14—H14C0.9800C52—C531.382 (5)
C15—H15A0.9800C52—H520.9500
C15—H15B0.9800C53—C541.386 (4)
C15—H15C0.9800C53—H530.9500
C16—C211.395 (4)C54—H540.9500
C16—C171.398 (4)C55—O71.149 (4)
C16—P21.814 (3)C55—Co31.762 (3)
C17—C181.389 (4)C56—O81.152 (4)
C17—H170.9500C56—Co31.761 (3)
C18—C191.379 (4)C57—O91.149 (4)
C18—H180.9500C57—Co31.770 (3)
C19—C201.379 (5)C58—O101.155 (4)
C19—H190.9500C58—Co31.760 (3)
C20—C211.382 (4)C59—O111.158 (4)
C20—H200.9500C59—Co41.766 (4)
C21—H210.9500C60—O121.156 (4)
C22—C231.391 (4)C60—Co41.755 (3)
C22—C271.397 (4)C61—O131.161 (4)
C22—P21.802 (3)C61—Co41.754 (4)
C23—C241.387 (4)C62—O141.159 (5)
C23—H230.9500C62—Co41.761 (4)
C24—C251.382 (3)Co1—P22.1800 (7)
C24—H240.9500Co1—P12.1948 (7)
C25—C261.383 (3)Co2—P32.1884 (7)
C25—H250.9500Co2—P42.1971 (7)
C26—C271.377 (4)N1—P11.625 (2)
C26—H260.9500N1—H10.865 (10)
C27—H270.9500N2—P21.695 (2)
C28—O41.137 (3)N2—P11.698 (2)
C28—Co21.797 (3)N3—P31.632 (2)
C29—O51.136 (3)N3—H30.862 (10)
C29—Co21.793 (3)N4—P31.695 (2)
C30—O61.131 (4)N4—P41.702 (2)
C30—Co21.832 (3)P1—P22.5246 (8)
C31—N31.478 (3)P3—P42.5445 (9)
C31—C331.515 (4)C63—C641.3900
C31—C321.521 (4)C63—C681.3900
C31—H311.0000C63—C691.482 (10)
C32—H32A0.9800C64—C651.3900
C32—H32B0.9800C64—H640.9500
C32—H32C0.9800C65—C661.3900
C33—H33A0.9800C65—H650.9500
C33—H33B0.9800C66—C671.3900
C33—H33C0.9800C66—H660.9500
C34—C391.394 (4)C67—C681.3900
C34—C351.396 (4)C67—H670.9500
C34—P31.804 (3)C68—H680.9500
C35—C361.394 (4)C69—H69A0.9800
C35—H350.9500C69—H69B0.9800
C36—C371.374 (5)C69—H69C0.9800
C36—H360.9500
O1—C1—Co1175.7 (3)C44—C43—C48119.5 (3)
O2—C2—Co1178.2 (3)C44—C43—P4119.3 (2)
O3—C3—Co1177.9 (3)C48—C43—P4121.0 (2)
N1—C4—C6111.0 (3)C45—C44—C43119.6 (3)
N1—C4—C5109.6 (3)C45—C44—H44120.2
C6—C4—C5112.4 (3)C43—C44—H44120.2
N1—C4—H4107.9C46—C45—C44120.2 (3)
C6—C4—H4107.9C46—C45—H45119.9
C5—C4—H4107.9C44—C45—H45119.9
C4—C5—H5A109.5C47—C46—C45120.2 (3)
C4—C5—H5B109.5C47—C46—H46119.9
H5A—C5—H5B109.5C45—C46—H46119.9
C4—C5—H5C109.5C46—C47—C48120.5 (3)
H5A—C5—H5C109.5C46—C47—H47119.8
H5B—C5—H5C109.5C48—C47—H47119.8
C4—C6—H6A109.5C47—C48—C43120.0 (3)
C4—C6—H6B109.5C47—C48—H48120.0
H6A—C6—H6B109.5C43—C48—H48120.0
C4—C6—H6C109.5C50—C49—C54119.5 (3)
H6A—C6—H6C109.5C50—C49—P4121.7 (2)
H6B—C6—H6C109.5C54—C49—P4118.6 (2)
C12—C7—C8118.9 (3)C49—C50—C51120.0 (3)
C12—C7—P1119.8 (2)C49—C50—H50120.0
C8—C7—P1121.2 (2)C51—C50—H50120.0
C9—C8—C7120.4 (3)C52—C51—C50120.2 (3)
C9—C8—H8119.8C52—C51—H51119.9
C7—C8—H8119.8C50—C51—H51119.9
C10—C9—C8120.1 (3)C51—C52—C53120.2 (3)
C10—C9—H9120.0C51—C52—H52119.9
C8—C9—H9120.0C53—C52—H52119.9
C11—C10—C9120.1 (3)C52—C53—C54120.3 (3)
C11—C10—H10119.9C52—C53—H53119.8
C9—C10—H10119.9C54—C53—H53119.8
C10—C11—C12120.3 (3)C53—C54—C49119.7 (3)
C10—C11—H11119.8C53—C54—H54120.1
C12—C11—H11119.8C49—C54—H54120.1
C7—C12—C11120.2 (3)O7—C55—Co3178.1 (3)
C7—C12—H12119.9O8—C56—Co3177.4 (3)
C11—C12—H12119.9O9—C57—Co3178.7 (3)
N2—C13—C14114.7 (2)O10—C58—Co3177.0 (3)
N2—C13—C15111.11 (19)O11—C59—Co4177.8 (3)
C14—C13—C15107.2 (2)O12—C60—Co4178.9 (3)
N2—C13—H13107.9O13—C61—Co4177.5 (3)
C14—C13—H13107.9O14—C62—Co4177.3 (4)
C15—C13—H13107.9C1—Co1—C295.41 (14)
C13—C14—H14A109.5C1—Co1—C3102.23 (14)
C13—C14—H14B109.5C2—Co1—C3108.51 (15)
H14A—C14—H14B109.5C1—Co1—P2152.54 (10)
C13—C14—H14C109.5C2—Co1—P293.17 (10)
H14A—C14—H14C109.5C3—Co1—P299.65 (9)
H14B—C14—H14C109.5C1—Co1—P188.11 (10)
C13—C15—H15A109.5C2—Co1—P1145.53 (10)
C13—C15—H15B109.5C3—Co1—P1104.15 (10)
H15A—C15—H15B109.5P2—Co1—P170.49 (3)
C13—C15—H15C109.5C29—Co2—C2893.93 (12)
H15A—C15—H15C109.5C29—Co2—C30101.01 (12)
H15B—C15—H15C109.5C28—Co2—C30106.21 (13)
C21—C16—C17118.6 (2)C29—Co2—P386.94 (8)
C21—C16—P2120.0 (2)C28—Co2—P3145.58 (9)
C17—C16—P2121.3 (2)C30—Co2—P3107.38 (9)
C18—C17—C16120.1 (3)C29—Co2—P4153.27 (9)
C18—C17—H17120.0C28—Co2—P496.14 (9)
C16—C17—H17120.0C30—Co2—P499.84 (9)
C19—C18—C17120.4 (3)P3—Co2—P470.93 (2)
C19—C18—H18119.8C58—Co3—C56105.75 (13)
C17—C18—H18119.8C58—Co3—C55111.89 (14)
C20—C19—C18119.9 (3)C56—Co3—C55108.22 (14)
C20—C19—H19120.1C58—Co3—C57110.19 (14)
C18—C19—H19120.1C56—Co3—C57110.86 (13)
C19—C20—C21120.3 (3)C55—Co3—C57109.85 (14)
C19—C20—H20119.9C61—Co4—C60110.15 (15)
C21—C20—H20119.9C61—Co4—C62111.04 (18)
C20—C21—C16120.7 (3)C60—Co4—C62106.30 (17)
C20—C21—H21119.7C61—Co4—C59109.74 (15)
C16—C21—H21119.7C60—Co4—C59107.83 (17)
C23—C22—C27119.7 (2)C62—Co4—C59111.68 (17)
C23—C22—P2118.6 (2)C4—N1—P1125.26 (19)
C27—C22—P2120.70 (19)C4—N1—H1114 (2)
C24—C23—C22119.8 (3)P1—N1—H1119 (2)
C24—C23—H23120.1C13—N2—P2128.44 (16)
C22—C23—H23120.1C13—N2—P1129.22 (16)
C25—C24—C23120.2 (3)P2—N2—P196.18 (11)
C25—C24—H24119.9C31—N3—P3126.15 (17)
C23—C24—H24119.9C31—N3—H3113 (2)
C24—C25—C26119.9 (3)P3—N3—H3120 (2)
C24—C25—H25120.0C40—N4—P3130.76 (17)
C26—C25—H25120.0C40—N4—P4126.89 (17)
C27—C26—C25120.6 (3)P3—N4—P497.02 (10)
C27—C26—H26119.7N1—P1—N2117.14 (12)
C25—C26—H26119.7N1—P1—C7102.57 (12)
C26—C27—C22119.7 (3)N2—P1—C7108.97 (12)
C26—C27—H27120.1N1—P1—Co1116.72 (9)
C22—C27—H27120.1N2—P1—Co195.18 (8)
O4—C28—Co2177.9 (3)C7—P1—Co1116.75 (9)
O5—C29—Co2175.8 (2)N1—P1—P2123.42 (9)
O6—C30—Co2177.8 (3)C7—P1—P2132.52 (9)
N3—C31—C33109.4 (2)Co1—P1—P254.48 (2)
N3—C31—C32111.0 (2)N2—P2—C22111.46 (11)
C33—C31—C32111.8 (2)N2—P2—C16109.52 (11)
N3—C31—H31108.2C22—P2—C16104.67 (12)
C33—C31—H31108.2N2—P2—Co195.80 (8)
C32—C31—H31108.2C22—P2—Co1112.73 (8)
C31—C32—H32A109.5C16—P2—Co1122.45 (9)
C31—C32—H32B109.5N2—P2—P141.95 (7)
H32A—C32—H32B109.5C22—P2—P1132.29 (9)
C31—C32—H32C109.5C16—P2—P1120.68 (8)
H32A—C32—H32C109.5Co1—P2—P155.03 (2)
H32B—C32—H32C109.5N3—P3—N4116.68 (11)
C31—C33—H33A109.5N3—P3—C34101.84 (11)
C31—C33—H33B109.5N4—P3—C34108.01 (11)
H33A—C33—H33B109.5N3—P3—Co2116.83 (8)
C31—C33—H33C109.5N4—P3—Co295.29 (7)
H33A—C33—H33C109.5C34—P3—Co2118.70 (8)
H33B—C33—H33C109.5N3—P3—P4123.80 (8)
C39—C34—C35119.2 (2)C34—P3—P4132.22 (9)
C39—C34—P3120.7 (2)Co2—P3—P454.69 (2)
C35—C34—P3120.0 (2)N4—P4—C43111.06 (11)
C36—C35—C34119.9 (3)N4—P4—C49106.85 (11)
C36—C35—H35120.0C43—P4—C49104.25 (12)
C34—C35—H35120.0N4—P4—Co294.80 (7)
C37—C36—C35120.2 (3)C43—P4—Co2115.86 (9)
C37—C36—H36119.9C49—P4—Co2123.18 (9)
C35—C36—H36119.9C43—P4—P3132.93 (9)
C36—C37—C38120.2 (3)C49—P4—P3119.05 (9)
C36—C37—H37119.9Co2—P4—P354.38 (2)
C38—C37—H37119.9C64—C63—C68120.0
C37—C38—C39120.5 (3)C64—C63—C69119.8 (5)
C37—C38—H38119.8C68—C63—C69120.2 (5)
C39—C38—H38119.8C65—C64—C63120.0
C38—C39—C34120.0 (3)C65—C64—H64120.0
C38—C39—H39120.0C63—C64—H64120.0
C34—C39—H39120.0C64—C65—C66120.0
N4—C40—C41111.2 (2)C64—C65—H65120.0
N4—C40—C42111.3 (2)C66—C65—H65120.0
C41—C40—C42110.7 (2)C67—C66—C65120.0
N4—C40—H40107.8C67—C66—H66120.0
C41—C40—H40107.8C65—C66—H66120.0
C42—C40—H40107.8C68—C67—C66120.0
C40—C41—H41A109.5C68—C67—H67120.0
C40—C41—H41B109.5C66—C67—H67120.0
H41A—C41—H41B109.5C67—C68—C63120.0
C40—C41—H41C109.5C67—C68—H68120.0
H41A—C41—H41C109.5C63—C68—H68120.0
H41B—C41—H41C109.5C63—C69—H69A109.5
C40—C42—H42A109.5C63—C69—H69B109.5
C40—C42—H42B109.5H69A—C69—H69B109.5
H42A—C42—H42B109.5C63—C69—H69C109.5
C40—C42—H42C109.5H69A—C69—H69C109.5
H42A—C42—H42C109.5H69B—C69—H69C109.5
H42B—C42—H42C109.5
C12—C7—C8—C91.2 (4)C8—C7—P1—Co186.4 (2)
P1—C7—C8—C9176.7 (2)C12—C7—P1—P2154.23 (19)
C7—C8—C9—C100.8 (5)C8—C7—P1—P221.2 (3)
C8—C9—C10—C110.0 (5)C13—N2—P2—C2276.0 (2)
C9—C10—C11—C120.3 (5)P1—N2—P2—C22130.11 (11)
C8—C7—C12—C110.9 (4)C13—N2—P2—C1639.3 (2)
P1—C7—C12—C11176.5 (2)P1—N2—P2—C16114.55 (12)
C10—C11—C12—C70.1 (5)C13—N2—P2—Co1166.8 (2)
C21—C16—C17—C180.8 (4)P1—N2—P2—Co112.91 (9)
P2—C16—C17—C18179.6 (2)C13—N2—P2—P1153.9 (3)
C16—C17—C18—C190.9 (4)C23—C22—P2—N2160.8 (2)
C17—C18—C19—C200.2 (4)C27—C22—P2—N230.9 (2)
C18—C19—C20—C210.7 (4)C23—C22—P2—C1642.6 (2)
C19—C20—C21—C160.8 (4)C27—C22—P2—C16149.2 (2)
C17—C16—C21—C200.1 (4)C23—C22—P2—Co192.8 (2)
P2—C16—C21—C20178.8 (2)C27—C22—P2—Co175.5 (2)
C27—C22—C23—C240.5 (4)C23—C22—P2—P1155.44 (17)
P2—C22—C23—C24168.8 (2)C27—C22—P2—P112.8 (3)
C22—C23—C24—C250.0 (5)C21—C16—P2—N274.9 (2)
C23—C24—C25—C260.0 (5)C17—C16—P2—N2104.0 (2)
C24—C25—C26—C270.6 (5)C21—C16—P2—C2244.7 (2)
C25—C26—C27—C221.0 (5)C17—C16—P2—C22136.5 (2)
C23—C22—C27—C261.0 (4)C21—C16—P2—Co1174.48 (18)
P2—C22—C27—C26169.1 (2)C17—C16—P2—Co16.7 (3)
C39—C34—C35—C360.8 (4)C21—C16—P2—P1119.9 (2)
P3—C34—C35—C36176.6 (2)C17—C16—P2—P159.0 (2)
C34—C35—C36—C370.1 (4)C31—N3—P3—N474.6 (2)
C35—C36—C37—C380.4 (4)C31—N3—P3—C34168.1 (2)
C36—C37—C38—C390.3 (4)C31—N3—P3—Co237.1 (2)
C37—C38—C39—C340.3 (4)C31—N3—P3—P426.8 (2)
C35—C34—C39—C380.9 (4)C40—N4—P3—N342.9 (3)
P3—C34—C39—C38176.7 (2)P4—N4—P3—N3111.83 (11)
C48—C43—C44—C451.0 (4)C40—N4—P3—C3471.0 (2)
P4—C43—C44—C45175.6 (2)P4—N4—P3—C34134.29 (11)
C43—C44—C45—C460.2 (5)C40—N4—P3—Co2166.5 (2)
C44—C45—C46—C470.7 (5)P4—N4—P3—Co211.80 (9)
C45—C46—C47—C480.0 (5)C40—N4—P3—P4154.8 (3)
C46—C47—C48—C431.3 (4)C39—C34—P3—N334.8 (2)
C44—C43—C48—C471.8 (4)C35—C34—P3—N3149.4 (2)
P4—C43—C48—C47176.3 (2)C39—C34—P3—N4158.2 (2)
C54—C49—C50—C510.9 (4)C35—C34—P3—N426.0 (2)
P4—C49—C50—C51173.6 (2)C39—C34—P3—Co295.0 (2)
C49—C50—C51—C520.2 (4)C35—C34—P3—Co280.8 (2)
C50—C51—C52—C530.2 (4)C39—C34—P3—P4161.90 (16)
C51—C52—C53—C540.3 (4)C35—C34—P3—P413.9 (3)
C52—C53—C54—C491.0 (4)C40—N4—P4—C4372.0 (2)
C50—C49—C54—C531.4 (4)P3—N4—P4—C43131.83 (11)
P4—C49—C54—C53173.4 (2)C40—N4—P4—C4941.1 (2)
C6—C4—N1—P194.1 (3)P3—N4—P4—C49115.07 (12)
C5—C4—N1—P1141.2 (3)C40—N4—P4—Co2167.91 (19)
C14—C13—N2—P2168.3 (2)P3—N4—P4—Co211.74 (9)
C15—C13—N2—P270.0 (3)C40—N4—P4—P3156.2 (3)
C14—C13—N2—P122.7 (3)C44—C43—P4—N4152.1 (2)
C15—C13—N2—P1144.4 (2)C48—C43—P4—N433.4 (2)
C33—C31—N3—P3135.5 (2)C44—C43—P4—C4937.4 (2)
C32—C31—N3—P3100.6 (3)C48—C43—P4—C49148.1 (2)
C41—C40—N4—P3137.6 (2)C44—C43—P4—Co2101.3 (2)
C42—C40—N4—P313.7 (3)C48—C43—P4—Co273.3 (2)
C41—C40—N4—P474.4 (3)C44—C43—P4—P3165.62 (17)
C42—C40—N4—P4161.70 (19)C48—C43—P4—P38.9 (3)
C4—N1—P1—N271.6 (3)C50—C49—P4—N4101.6 (2)
C4—N1—P1—C7169.2 (2)C54—C49—P4—N473.0 (2)
C4—N1—P1—Co140.2 (3)C50—C49—P4—C43140.7 (2)
C4—N1—P1—P223.2 (3)C54—C49—P4—C4344.6 (2)
C13—N2—P1—N142.8 (3)C50—C49—P4—Co26.0 (3)
P2—N2—P1—N1110.82 (13)C54—C49—P4—Co2179.38 (17)
C13—N2—P1—C773.0 (2)C50—C49—P4—P358.3 (2)
P2—N2—P1—C7133.40 (12)C54—C49—P4—P3116.3 (2)
C13—N2—P1—Co1166.4 (2)C68—C63—C64—C650.0
P2—N2—P1—Co112.81 (9)C69—C63—C64—C65177.7 (6)
C13—N2—P1—P2153.6 (3)C63—C64—C65—C660.0
C12—C7—P1—N139.8 (3)C64—C65—C66—C670.0
C8—C7—P1—N1144.7 (2)C65—C66—C67—C680.0
C12—C7—P1—N2164.6 (2)C66—C67—C68—C630.0
C8—C7—P1—N219.9 (3)C64—C63—C68—C670.0
C12—C7—P1—Co189.1 (2)C69—C63—C68—C67177.7 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10i0.87 (1)2.22 (2)3.041 (3)159 (3)
N3—H3···O13ii0.86 (1)2.27 (1)3.101 (3)163 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O10i0.865 (10)2.218 (16)3.041 (3)159 (3)
N3—H3···O13ii0.862 (10)2.265 (14)3.101 (3)163 (3)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Co(C24H30N2P2)(CO)3][Co(CO)4]·0.25C7H8
Mr745.40
Crystal system, space groupMonoclinic, P21/n
Temperature (K)150
a, b, c (Å)22.1602 (6), 12.9730 (3), 24.7883 (6)
β (°) 103.9330 (12)
V3)6916.6 (3)
Z8
Radiation typeCu Kα
µ (mm1)8.79
Crystal size (mm)0.43 × 0.11 × 0.05
Data collection
DiffractometerBruker Kappa APEXII DUO
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2011)
Tmin, Tmax0.12, 0.65
No. of measured, independent and
observed [I > 2σ(I)] reflections
89837, 12171, 11080
Rint0.044
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.100, 1.03
No. of reflections12171
No. of parameters825
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.93, 0.57

Computer programs: APEX2 (Bruker, 2011), SAINT (Bruker, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

Financial support by the BMBF (project `Light2Hydrogen') is gratefully acknowledged. TB would like to thank Professor Uwe Rosenthal for support.

References

First citationAluri, B., Peulecke, N., Peitz, S., Spannenberg, A., Müller, B. H., Schulz, S., Drexler, H.-J., Heller, D., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A., Müller, W. & Rosenthal, U. (2010). Dalton Trans. 39, 7911–7920.  PubMed Google Scholar
First citationAzhakar, R., Ghadwal, R. S., Roesky, H. W., Hey, J. & Stalke, D. (2012). Chem. Asian J. 7, 528–533.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationBockman, T. M. & Kochi, J. K. (1989). J. Am. Chem. Soc. 111, 4669–4683.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrammer, L., McCann, M. C., Bullock, R. M., McMullan, R. K. & Sherwood, P. (1992). Organometallics, 11, 2339–2341.  CSD CrossRef CAS Web of Science Google Scholar
First citationBrammer, L. & Zhao, D. (1995). Acta Cryst. C51, 45–48.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDulai, A., McMullin, C. L., Tenza, K. & Wass, D. F. (2011). Organometallics, 30, 935–941.  Web of Science CrossRef CAS Google Scholar
First citationFellmann, J. D., Garrou, P. E., Withers, H. P., Seyferth, D. & Traficante, D. D. (1983). Organometallics, 2, 818–825.  CrossRef CAS Web of Science Google Scholar
First citationHan, Z., McNamara, W. R., Eum, M.-S., Holland, P. L. & Eisenberg, R. (2012). Angew. Chem. Int. Ed. 51, 1667–1670.  Web of Science CrossRef CAS Google Scholar
First citationHansen, S., Pohl, M.-M., Klahn, M., Spannenberg, A. & Beweries, T. (2013). ChemSusChem, 6, 92–101.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationKlüfers, P. (1984a). Z. Kristallogr. 167, 253–260.  Google Scholar
First citationKlüfers, P. (1984b). Z. Kristallogr. 167, 275–286.  Google Scholar
First citationMejía, E., Luo, S.-P., Karnahl, M., Friedrich, A., Tschierlei, S., Surkus, A.-E., Junge, H., Gladiali, S., Lochbrunner, S. & Beller, M. (2013). Chem. Eur. J. 19, 15972–15978.  PubMed Google Scholar
First citationPeitz, S., Peulecke, N., Aluri, B. R., Hansen, S., Müller, B. H., Spannenberg, A., Rosenthal, U., Al-Hazmi, M. H., Mosa, F. M., Wöhl, A. & Müller, W. (2010). Eur. J. Inorg. Chem. pp. 1167–1171.  Web of Science CSD CrossRef Google Scholar
First citationRensburg, H. van, Tooze, R. P., Foster, D. F. & Otto, S. (2007). Inorg. Chem. 46, 1963–1965.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, L., Zong, R. & Thummel, R. P. (2014). J. Am. Chem. Soc. 136, 4881–4884.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationUehara, K., Hikichi, S., Inagaki, A. & Akita, M. (2005). Chem. Eur. J. 11, 2788–2809.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Hong, J., Zheng, J., Huang, Z., Zhou, J. (S.) & Xu, R. (2011). J. Am. Chem. Soc. 133, 20680–20683.  Google Scholar
First citationZhang, Z.-Z., Yu, A., Xi, H.-P., Wang, R.-J. & Wang, H.-G. (1994). J. Organomet. Chem. 470, 223–229.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds