research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (E)-4-{2-[4-(all­yl­oxy)phen­yl]diazen­yl}benzoic acid

aUniversity Malaysia Pahang, Faculty of Industrial Sciences and Technology, 26300 Gambang, Kuantan, Pahang, Malaysia, bSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: lutfor73@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 20 September 2014; accepted 28 October 2014; online 15 November 2014)

The title compound, C16H14N2O3, has an E conformation about the azo­benzene [—N=N– = 1.2481 (16) Å] linkage. The benzene rings are almost coplanar [dihedral angle = 1.36 (7)°]. The O atoms of the carb­oxy­lic acid group are disordered over two sets of sites and were refined with an occupancy ratio of 0.5:0.5. The two disordered components of the carb­oxy­lic acid group make dihedral angles of 1.5 (14) and 3.8 (12)° with the benzene ring to which they are attached. In the crystal, mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers. The dimers are connected via C—H⋯O hydrogen bonds, forming ribbons lying parallel to [120]. These ribbons are linked via C—H⋯π inter­actions, forming slabs parallel to (001).

1. Chemical context

It is inter­esting to note that the title compound shows a nematic phase (Cr 190 N 218 I) . Hence, liquid crystallinity may be induced by the formation of hydrogen-bonded dimers. A number of liquid crystal (LC) systems containing hydrogen bonds that function between identical mol­ecules have been reported (Kang & Samulski, 2000[Kang, S. K. & Samulski, E. T. (2000). Liq. Cryst. 27, 371-376.]; Rahman et al., 2012[Rahman, M. L., Kwong, H. C., Mohd. Yusoff, M., Hegde, G., Mohamed Tahir, M. I. & Rahman, M. Z. A. (2012). Acta Cryst. E68, o2958.]). Much attention has been paid to hydrogen-bonded supra­molecular LCs, including LC dimers based on hydrogen-bonding inter­actions and several supra­molecular LC trimers based on hydrogen-bonding inter­actions (Lee et al., 2001[Lee, J. W., Jin, J. I., Achard, M. F. & Hardouin, F. (2001). Liq. Cryst. 28, 663-671.]; Paleos & Tsiourvas, 2001[Paleos, C. M. & Tsiourvas, D. (2001). Liq. Cryst. 28, 1127-1161.]; Takahashi et al., 2003[Takahashi, A., Mallia, V. A. & Tamaoki, N. (2003). J. Mater. Chem. 13, 1582-1587.]; Bai et al., 2007[Bai, B. L., Wang, H., Xin, H., Long, B. & Li, M. (2007). Liq. Cryst. 34, 659-665.]). A particular aspect of photonics, in which the mol­ecular geometry can be controlled by light, is being proposed as a future technology for optical storage devices (Ikeda & Tsutsumi, 1995[Ikeda, T. & Tsutsumi, O. (1995). Science, 268, 1873-1875.]; Jayalaxmi et al., 2009[Jayalakshmi, V., Hegde, G., Nair, G. & Prasad, S. K. (2009). Phys. Chem. Chem. Phys. 11, 6450-6454.]). The heart of the phenomenon in such systems is the reversible photo-induced shape transformation of the mol­ecules containing the photochromic azo­benzene groups. The title compound contains an azo (—N=N—) linkage, it was easy to synthesize and hence cost-effective for the possibility of photochromism and photoisomerization usage (Lutfor et al., 2013a[Lutfor, M. R., Hegde, G., Pour, M. A., Yusoff, M. M. & Kumar, S. (2013a). J. Fluorine Chem. 156, 230-235.],b[Lutfor, M. R., Yusoff, M. M., Srinivasa, H. T., Samah, N. A., Malek, N. F. M. A. & Kumar, S. (2013b). New J. Chem. 37, 2460-2467.]). We report herein on its synthesis and crystal structure.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title mol­ecule is illustrated in Fig. 1[link]. The oxygen atoms forming the carb­oxy­lic acid group are each disordered over two positions and were refined with half occupancy. The carb­oxy­lic acid group (C16/O2/O3) is almost coplanar with the attached benzene ring (C10–C15), making dihedral angles of 3.44 (9) and 3.65 (8)° for the two disorder components. The title compound has an E conformation about the azo­benzene (—N=N—) linkage, the length of the N1—N2 bond is 1.2481 (16) Å and the torsion angle for the azo unit (C7—N1=N2—C10) is 179.99 (10)°, which is comparable with the values of ca ±180° observed in 4,4-azinodi­benzoic acid (Yu & Liu, 2009[Yu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.]) and (E)-ethyl-4-{[4-(deca­noxl­oxy)phen­yl]diazenly} benzoate (Lai et al., 2002[Lai, L.-L., Su, F.-Y., Lin, Y.-J., Ho, C.-H., Wang, E., Hung, C.-H., Liu, Y.-H. & Wang, Y. (2002). Helv. Chim. Acta, 85, 1517-1522.]). The benzene rings (C4–C9) and (C10–C15) are almost coplanar, making a dihedral angle of 1.38 (7)°, compared with 6.79 (9)° in the previously reported compound 4-{(E)-2-[4-(but-3-en-1-yl­oxy)phen­yl]-diazen-1-yl}benzoic acid, (Rahman et al., 2012[Rahman, M. L., Kwong, H. C., Mohd. Yusoff, M., Hegde, G., Mohamed Tahir, M. I. & Rahman, M. Z. A. (2012). Acta Cryst. E68, o2958.]).

[Figure 1]
Figure 1
The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Only one component of the disordered carb­oxy­lic acid group is shown.

3. Supra­molecular features

In the crystal, mol­ecules are linked via pairs of O—H⋯O hydrogen bonds, forming inversion dimers (Table 1[link] and Fig. 2[link]). The dimers are connected via C—H⋯O hydrogen bonds, forming two-mol­ecule-thick ribbons lying parallel to [120]; see Table 1[link] and Fig. 3[link]. Adjacent ribbons are linked via C—H⋯π inter­actions, forming slabs parallel to (001), as shown in Fig. 3[link] (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.90 2.71 (3) 166
C6—H6A⋯O2ii 0.93 2.59 3.367 (15) 145
C3—H3ACg1iii 0.97 2.66 3.504 (2) 145
Symmetry codes: (i) -x-1, -y+2, -z; (ii) -x+1, -y+1, -z; (iii) x+1, y, z.
[Figure 2]
Figure 2
A partial view along the a-axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1[link] for details).
[Figure 3]
Figure 3
A partial view of the crystal packing of the title compound. Blue dashed lines represent the inter­molecular hydrogen bonds within two-mol­ecule-thick chains and the green dashed lines represent the weak inter­molecular C—H⋯π inter­actions (see Table 1[link] for details).

4. Synthesis and crystallization

The title compound was synthesized by a literature procedure (Rahman et al., 2012[Rahman, M. L., Kwong, H. C., Mohd. Yusoff, M., Hegde, G., Mohamed Tahir, M. I. & Rahman, M. Z. A. (2012). Acta Cryst. E68, o2958.]). The diazo­nuim salt was prepared with sodium nitrite and subsequent coupling with phenol to afforded the ethyl 4-[(4-hy­droxy­phen­yl)diazen­yl]benzoate, which was purified by crystallization and recrystallization from methanol. The azo­benzene compound was alkyl­ated with allyl bromide to give ethyl 4-{[4-(all­yloxy)phen­yl]diazen­yl}benzoate, which was purified by crystallization from methanol/chloro­form. The terminal double bonds-containing azo­benzene compound was hydrolysed under basic conditions to yield the title compound. Red plate-like crystals were obtained by crystallization from an ethanol–ethyl acetate mixture (1:1); m.p. 494 K. 1H NMR (CDCl3): δ 8.18 (d, 2H, J = 8.2 Hz), 7.94 (d, 2H, J = 7.1 Hz), 7.93 (d, 2H, J = 6.7 Hz), 7.05 (d, 2H, J = 8.9 Hz), 6.04 (m, 1H, CH=), 5.45 (d, 1H, J = 16.6 Hz, =CH2), 5.31 (d, 1H, J = 10.2 Hz, =CH2), 4.60 (d, 2H, J = 4.1 Hz, OCH2).

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. Atoms O2 and O3 of the carb­oxy­lic acid group are each disordered over two positions and were refined with half occupancy each. The position of the O-bound H atom was located in a difference Fourier map and refined as a riding atom: O—H = 0.82 Å with Uiso(H) = 1.5 Ueq(O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C). Two outlier reflections, 341 and 309, were omitted from the refinement.

Table 2
Experimental details

Crystal data
Chemical formula C16H14N2O3
Mr 282.29
Crystal system, space group Triclinic, P[\overline{1}]
Temperature (K) 294
a, b, c (Å) 5.0279 (4), 8.9678 (7), 15.9913 (13)
α, β, γ (°) 80.571 (2), 83.874 (2), 88.371 (2)
V3) 707.19 (10)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.78 × 0.22 × 0.09
 
Data collection
Diffractometer Bruker APEX DUO CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.931, 0.992
No. of measured, independent and observed [I > 2σ(I)] reflections 12171, 3276, 2344
Rint 0.023
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.138, 1.04
No. of reflections 3276
No. of parameters 211
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

It is inter­esting to note that the title compound shows a nematic phase (Cr 190 N 218 I). Hence, liquid crystallinity may be induced by the formation of hydrogen-bonded dimers. A number of liquid crystal (LC) systems containing hydrogen bonds that function between identical molecules have been reported (Kang & Samulski, 2000; Rahman et al., 2012). Much attention has been paid to hydrogen-bonded supra­molecular LCs, including LC dimers based on hydrogen-bonding inter­actions and several supra­molecular LC trimers based on hydrogen-bonding inter­actions (Lee et al., 2001; Paleos & Tsiourvas, 2001; Takahashi et al., 2003; Bai et al., 2007). A particular aspect of photonics, in which the molecular geometry can be controlled by light, is being proposed as a future technology for optical storage devices (Ikeda & Tsutsumi, 1995; Jayalaxmi et al., 2009). The heart of the phenomenon in such systems is the reversible photo-induced shape transformation of the molecules containing the photochromic azo­benzene groups. The title compound contains an azo (—NN—) linkage, it was easy to synthesize and hence cost-effective for the possibility of photochromism and photoisomerization usage (Lutfor et al., 2013a,b). We report herein on its synthesis and crystal structure.

Structural commentary top

The molecular structure of the title molecule is illustrated in Fig. 1. The oxygen atoms forming the carb­oxy­lic acid group are each disordered over two positions and were refined with half occupancy. The carb­oxy­lic acid group (C16/O2/O3) is almost coplanar with the attached benzene ring (C10–C15), making dihedral angles of 3.44 (9) and 3.65 (8)° for the two disorder components. The title compound has an E conformation about the azo­benzene (—NN—) linkage, the length of N1—N2 bond is 1.2481 (16) Å and the torsion angle for the azo unit (C7—N1N2—C10) is 179.99 (10)°, which is comparable with the values of ca ±180° observed in 4,4-azinodi­benzoic acid (Yu & Liu, 2009) and (E)-ethyl-4-{[4-(decanoxl­oxy)phenyl]­diazenly} benzoate (Lai et al., 2002). The benzene rings (C4–C9) and (C10–C15) are almost coplanar, making a dihedral angle of 1.38 (7)°, compared with 6.79 (9)° in the previously reported compound 4-{(E)-2-[4-(but-3-en-1-yl­oxy)phenyl]-diazen-1-yl}benzoic acid, (Rahman et al., 2012).

Supra­molecular features top

In the crystal, molecules are linked via pairs of O—H···O hydrogen bonds, forming inversion dimers (Table 1 and Fig. 2). The dimers are connected via C—H···O hydrogen bonds, forming two-molecule-thick ribbons lying parallel to (120); see Table 1 and Fig. 3. Adjacent ribbons are linked via C—H···π inter­actions, forming slabs parallel to (001), as shown in Fig. 3 (Table 1).

Synthesis and crystallization top

The title compound was synthesized by a literature procedure (Rahman et al., 2012). The diazo­nuim salt was prepared with sodium nitrite and subsequent coupling with phenol to afforded the ethyl 4-[(4-hy­droxy­phenyl)­diazenyl]benzoate, which was purified by crystallization and recrystallization from methanol. The azo­benzene compound was alkyl­ated with allyl bromide to give ethyl 4-{[4-(allyl­oxy)phenyl]­diazenyl}benzoate, which was purified by crystallization from methanol/chloro­form. The terminal double bonds-containing azo­benzene compound was hydrolysed under basic conditions to yield the title compound. Red plate-like crystals were obtained by crystallization from an ethanol–ethyl acetate mixture (1:1); m.p. 494 K. 1H NMR (CDCl3): δ 8.18 (d, 2H, J = 8.2 Hz), 7.94 (d, 2H, J = 7.1 Hz), 7.93 (d, 2H, J = 6.7 Hz), 7.05 (d, 2H, J = 8.9 Hz), 6.04 (m, 1H, CH=), 5.45 (d, 1H, J = 16.6 Hz, =CH2), 5.31 (d, 1H, J = 10.2 Hz, =CH2), 4.60 (d, 2H, J = 4.1 Hz, OCH2).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. Atoms O2 and O3 of the carb­oxy­lic acid group are each disordered over two positions and were refined with half occupancy each. The position of the O-bound H atom was located in a difference Fourier map and it refined as a riding atom: O—H = 0.82 Å with Uiso(H) = 1.5 Ueq(O). The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93–0.97 Å with Uiso(H) = 1.2Ueq(C). Two outlier reflections, 341 and 309, were omitted from the refinement.

Related literature top

For related literature, see: Bai et al. (2007); Ikeda & Tsutsumi (1995); Jayalaxmi et al. (2009); Kang & Samulski (2000); Lai et al. (2002); Lee et al. (2001); Lutfor et al. (2013a, 2013b); Paleos & Tsiourvas (2001); Rahman et al. (2012); Takahashi et al. (2003); Yu & Liu (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Only one component of the disordered carboxylic acid group is shown.

A partial view along the a-axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1 for details).

A partial view of the crystal packing of the title compound. Blue dashed lines represent the intermolecular hydrogen bonds within two-molecule-thick chains and the green dashed lines represent the weak intermolecular C—H···π interactions (see Table 1 for details).
(E)-4-{2-[4-(Allyloxy)phenyl]diazenyl}benzoic acid top
Crystal data top
C16H14N2O3Z = 2
Mr = 282.29F(000) = 296
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Melting point: 494 K
a = 5.0279 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.9678 (7) ÅCell parameters from 3848 reflections
c = 15.9913 (13) Åθ = 2.5–27.4°
α = 80.571 (2)°µ = 0.09 mm1
β = 83.874 (2)°T = 294 K
γ = 88.371 (2)°Plate, red
V = 707.19 (10) Å30.78 × 0.22 × 0.09 mm
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3276 independent reflections
Radiation source: fine-focus sealed tube2344 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 27.6°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 66
Tmin = 0.931, Tmax = 0.992k = 1111
12171 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0848P]
where P = (Fo2 + 2Fc2)/3
3276 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C16H14N2O3γ = 88.371 (2)°
Mr = 282.29V = 707.19 (10) Å3
Triclinic, P1Z = 2
a = 5.0279 (4) ÅMo Kα radiation
b = 8.9678 (7) ŵ = 0.09 mm1
c = 15.9913 (13) ÅT = 294 K
α = 80.571 (2)°0.78 × 0.22 × 0.09 mm
β = 83.874 (2)°
Data collection top
Bruker APEX DUO CCD area-detector
diffractometer
3276 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2344 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.992Rint = 0.023
12171 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04Δρmax = 0.24 e Å3
3276 reflectionsΔρmin = 0.16 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O11.26119 (18)0.00858 (10)0.39744 (5)0.0464 (3)
O20.234 (5)0.8701 (17)0.0212 (8)0.068 (3)0.50
O30.424 (5)0.940 (2)0.1072 (12)0.0525 (17)0.50
H30.50521.00450.07690.079*0.50
O2X0.392 (5)0.943 (2)0.0945 (13)0.062 (3)0.50
O3X0.267 (5)0.8749 (16)0.0231 (8)0.065 (3)0.50
H3X0.33930.95540.04040.098*0.50
N10.6027 (2)0.37818 (12)0.20184 (7)0.0442 (3)
N20.4446 (2)0.45802 (12)0.24161 (7)0.0444 (3)
C11.6508 (4)0.33243 (19)0.43299 (12)0.0807 (6)
H1A1.59530.38630.39310.097*
H1B1.74120.38180.47750.097*
C21.6019 (3)0.18848 (16)0.42651 (9)0.0538 (4)
H2A1.65990.13780.46740.065*
C31.4597 (3)0.09989 (14)0.35815 (8)0.0437 (3)
H3A1.58440.03640.31820.052*
H3B1.37580.16710.32730.052*
C41.1092 (2)0.08615 (13)0.34590 (7)0.0373 (3)
C51.1259 (3)0.09639 (14)0.25801 (7)0.0421 (3)
H5A1.25040.03840.22970.051*
C60.9539 (3)0.19454 (14)0.21297 (8)0.0438 (3)
H6A0.96260.20130.15410.053*
C70.7698 (3)0.28242 (13)0.25406 (8)0.0395 (3)
C80.7558 (3)0.27159 (14)0.34268 (8)0.0434 (3)
H8A0.63230.33020.37090.052*
C90.9240 (3)0.17465 (14)0.38793 (8)0.0436 (3)
H9A0.91470.16780.44680.052*
C100.2754 (3)0.55478 (13)0.18998 (8)0.0412 (3)
C110.2795 (3)0.56604 (17)0.10240 (9)0.0572 (4)
H11A0.39760.50650.07290.069*
C120.1078 (3)0.66589 (17)0.05898 (9)0.0579 (4)
H12A0.11030.67330.00020.069*
C130.0685 (3)0.75530 (14)0.10282 (8)0.0427 (3)
C140.0730 (3)0.74195 (15)0.19032 (8)0.0463 (3)
H14A0.19140.80100.22010.056*
C150.0973 (3)0.64144 (15)0.23369 (8)0.0455 (3)
H15A0.09190.63220.29260.055*
C160.2538 (3)0.86292 (15)0.05719 (8)0.0461 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0458 (5)0.0547 (5)0.0370 (4)0.0192 (4)0.0066 (4)0.0037 (4)
O20.062 (4)0.097 (5)0.039 (3)0.042 (3)0.008 (2)0.009 (3)
O30.052 (3)0.062 (3)0.041 (5)0.029 (2)0.000 (3)0.009 (3)
O2X0.067 (7)0.076 (3)0.041 (4)0.039 (4)0.006 (4)0.009 (3)
O3X0.071 (6)0.079 (4)0.045 (3)0.045 (3)0.012 (2)0.012 (3)
N10.0475 (6)0.0424 (6)0.0412 (6)0.0075 (5)0.0088 (5)0.0013 (4)
N20.0459 (6)0.0442 (6)0.0423 (6)0.0092 (5)0.0089 (5)0.0032 (4)
C10.1015 (15)0.0604 (10)0.0731 (11)0.0305 (10)0.0072 (10)0.0038 (8)
C20.0522 (8)0.0555 (8)0.0526 (8)0.0157 (7)0.0097 (6)0.0056 (6)
C30.0425 (7)0.0438 (7)0.0446 (6)0.0098 (5)0.0055 (5)0.0081 (5)
C40.0359 (6)0.0389 (6)0.0359 (6)0.0044 (5)0.0062 (5)0.0020 (5)
C50.0418 (7)0.0462 (7)0.0372 (6)0.0100 (5)0.0021 (5)0.0067 (5)
C60.0482 (8)0.0497 (7)0.0324 (6)0.0071 (6)0.0062 (5)0.0031 (5)
C70.0411 (7)0.0372 (6)0.0391 (6)0.0038 (5)0.0081 (5)0.0011 (5)
C80.0464 (7)0.0426 (6)0.0410 (6)0.0123 (5)0.0040 (5)0.0088 (5)
C90.0472 (7)0.0497 (7)0.0339 (6)0.0105 (6)0.0060 (5)0.0072 (5)
C100.0414 (7)0.0389 (6)0.0425 (6)0.0045 (5)0.0097 (5)0.0014 (5)
C110.0620 (9)0.0640 (9)0.0432 (7)0.0305 (7)0.0043 (6)0.0079 (6)
C120.0668 (10)0.0678 (9)0.0360 (6)0.0298 (8)0.0064 (6)0.0039 (6)
C130.0418 (7)0.0426 (7)0.0421 (6)0.0094 (5)0.0067 (5)0.0028 (5)
C140.0465 (8)0.0483 (7)0.0448 (7)0.0132 (6)0.0061 (6)0.0110 (5)
C150.0492 (8)0.0498 (7)0.0383 (6)0.0073 (6)0.0093 (5)0.0076 (5)
C160.0440 (8)0.0490 (7)0.0436 (7)0.0149 (6)0.0046 (6)0.0048 (6)
Geometric parameters (Å, º) top
O1—C41.3613 (14)C5—C61.3868 (17)
O1—C31.4317 (15)C5—H5A0.9300
O2—C161.238 (13)C6—C71.3812 (18)
O3—C161.36 (2)C6—H6A0.9300
O3—H30.8200C7—C81.3989 (17)
O2X—C161.18 (2)C8—C91.3700 (18)
O3X—C161.280 (14)C8—H8A0.9300
O3X—H3X0.8200C9—H9A0.9300
N1—N21.2481 (16)C10—C151.3781 (18)
N1—C71.4195 (16)C10—C111.3855 (19)
N2—C101.4254 (16)C11—C121.3817 (19)
C1—C21.297 (2)C11—H11A0.9300
C1—H1A0.9300C12—C131.3899 (18)
C1—H1B0.9300C12—H12A0.9300
C2—C31.4790 (19)C13—C141.3825 (18)
C2—H2A0.9300C13—C161.4813 (18)
C3—H3A0.9700C14—C151.3801 (18)
C3—H3B0.9700C14—H14A0.9300
C4—C51.3870 (16)C15—H15A0.9300
C4—C91.3956 (17)
C4—O1—C3117.90 (9)C8—C9—C4120.20 (11)
C16—O3—H3109.5C8—C9—H9A119.9
C16—O3X—H3X109.5C4—C9—H9A119.9
N2—N1—C7114.00 (10)C15—C10—C11119.92 (12)
N1—N2—C10114.63 (10)C15—C10—N2114.92 (11)
C2—C1—H1A120.0C11—C10—N2125.15 (12)
C2—C1—H1B120.0C12—C11—C10119.87 (12)
H1A—C1—H1B120.0C12—C11—H11A120.1
C1—C2—C3124.08 (15)C10—C11—H11A120.1
C1—C2—H2A118.0C11—C12—C13120.24 (12)
C3—C2—H2A118.0C11—C12—H12A119.9
O1—C3—C2107.64 (10)C13—C12—H12A119.9
O1—C3—H3A110.2C14—C13—C12119.40 (12)
C2—C3—H3A110.2C14—C13—C16119.70 (11)
O1—C3—H3B110.2C12—C13—C16120.89 (11)
C2—C3—H3B110.2C15—C14—C13120.30 (12)
H3A—C3—H3B108.5C15—C14—H14A119.9
O1—C4—C5124.57 (11)C13—C14—H14A119.9
O1—C4—C9115.09 (10)C10—C15—C14120.24 (12)
C5—C4—C9120.33 (11)C10—C15—H15A119.9
C6—C5—C4118.92 (11)C14—C15—H15A119.9
C6—C5—H5A120.5O2X—C16—O2123.9 (14)
C4—C5—H5A120.5O2X—C16—O3X117.6 (15)
C7—C6—C5121.13 (11)O2—C16—O3X8 (2)
C7—C6—H6A119.4O2X—C16—O37.0 (19)
C5—C6—H6A119.4O2—C16—O3128.6 (14)
C6—C7—C8119.40 (11)O3X—C16—O3121.9 (13)
C6—C7—N1116.43 (11)O2X—C16—C13120.1 (11)
C8—C7—N1124.16 (11)O2—C16—C13115.8 (10)
C9—C8—C7120.02 (11)O3X—C16—C13122.3 (9)
C9—C8—H8A120.0O3—C16—C13115.6 (9)
C7—C8—H8A120.0
C7—N1—N2—C10179.99 (10)C15—C10—C11—C121.0 (2)
C4—O1—C3—C2178.33 (11)N2—C10—C11—C12179.04 (13)
C1—C2—C3—O1132.68 (17)C10—C11—C12—C130.1 (3)
C3—O1—C4—C52.60 (19)C11—C12—C13—C140.9 (2)
C3—O1—C4—C9178.51 (11)C11—C12—C13—C16179.98 (14)
O1—C4—C5—C6178.13 (11)C12—C13—C14—C150.4 (2)
C9—C4—C5—C60.70 (19)C16—C13—C14—C15179.59 (12)
C4—C5—C6—C70.6 (2)C11—C10—C15—C141.5 (2)
C5—C6—C7—C80.3 (2)N2—C10—C15—C14178.60 (11)
C5—C6—C7—N1179.63 (11)C13—C14—C15—C100.7 (2)
N2—N1—C7—C6178.28 (11)C14—C13—C16—O2X4.5 (14)
N2—N1—C7—C82.47 (19)C12—C13—C16—O2X176.3 (14)
C6—C7—C8—C90.1 (2)C14—C13—C16—O2178.8 (10)
N1—C7—C8—C9179.33 (12)C12—C13—C16—O22.0 (11)
C7—C8—C9—C40.2 (2)C14—C13—C16—O3X176.7 (11)
O1—C4—C9—C8178.46 (11)C12—C13—C16—O3X2.5 (11)
C5—C4—C9—C80.5 (2)C14—C13—C16—O31.5 (10)
N1—N2—C10—C15178.98 (11)C12—C13—C16—O3177.7 (10)
N1—N2—C10—C111.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.902.71 (3)166
C6—H6A···O2ii0.932.593.367 (15)145
C3—H3A···Cg1iii0.972.663.504 (2)145
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C4–C9 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O2i0.821.902.71 (3)166
C6—H6A···O2ii0.932.593.367 (15)145
C3—H3A···Cg1iii0.972.663.504 (2)145
Symmetry codes: (i) x1, y+2, z; (ii) x+1, y+1, z; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H14N2O3
Mr282.29
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)5.0279 (4), 8.9678 (7), 15.9913 (13)
α, β, γ (°)80.571 (2), 83.874 (2), 88.371 (2)
V3)707.19 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.78 × 0.22 × 0.09
Data collection
DiffractometerBruker APEX DUO CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.931, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
12171, 3276, 2344
Rint0.023
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.138, 1.04
No. of reflections3276
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.16

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

This research was supported by a PRGS Research Grant (No. RDU 130803).

References

First citationBai, B. L., Wang, H., Xin, H., Long, B. & Li, M. (2007). Liq. Cryst. 34, 659–665.  Web of Science CrossRef Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationIkeda, T. & Tsutsumi, O. (1995). Science, 268, 1873–1875.  CrossRef PubMed CAS Web of Science Google Scholar
First citationJayalakshmi, V., Hegde, G., Nair, G. & Prasad, S. K. (2009). Phys. Chem. Chem. Phys. 11, 6450–6454.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKang, S. K. & Samulski, E. T. (2000). Liq. Cryst. 27, 371–376.  CrossRef CAS Google Scholar
First citationLai, L.-L., Su, F.-Y., Lin, Y.-J., Ho, C.-H., Wang, E., Hung, C.-H., Liu, Y.-H. & Wang, Y. (2002). Helv. Chim. Acta, 85, 1517–1522.  Web of Science CSD CrossRef CAS Google Scholar
First citationLee, J. W., Jin, J. I., Achard, M. F. & Hardouin, F. (2001). Liq. Cryst. 28, 663–671.  CrossRef CAS Google Scholar
First citationLutfor, M. R., Hegde, G., Pour, M. A., Yusoff, M. M. & Kumar, S. (2013a). J. Fluorine Chem. 156, 230–235.  Google Scholar
First citationLutfor, M. R., Yusoff, M. M., Srinivasa, H. T., Samah, N. A., Malek, N. F. M. A. & Kumar, S. (2013b). New J. Chem. 37, 2460–2467.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPaleos, C. M. & Tsiourvas, D. (2001). Liq. Cryst. 28, 1127–1161.  CrossRef CAS Google Scholar
First citationRahman, M. L., Kwong, H. C., Mohd. Yusoff, M., Hegde, G., Mohamed Tahir, M. I. & Rahman, M. Z. A. (2012). Acta Cryst. E68, o2958.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTakahashi, A., Mallia, V. A. & Tamaoki, N. (2003). J. Mater. Chem. 13, 1582–1587.  Web of Science CrossRef CAS Google Scholar
First citationYu, Q.-D. & Liu, Y.-Y. (2009). Acta Cryst. E65, o2326.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds