organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1250-o1251

Crystal structure of (E)-N′-(4-chloro­benzyl­­idene)-4-methyl­benzene­sulfono­hydrazide: a hexa­gonal polymorph

aDepartment of Physics, University College of Engineering Panruti, Tamil Nadu 607 106, India, and bDepartment of Chemistry, University College of Engineering Panruti, Tamil Nadu 607 106, India
*Correspondence e-mail: sril35@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 October 2014; accepted 28 October 2014; online 12 November 2014)

The title compound, C14H13ClN2O2S, crystallized in the enanti­omorphic defining hexa­gonal space group P61 [Flack parameter = −0.02 (7)]. The partially hydrated form of the same compound, crystallizing in the triclinic space group P-1, has been reported previously [Kia et al. (2009b). Acta Cryst. E65, o1119], as has the crystal structure of the bromo derivative, also crystallizing in the space group P-1 [Kia et al. (2009a). Acta Cryst. E65, o821]. The title mol­ecule is non-planar with the planes of the benzene rings being inclined to one another by 76.62 (13)°, and has an E conformation about the C=N bond. In the crystal, mol­ecules are linked via N—H⋯O hydrogen bonds forming 61 helical chains running along [001]. The chains are linked via C—H⋯O hydrogen bonds, C—H⋯π inter­actions and short Cl⋯O [3.015 (3) Å] inter­actions, forming a three-dimensional structure.

1. Related literature

For the biological activities of hydrazones, see: Ajani et al. (2010[Ajani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214-221.]). For the crystal structure of the triclinic polymorph, which crystallized with two independent mol­ecules in the asymmetric unit, one of which was disordered, and with 0.15 of a water mol­ecule, see: Kia et al. (2009b[Kia, R., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o1119-o1120.]). For the crystal structure of the bromo derivative, also crystallizing in space group P[\overline{1}], see: Kia et al. (2009a[Kia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o821-o822.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C14H13ClN2O2S

  • Mr = 308.77

  • Hexagonal, P 61

  • a = 10.8907 (3) Å

  • c = 21.4542 (7) Å

  • V = 2203.71 (11) Å3

  • Z = 6

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.910

  • 22095 measured reflections

  • 2586 independent reflections

  • 2345 reflections with I > 2σ(I)

  • Rint = 0.027

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.072

  • S = 1.04

  • 2586 reflections

  • 186 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1257 Friedel pairs

  • Absolute structure parameter: −0.02 (7)

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.88 (2) 2.13 (2) 2.952 (3) 156 (2)
C1—H1A⋯O1ii 0.96 2.55 3.496 (5) 169
C13—H13⋯Cgiii 0.93 2.94 3.823 (3) 160
Symmetry codes: (i) [x-y, x, z+{\script{1\over 6}}]; (ii) [x-y-1, x-1, z+{\script{1\over 6}}]; (iii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The title compound was obtained by a Schiff base condensation reaction between 4-chlorobenzaldehyde and tosyl hydrazide. Hydrazones have received much attention recently due to their biological activities (Ajani et al., 2010). The crystal structure of the triclinic polymorph, that crystallized with two independent molecules in the asymmetric unit, one of which was disordered, and with 0.15 of a water molecule, has been reported (Kia et al., 2009b), as has the crystal structure of the bromo derivative, also crystallizing in space group P1 (Kia et al., 2009a).

The hydrazone molecule, Fig. 1, exists in a trans or E confirmation with respect to the C8N2 bond. The dihedral angle between the (C2—C7) and (C9—C14) benzene rings is 76.62 (13) °. In the triclininc polymorph (Kia et al., 2009b) the same angle is 84.96 (11) ° (and 71.1 (3) ° for the disordered molecule), and 82.39 (13) ° for the bromo derivative (Kia et al., 2009a).

In the crystal, molecules are linked via N—H···O hydrogen bonds forming 61 helical chains running along the c axis direction (Table 1 and Fig 2). The chains are linked via C-H···O hydrogen bonds, and a short Cl···O2i [3.015 (3) Å; symmetry code: (i) x-y+1, x, z+1/6] interaction and a C-H···π interaction, forming a three-dimensional structure (Table 1 and Fig. 2).

Related literature top

For the biological activities of hydrazones, see: Ajani et al. (2010). For the crystal structure of the triclinic polymorph, which crystallized with two independent molecules in the asymmetric unit, one of which was disordered, and with 0.15 of a water molecule, see: Kia et al. (2009b). For the crystal structure of the bromo derivative, also crystallizing in space group P1, see: Kia et al. (2009a).

Experimental top

4-chlorobenzaldehyde (0.140 g, 1 mmol) and tosyl hydrazide (0.186 g, 1 mmol) were dissolved in ethanol and chloroform (4:1). The reaction mixture was heated under reflux for 3 h and cooled gradually to room temperature. Prismatic colourless crystals were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

The NH H atom was located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and treated as riding on their parent atoms with C—H = 0.93 Å (aromatic) and 0.96 Å (methyl) and with Uiso(H) = 1.5Ueq(C) for the methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.

A view along the c axis of the crystal packing of the title compound. The N—H···O and C—H···O hydrogen bonds are indicated by dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
(E)-N'-(4-Chlorobenzylidene)-4-methylbenzenesulfonohydrazide top
Crystal data top
C14H13ClN2O2SDx = 1.396 Mg m3
Mr = 308.77Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P61Cell parameters from 9375 reflections
Hall symbol: P 61θ = 2.4–25.8°
a = 10.8907 (3) ŵ = 0.40 mm1
c = 21.4542 (7) ÅT = 293 K
V = 2203.71 (11) Å3Block, yellow
Z = 60.35 × 0.30 × 0.25 mm
F(000) = 960
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2586 independent reflections
Radiation source: fine-focus sealed tube2345 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and ϕ scanθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.871, Tmax = 0.910k = 1212
22095 measured reflectionsl = 2525
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.029 w = 1/[σ2(Fo2) + (0.0306P)2 + 0.7106P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.072(Δ/σ)max = 0.001
S = 1.04Δρmax = 0.12 e Å3
2586 reflectionsΔρmin = 0.16 e Å3
186 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0026 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1257 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.02 (7)
Crystal data top
C14H13ClN2O2SZ = 6
Mr = 308.77Mo Kα radiation
Hexagonal, P61µ = 0.40 mm1
a = 10.8907 (3) ÅT = 293 K
c = 21.4542 (7) Å0.35 × 0.30 × 0.25 mm
V = 2203.71 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2586 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2345 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.910Rint = 0.027
22095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072Δρmax = 0.12 e Å3
S = 1.04Δρmin = 0.16 e Å3
2586 reflectionsAbsolute structure: Flack (1983), 1257 Friedel pairs
186 parametersAbsolute structure parameter: 0.02 (7)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1026 (3)0.5080 (4)0.94696 (15)0.0727 (9)
H1A0.20010.53640.93920.109*
H1B0.06990.44820.98310.109*
H1C0.09420.59060.95390.109*
C20.0151 (3)0.4286 (3)0.89196 (13)0.0480 (6)
C30.0778 (3)0.4059 (3)0.84061 (13)0.0507 (6)
H30.17510.44100.84050.061*
C40.0019 (3)0.3321 (3)0.78968 (12)0.0496 (6)
H40.04150.31800.75530.060*
C50.1458 (2)0.2795 (2)0.79003 (11)0.0419 (5)
C60.2103 (3)0.3013 (3)0.84070 (12)0.0483 (6)
H60.30770.26570.84080.058*
C70.1296 (3)0.3758 (3)0.89098 (13)0.0514 (6)
H70.17300.39110.92500.062*
C80.1633 (3)0.1027 (3)0.74279 (11)0.0426 (5)
H80.25430.17970.74740.051*
C90.0430 (3)0.1244 (3)0.74794 (10)0.0415 (5)
C100.0947 (3)0.0146 (3)0.74508 (13)0.0520 (6)
H100.11270.07660.73670.062*
C110.2070 (3)0.0381 (3)0.75456 (13)0.0579 (7)
H110.30000.03660.75260.069*
C120.1789 (3)0.1731 (3)0.76682 (12)0.0522 (6)
C130.0439 (3)0.2844 (3)0.76863 (13)0.0574 (7)
H130.02660.37580.77630.069*
C140.0664 (3)0.2595 (3)0.75898 (12)0.0516 (6)
H140.15890.33530.75990.062*
O10.3852 (2)0.1677 (2)0.73010 (9)0.0597 (5)
O20.1652 (2)0.2455 (2)0.67125 (8)0.0605 (5)
S10.24764 (7)0.18427 (7)0.72562 (3)0.04549 (16)
Cl10.31836 (9)0.20068 (10)0.78326 (4)0.0779 (3)
N10.2735 (2)0.0230 (2)0.73014 (10)0.0445 (5)
N20.1474 (2)0.0187 (2)0.73212 (9)0.0424 (5)
H10.337 (2)0.033 (2)0.7573 (10)0.050 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0601 (19)0.084 (2)0.0681 (19)0.0315 (17)0.0065 (15)0.0170 (17)
C20.0489 (14)0.0454 (14)0.0498 (13)0.0237 (12)0.0031 (13)0.0033 (12)
C30.0402 (14)0.0510 (15)0.0621 (16)0.0238 (12)0.0056 (12)0.0032 (13)
C40.0518 (15)0.0533 (15)0.0512 (14)0.0319 (13)0.0149 (12)0.0028 (13)
C50.0472 (14)0.0423 (13)0.0434 (13)0.0278 (12)0.0050 (11)0.0061 (11)
C60.0403 (14)0.0609 (16)0.0473 (14)0.0280 (13)0.0056 (11)0.0017 (12)
C70.0511 (15)0.0625 (16)0.0432 (12)0.0304 (13)0.0069 (12)0.0017 (13)
C80.0491 (15)0.0436 (14)0.0383 (12)0.0255 (12)0.0016 (10)0.0019 (10)
C90.0537 (15)0.0440 (13)0.0353 (11)0.0309 (12)0.0025 (10)0.0000 (10)
C100.0600 (17)0.0442 (15)0.0621 (16)0.0338 (14)0.0055 (13)0.0075 (12)
C110.0540 (16)0.0562 (17)0.0695 (18)0.0321 (14)0.0018 (13)0.0022 (14)
C120.0623 (17)0.0643 (18)0.0480 (14)0.0452 (15)0.0021 (12)0.0023 (13)
C130.0733 (19)0.0496 (16)0.0658 (17)0.0430 (16)0.0017 (14)0.0071 (13)
C140.0529 (16)0.0444 (15)0.0627 (17)0.0282 (13)0.0049 (12)0.0057 (12)
O10.0637 (12)0.0735 (13)0.0631 (11)0.0502 (11)0.0132 (9)0.0121 (10)
O20.0933 (15)0.0647 (12)0.0418 (9)0.0533 (12)0.0108 (10)0.0124 (9)
S10.0604 (4)0.0513 (4)0.0401 (3)0.0394 (3)0.0020 (3)0.0015 (3)
Cl10.0746 (5)0.0945 (6)0.0928 (6)0.0635 (5)0.0005 (5)0.0118 (5)
N10.0498 (13)0.0489 (12)0.0446 (11)0.0320 (11)0.0005 (10)0.0030 (10)
N20.0511 (12)0.0469 (12)0.0400 (11)0.0327 (10)0.0022 (9)0.0032 (9)
Geometric parameters (Å, º) top
C1—C21.491 (4)C8—H80.9300
C1—H1A0.9600C9—C101.374 (3)
C1—H1B0.9600C9—C141.383 (3)
C1—H1C0.9600C10—C111.384 (4)
C2—C71.381 (3)C10—H100.9300
C2—C31.382 (4)C11—C121.369 (4)
C3—C41.376 (4)C11—H110.9300
C3—H30.9300C12—C131.360 (4)
C4—C51.374 (3)C12—Cl11.726 (3)
C4—H40.9300C13—C141.373 (4)
C5—C61.378 (3)C13—H130.9300
C5—S11.751 (3)C14—H140.9300
C6—C71.372 (4)O1—S11.4197 (18)
C6—H60.9300O2—S11.4189 (19)
C7—H70.9300S1—N11.637 (2)
C8—N21.265 (3)N1—N21.399 (3)
C8—C91.447 (3)N1—H10.875 (17)
C2—C1—H1A109.5C10—C9—C8122.5 (2)
C2—C1—H1B109.5C14—C9—C8119.1 (2)
H1A—C1—H1B109.5C9—C10—C11120.9 (2)
C2—C1—H1C109.5C9—C10—H10119.6
H1A—C1—H1C109.5C11—C10—H10119.6
H1B—C1—H1C109.5C12—C11—C10118.8 (3)
C7—C2—C3118.4 (2)C12—C11—H11120.6
C7—C2—C1121.2 (3)C10—C11—H11120.6
C3—C2—C1120.3 (2)C13—C12—C11121.6 (2)
C4—C3—C2120.9 (2)C13—C12—Cl1119.5 (2)
C4—C3—H3119.5C11—C12—Cl1118.8 (2)
C2—C3—H3119.5C12—C13—C14118.8 (2)
C5—C4—C3119.6 (2)C12—C13—H13120.6
C5—C4—H4120.2C14—C13—H13120.6
C3—C4—H4120.2C13—C14—C9121.5 (3)
C4—C5—C6120.4 (2)C13—C14—H14119.3
C4—C5—S1119.71 (18)C9—C14—H14119.3
C6—C5—S1119.89 (19)O2—S1—O1119.65 (12)
C7—C6—C5119.4 (2)O2—S1—N1106.40 (11)
C7—C6—H6120.3O1—S1—N1104.78 (11)
C5—C6—H6120.3O2—S1—C5107.80 (12)
C6—C7—C2121.2 (2)O1—S1—C5109.72 (11)
C6—C7—H7119.4N1—S1—C5107.91 (11)
C2—C7—H7119.4N2—N1—S1113.13 (16)
N2—C8—C9121.5 (2)N2—N1—H1113.4 (17)
N2—C8—H8119.3S1—N1—H1116.2 (17)
C9—C8—H8119.3C8—N2—N1114.7 (2)
C10—C9—C14118.3 (2)
C7—C2—C3—C40.2 (4)C11—C12—C13—C141.2 (4)
C1—C2—C3—C4179.7 (3)Cl1—C12—C13—C14176.3 (2)
C2—C3—C4—C50.4 (4)C12—C13—C14—C90.4 (4)
C3—C4—C5—C60.6 (4)C10—C9—C14—C131.8 (4)
C3—C4—C5—S1179.42 (19)C8—C9—C14—C13175.3 (2)
C4—C5—C6—C70.1 (4)C4—C5—S1—O235.4 (2)
S1—C5—C6—C7179.9 (2)C6—C5—S1—O2144.6 (2)
C5—C6—C7—C20.5 (4)C4—C5—S1—O1167.3 (2)
C3—C2—C7—C60.7 (4)C6—C5—S1—O112.8 (2)
C1—C2—C7—C6179.2 (3)C4—C5—S1—N179.1 (2)
N2—C8—C9—C103.7 (4)C6—C5—S1—N1100.9 (2)
N2—C8—C9—C14179.3 (2)O2—S1—N1—N257.70 (19)
C14—C9—C10—C111.6 (4)O1—S1—N1—N2174.64 (16)
C8—C9—C10—C11175.4 (2)C5—S1—N1—N257.77 (18)
C9—C10—C11—C120.1 (4)C9—C8—N2—N1178.3 (2)
C10—C11—C12—C131.3 (4)S1—N1—N2—C8172.28 (18)
C10—C11—C12—Cl1176.2 (2)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.88 (2)2.13 (2)2.952 (3)156 (2)
C1—H1A···O1ii0.962.553.496 (5)169
C13—H13···Cgiii0.932.943.823 (3)160
Symmetry codes: (i) xy, x, z+1/6; (ii) xy1, x1, z+1/6; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.875 (17)2.133 (19)2.952 (3)156 (2)
C1—H1A···O1ii0.962.553.496 (5)169
C13—H13···Cgiii0.932.943.823 (3)160
Symmetry codes: (i) xy, x, z+1/6; (ii) xy1, x1, z+1/6; (iii) x, y+1, z.
 

Acknowledgements

The authors thank the SAIF, IITM, Madras, for help with the XRD studies.

References

First citationAjani, O. O., Obafemi, C. A., Nwinyi, O. C. & Akinpelu, D. A. (2010). Bioorg. Med. Chem. 18, 214–221.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker Axs Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKia, R., Etemadi, B., Fun, H.-K. & Kargar, H. (2009a). Acta Cryst. E65, o821–o822.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Fun, H.-K. & Kargar, H. (2009b). Acta Cryst. E65, o1119–o1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1250-o1251
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds