organic compounds
H-imidazol-3-ium-2-carbodithioate chloroform monosolvate
of 1,3-dicyclohexyl-4,5-dimethyl-1aFaculty of Pharmacy and Medical Science, University of Petra, Amman, Jordan, bDepartment of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan, cInstitut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany, and dDepartment of Chemistry, Faculty of Science, The Hashemite University, Jordan
*Correspondence e-mail: eyad782002@yahoo.com
The title compound, C18H28N2S2·CHCl3, crystallizes as a zwitterion. The C—S bonds are almost equivalent, with lengths of 1.666 (3) and 1.657 (3) Å. The S—C—S bond angle is expanded to 129.54 (16)° and the N—C—N angle is reduced to the tetrahedal value of 108.8 (2)°. In the crystal, adjacent molecules are linked via C—H⋯S hydrogen bonds, forming chains along [100]. The chloroform solvent molecule, which is disordered over two positions [occupancy ratio = 0.51 (2):0.49 (2)], is linked to the chain by bifurcated C—H⋯(S,S) hydrogen bonds.
Keywords: crystal structure; imidazole; carbodithioate; zwitterion.
CCDC reference: 1031415
1. Related literature
For the properties and uses of heterocyclic ); Kuhn et al. (1995, 1999); Mallah et al. (2009); Margulis & Tempelton (1962). For the structures of similar compounds, see: Winberg & Coffman (1965); Kuhn et al. (1994). For the synthesis of the starting material, see: Kuhn & Kratz (1993).
see: Kuhn & Al-Sheikh (20052. Experimental
2.1. Crystal data
|
2.3. Refinement
|
|
Data collection: CAD-4 Software (Enraf–Nonius, 1998); cell CAD-4 Software); data reduction: HELENA/PLATON (Spek, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
CCDC reference: 1031415
10.1107/S1600536814023800/su5006sup1.cif
contains datablocks I, New_Global_Publ_Block. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814023800/su5006Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814023800/su5006Isup3.cml
The title compound was synthesized according to the published procedure (Kuhn & Kratz, 1993). 0.34 g (6.0 mmol) of CS2 was added to a solution of of 1.3-dicyclohexyl-4.5-dimethylimidazol-2-yliden (1.56 g, 6.0 mmol) in 20 ml of THF at 258 K. The reaction mixture was stirred over night and the precipitate formed was filtered off and dried in vacuo. Yield after recrystallization from methanol/diethylether was 1.72 g (85%), as red crystals.
The C-bound H atoms were included in calculated positions and refined as riding: C- H = 0.97 - 0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The chloroform molecule of solvent is disordered over two positions with an occupancy ratio of 0.51 (2):0.49 (2) .
Data collection: CAD-4 Software (Enraf–Nonius, 1998); cell
CAD-4 Software (Enraf–Nonius, 1998); data reduction: HELENA/PLATON (Spek, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level. |
C18H28N2S2·CHCl3 | F(000) = 960 |
Mr = 455.91 | Dx = 1.290 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
a = 8.4800 (17) Å | θ = 7.6–13.7° |
b = 16.227 (3) Å | µ = 0.57 mm−1 |
c = 17.263 (4) Å | T = 223 K |
β = 98.78 (3)° | Block, red |
V = 2347.6 (8) Å3 | 0.60 × 0.50 × 0.30 mm |
Z = 4 |
Enraf–Nonius CAD-4 diffractometer | 3215 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.062 |
Graphite monochromator | θmax = 26.4°, θmin = 3.1° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CAD-4 Software; Enraf–Nonius, 1998) | k = 0→20 |
Tmin = 0.775, Tmax = 0.939 | l = −1→21 |
5278 measured reflections | 3 standard reflections every 400 reflections |
4797 independent reflections | intensity decay: 7% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.153 | w = 1/[σ2(Fo2) + (0.0736P)2 + 1.0555P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max < 0.001 |
4797 reflections | Δρmax = 0.40 e Å−3 |
272 parameters | Δρmin = −0.45 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0056 (12) |
C18H28N2S2·CHCl3 | V = 2347.6 (8) Å3 |
Mr = 455.91 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.4800 (17) Å | µ = 0.57 mm−1 |
b = 16.227 (3) Å | T = 223 K |
c = 17.263 (4) Å | 0.60 × 0.50 × 0.30 mm |
β = 98.78 (3)° |
Enraf–Nonius CAD-4 diffractometer | 3215 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CAD-4 Software; Enraf–Nonius, 1998) | Rint = 0.062 |
Tmin = 0.775, Tmax = 0.939 | 3 standard reflections every 400 reflections |
5278 measured reflections | intensity decay: 7% |
4797 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | 0 restraints |
wR(F2) = 0.153 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.40 e Å−3 |
4797 reflections | Δρmin = −0.45 e Å−3 |
272 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.33013 (10) | 0.35829 (5) | 0.21958 (5) | 0.0524 (2) | |
S2 | 0.08543 (11) | 0.22805 (5) | 0.16626 (5) | 0.0601 (3) | |
N1 | 0.2665 (3) | 0.22155 (13) | 0.36574 (12) | 0.0374 (5) | |
N2 | 0.4181 (3) | 0.15925 (13) | 0.29338 (12) | 0.0357 (5) | |
C1 | 0.2388 (3) | 0.26807 (16) | 0.22524 (14) | 0.0366 (6) | |
C2 | 0.3059 (3) | 0.21643 (15) | 0.29333 (14) | 0.0346 (6) | |
C3 | 0.4543 (3) | 0.12642 (17) | 0.36899 (15) | 0.0401 (6) | |
C4 | 0.3592 (3) | 0.16530 (17) | 0.41371 (15) | 0.0410 (6) | |
C5 | 0.3515 (5) | 0.1536 (2) | 0.49892 (17) | 0.0598 (9) | |
H5A | 0.4239 | 0.1099 | 0.5195 | 0.090* | |
H5B | 0.2435 | 0.1390 | 0.5057 | 0.090* | |
H5C | 0.3821 | 0.2044 | 0.5269 | 0.090* | |
C6 | 0.5769 (4) | 0.0621 (2) | 0.39258 (19) | 0.0584 (9) | |
H6A | 0.5829 | 0.0508 | 0.4481 | 0.088* | |
H6B | 0.6798 | 0.0815 | 0.3821 | 0.088* | |
H6C | 0.5481 | 0.0121 | 0.3629 | 0.088* | |
C11 | 0.4780 (3) | 0.13436 (17) | 0.22026 (15) | 0.0401 (6) | |
H11 | 0.4262 | 0.1722 | 0.1791 | 0.048* | |
C12 | 0.4225 (4) | 0.04907 (19) | 0.19417 (18) | 0.0486 (7) | |
H12A | 0.3061 | 0.0460 | 0.1898 | 0.058* | |
H12B | 0.4686 | 0.0087 | 0.2334 | 0.058* | |
C13 | 0.4722 (4) | 0.0282 (2) | 0.11543 (19) | 0.0596 (9) | |
H13A | 0.4464 | −0.0296 | 0.1028 | 0.072* | |
H13B | 0.4113 | 0.0624 | 0.0746 | 0.072* | |
C14 | 0.6454 (4) | 0.0417 (2) | 0.1153 (2) | 0.0643 (9) | |
H14A | 0.6701 | 0.0321 | 0.0624 | 0.077* | |
H14B | 0.7064 | 0.0019 | 0.1507 | 0.077* | |
C15 | 0.6956 (4) | 0.1279 (3) | 0.1410 (2) | 0.0710 (11) | |
H15A | 0.6420 | 0.1677 | 0.1030 | 0.085* | |
H15B | 0.8109 | 0.1338 | 0.1422 | 0.085* | |
C16 | 0.6529 (4) | 0.1466 (2) | 0.2229 (2) | 0.0627 (9) | |
H16A | 0.7120 | 0.1096 | 0.2618 | 0.075* | |
H16B | 0.6818 | 0.2035 | 0.2378 | 0.075* | |
C21 | 0.1355 (3) | 0.27565 (18) | 0.38309 (16) | 0.0433 (7) | |
H21 | 0.1026 | 0.3082 | 0.3348 | 0.052* | |
C22 | −0.0096 (4) | 0.2273 (2) | 0.3958 (2) | 0.0629 (9) | |
H22A | 0.0144 | 0.1942 | 0.4437 | 0.075* | |
H22B | −0.0408 | 0.1898 | 0.3516 | 0.075* | |
C23 | −0.1469 (4) | 0.2874 (3) | 0.4031 (2) | 0.0765 (11) | |
H23A | −0.1805 | 0.3142 | 0.3525 | 0.092* | |
H23B | −0.2381 | 0.2564 | 0.4167 | 0.092* | |
C24 | −0.0988 (5) | 0.3520 (3) | 0.4644 (2) | 0.0739 (11) | |
H24A | −0.1858 | 0.3919 | 0.4634 | 0.089* | |
H24B | −0.0820 | 0.3258 | 0.5162 | 0.089* | |
C25 | 0.0500 (5) | 0.3964 (2) | 0.4524 (2) | 0.0744 (11) | |
H25A | 0.0810 | 0.4343 | 0.4963 | 0.089* | |
H25B | 0.0285 | 0.4293 | 0.4043 | 0.089* | |
C26 | 0.1874 (4) | 0.33744 (19) | 0.4464 (2) | 0.0589 (9) | |
H26A | 0.2799 | 0.3682 | 0.4342 | 0.071* | |
H26B | 0.2184 | 0.3091 | 0.4965 | 0.071* | |
C30 | 0.9203 (4) | 0.42877 (19) | 0.1636 (2) | 0.034 (3) | 0.51 (2) |
H30 | 1.0037 | 0.3867 | 0.1791 | 0.041* | 0.51 (2) |
Cl1 | 0.9615 (8) | 0.5094 (6) | 0.2138 (5) | 0.124 (3) | 0.51 (2) |
Cl2 | 0.9264 (10) | 0.4611 (3) | 0.0639 (4) | 0.0889 (17) | 0.51 (2) |
Cl3 | 0.7332 (7) | 0.3868 (5) | 0.1695 (6) | 0.091 (2) | 0.51 (2) |
C31 | 0.9117 (16) | 0.4311 (8) | 0.1563 (8) | 0.095 (6) | 0.49 (2) |
H31 | 1.0026 | 0.3925 | 0.1682 | 0.113* | 0.49 (2) |
Cl1A | 0.9542 (5) | 0.5234 (3) | 0.2235 (2) | 0.0516 (14) | 0.49 (2) |
Cl2A | 0.8855 (18) | 0.4481 (8) | 0.0636 (4) | 0.161 (4) | 0.49 (2) |
Cl3A | 0.7452 (9) | 0.3845 (4) | 0.1871 (7) | 0.0886 (19) | 0.49 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0600 (5) | 0.0409 (4) | 0.0582 (5) | −0.0029 (4) | 0.0153 (4) | 0.0107 (3) |
S2 | 0.0651 (5) | 0.0540 (5) | 0.0536 (5) | 0.0008 (4) | −0.0152 (4) | −0.0048 (4) |
N1 | 0.0485 (13) | 0.0363 (12) | 0.0289 (11) | 0.0043 (10) | 0.0104 (9) | −0.0007 (9) |
N2 | 0.0438 (12) | 0.0333 (11) | 0.0319 (11) | 0.0045 (10) | 0.0124 (9) | 0.0009 (9) |
C1 | 0.0458 (15) | 0.0362 (14) | 0.0296 (13) | 0.0075 (12) | 0.0116 (11) | −0.0013 (11) |
C2 | 0.0402 (13) | 0.0330 (13) | 0.0317 (13) | 0.0006 (11) | 0.0086 (10) | −0.0027 (11) |
C3 | 0.0489 (15) | 0.0368 (14) | 0.0342 (14) | 0.0047 (12) | 0.0048 (12) | 0.0024 (11) |
C4 | 0.0554 (17) | 0.0370 (14) | 0.0310 (13) | 0.0016 (13) | 0.0080 (12) | 0.0008 (11) |
C5 | 0.091 (3) | 0.056 (2) | 0.0337 (15) | 0.0158 (18) | 0.0123 (16) | 0.0077 (14) |
C6 | 0.075 (2) | 0.0529 (19) | 0.0468 (18) | 0.0238 (17) | 0.0095 (16) | 0.0109 (15) |
C11 | 0.0497 (16) | 0.0382 (15) | 0.0349 (13) | 0.0018 (12) | 0.0153 (12) | −0.0028 (11) |
C12 | 0.0522 (17) | 0.0479 (17) | 0.0493 (17) | −0.0099 (14) | 0.0195 (14) | −0.0114 (14) |
C13 | 0.077 (2) | 0.0550 (19) | 0.0499 (19) | −0.0107 (17) | 0.0214 (17) | −0.0184 (15) |
C14 | 0.076 (2) | 0.069 (2) | 0.054 (2) | 0.0061 (19) | 0.0302 (17) | −0.0104 (17) |
C15 | 0.064 (2) | 0.088 (3) | 0.070 (2) | −0.025 (2) | 0.0379 (18) | −0.021 (2) |
C16 | 0.061 (2) | 0.069 (2) | 0.064 (2) | −0.0229 (17) | 0.0285 (16) | −0.0217 (18) |
C21 | 0.0525 (16) | 0.0441 (16) | 0.0358 (14) | 0.0111 (13) | 0.0144 (12) | −0.0008 (12) |
C22 | 0.0540 (19) | 0.064 (2) | 0.074 (2) | −0.0008 (17) | 0.0196 (17) | −0.0130 (18) |
C23 | 0.055 (2) | 0.099 (3) | 0.079 (3) | 0.009 (2) | 0.0224 (19) | −0.009 (2) |
C24 | 0.078 (2) | 0.094 (3) | 0.054 (2) | 0.038 (2) | 0.0255 (18) | −0.002 (2) |
C25 | 0.094 (3) | 0.060 (2) | 0.073 (2) | 0.021 (2) | 0.023 (2) | −0.0195 (19) |
C26 | 0.067 (2) | 0.0464 (18) | 0.066 (2) | 0.0080 (16) | 0.0163 (17) | −0.0167 (16) |
C30 | 0.023 (4) | 0.040 (6) | 0.038 (5) | −0.002 (4) | 0.003 (3) | 0.016 (4) |
Cl1 | 0.090 (3) | 0.102 (3) | 0.186 (6) | −0.010 (2) | 0.034 (3) | −0.072 (4) |
Cl2 | 0.113 (3) | 0.099 (4) | 0.0580 (19) | 0.0136 (19) | 0.0249 (16) | 0.0109 (16) |
Cl3 | 0.048 (2) | 0.087 (3) | 0.136 (5) | −0.0110 (17) | 0.004 (3) | −0.014 (2) |
C31 | 0.120 (12) | 0.095 (12) | 0.069 (9) | 0.058 (9) | 0.015 (8) | −0.002 (8) |
Cl1A | 0.0494 (16) | 0.0500 (17) | 0.057 (2) | −0.0037 (10) | 0.0128 (10) | −0.0085 (13) |
Cl2A | 0.143 (6) | 0.285 (10) | 0.057 (2) | 0.049 (5) | 0.021 (3) | 0.062 (4) |
Cl3A | 0.110 (5) | 0.048 (2) | 0.126 (4) | −0.008 (2) | 0.072 (4) | −0.0069 (18) |
S1—C1 | 1.666 (3) | C15—C16 | 1.542 (4) |
S2—C1 | 1.657 (3) | C15—H15A | 0.9800 |
N1—C2 | 1.345 (3) | C15—H15B | 0.9800 |
N1—C4 | 1.392 (3) | C16—H16A | 0.9800 |
N1—C21 | 1.482 (3) | C16—H16B | 0.9800 |
N2—C2 | 1.329 (3) | C21—C26 | 1.499 (4) |
N2—C3 | 1.400 (3) | C21—C22 | 1.504 (4) |
N2—C11 | 1.487 (3) | C21—H21 | 0.9900 |
C1—C2 | 1.484 (4) | C22—C23 | 1.539 (5) |
C3—C4 | 1.354 (4) | C22—H22A | 0.9800 |
C3—C6 | 1.486 (4) | C22—H22B | 0.9800 |
C4—C5 | 1.494 (4) | C23—C24 | 1.500 (6) |
C5—H5A | 0.9700 | C23—H23A | 0.9800 |
C5—H5B | 0.9700 | C23—H23B | 0.9800 |
C5—H5C | 0.9700 | C24—C25 | 1.495 (6) |
C6—H6A | 0.9700 | C24—H24A | 0.9800 |
C6—H6B | 0.9700 | C24—H24B | 0.9800 |
C6—H6C | 0.9700 | C25—C26 | 1.524 (5) |
C11—C16 | 1.490 (4) | C25—H25A | 0.9800 |
C11—C12 | 1.508 (4) | C25—H25B | 0.9800 |
C11—H11 | 0.9900 | C26—H26A | 0.9800 |
C12—C13 | 1.521 (4) | C26—H26B | 0.9800 |
C12—H12A | 0.9800 | C30—Cl1 | 1.579 (10) |
C12—H12B | 0.9800 | C30—Cl3 | 1.744 (7) |
C13—C14 | 1.485 (5) | C30—Cl2 | 1.807 (7) |
C13—H13A | 0.9800 | C30—H30 | 0.9900 |
C13—H13B | 0.9800 | C31—Cl2A | 1.605 (16) |
C14—C15 | 1.509 (5) | C31—Cl3A | 1.754 (15) |
C14—H14A | 0.9800 | C31—Cl1A | 1.896 (14) |
C14—H14B | 0.9800 | C31—H31 | 0.9900 |
C2—N1—C4 | 108.3 (2) | C14—C15—H15B | 109.5 |
C2—N1—C21 | 121.6 (2) | C16—C15—H15B | 109.5 |
C4—N1—C21 | 129.8 (2) | H15A—C15—H15B | 108.1 |
C2—N2—C3 | 108.7 (2) | C11—C16—C15 | 108.5 (3) |
C2—N2—C11 | 121.8 (2) | C11—C16—H16A | 110.0 |
C3—N2—C11 | 129.3 (2) | C15—C16—H16A | 110.0 |
C2—C1—S2 | 115.8 (2) | C11—C16—H16B | 110.0 |
C2—C1—S1 | 114.64 (19) | C15—C16—H16B | 110.0 |
S2—C1—S1 | 129.54 (16) | H16A—C16—H16B | 108.4 |
N2—C2—N1 | 108.8 (2) | N1—C21—C26 | 113.5 (2) |
N2—C2—C1 | 125.6 (2) | N1—C21—C22 | 112.1 (2) |
N1—C2—C1 | 125.6 (2) | C26—C21—C22 | 113.5 (2) |
C4—C3—N2 | 106.8 (2) | N1—C21—H21 | 105.7 |
C4—C3—C6 | 128.6 (3) | C26—C21—H21 | 105.7 |
N2—C3—C6 | 124.6 (2) | C22—C21—H21 | 105.7 |
C3—C4—N1 | 107.3 (2) | C21—C22—C23 | 109.1 (3) |
C3—C4—C5 | 128.4 (3) | C21—C22—H22A | 109.9 |
N1—C4—C5 | 124.3 (3) | C23—C22—H22A | 109.9 |
C4—C5—H5A | 109.5 | C21—C22—H22B | 109.9 |
C4—C5—H5B | 109.5 | C23—C22—H22B | 109.9 |
H5A—C5—H5B | 109.5 | H22A—C22—H22B | 108.3 |
C4—C5—H5C | 109.5 | C24—C23—C22 | 111.9 (3) |
H5A—C5—H5C | 109.5 | C24—C23—H23A | 109.2 |
H5B—C5—H5C | 109.5 | C22—C23—H23A | 109.2 |
C3—C6—H6A | 109.5 | C24—C23—H23B | 109.2 |
C3—C6—H6B | 109.5 | C22—C23—H23B | 109.2 |
H6A—C6—H6B | 109.5 | H23A—C23—H23B | 107.9 |
C3—C6—H6C | 109.5 | C25—C24—C23 | 112.6 (3) |
H6A—C6—H6C | 109.5 | C25—C24—H24A | 109.1 |
H6B—C6—H6C | 109.5 | C23—C24—H24A | 109.1 |
N2—C11—C16 | 113.9 (2) | C25—C24—H24B | 109.1 |
N2—C11—C12 | 111.8 (2) | C23—C24—H24B | 109.1 |
C16—C11—C12 | 113.3 (3) | H24A—C24—H24B | 107.8 |
N2—C11—H11 | 105.7 | C24—C25—C26 | 112.1 (3) |
C16—C11—H11 | 105.7 | C24—C25—H25A | 109.2 |
C12—C11—H11 | 105.7 | C26—C25—H25A | 109.2 |
C11—C12—C13 | 110.8 (2) | C24—C25—H25B | 109.2 |
C11—C12—H12A | 109.5 | C26—C25—H25B | 109.2 |
C13—C12—H12A | 109.5 | H25A—C25—H25B | 107.9 |
C11—C12—H12B | 109.5 | C21—C26—C25 | 109.1 (3) |
C13—C12—H12B | 109.5 | C21—C26—H26A | 109.9 |
H12A—C12—H12B | 108.1 | C25—C26—H26A | 109.9 |
C14—C13—C12 | 112.2 (3) | C21—C26—H26B | 109.9 |
C14—C13—H13A | 109.2 | C25—C26—H26B | 109.9 |
C12—C13—H13A | 109.2 | H26A—C26—H26B | 108.3 |
C14—C13—H13B | 109.2 | Cl1—C30—Cl3 | 114.7 (5) |
C12—C13—H13B | 109.2 | Cl1—C30—Cl2 | 104.3 (4) |
H13A—C13—H13B | 107.9 | Cl3—C30—Cl2 | 109.1 (4) |
C13—C14—C15 | 111.8 (3) | Cl1—C30—H30 | 109.5 |
C13—C14—H14A | 109.3 | Cl3—C30—H30 | 109.5 |
C15—C14—H14A | 109.3 | Cl2—C30—H30 | 109.5 |
C13—C14—H14B | 109.3 | Cl2A—C31—Cl3A | 112.4 (9) |
C15—C14—H14B | 109.3 | Cl2A—C31—Cl1A | 117.3 (10) |
H14A—C14—H14B | 107.9 | Cl3A—C31—Cl1A | 104.0 (7) |
C14—C15—C16 | 110.9 (3) | Cl2A—C31—H31 | 107.6 |
C14—C15—H15A | 109.5 | Cl3A—C31—H31 | 107.6 |
C16—C15—H15A | 109.5 | Cl1A—C31—H31 | 107.6 |
C3—N2—C2—N1 | −0.6 (3) | C2—N2—C11—C16 | 121.2 (3) |
C11—N2—C2—N1 | 175.1 (2) | C3—N2—C11—C16 | −64.0 (4) |
C3—N2—C2—C1 | 177.6 (2) | C2—N2—C11—C12 | −108.8 (3) |
C11—N2—C2—C1 | −6.7 (4) | C3—N2—C11—C12 | 66.0 (4) |
C4—N1—C2—N2 | 0.4 (3) | N2—C11—C12—C13 | 174.7 (3) |
C21—N1—C2—N2 | −175.4 (2) | C16—C11—C12—C13 | −54.9 (4) |
C4—N1—C2—C1 | −177.8 (2) | C11—C12—C13—C14 | 52.1 (4) |
C21—N1—C2—C1 | 6.4 (4) | C12—C13—C14—C15 | −54.1 (4) |
S2—C1—C2—N2 | 87.5 (3) | C13—C14—C15—C16 | 56.8 (4) |
S1—C1—C2—N2 | −92.4 (3) | N2—C11—C16—C15 | −173.7 (3) |
S2—C1—C2—N1 | −94.6 (3) | C12—C11—C16—C15 | 57.1 (4) |
S1—C1—C2—N1 | 85.5 (3) | C14—C15—C16—C11 | −57.2 (4) |
C2—N2—C3—C4 | 0.5 (3) | C2—N1—C21—C26 | −122.8 (3) |
C11—N2—C3—C4 | −174.8 (3) | C4—N1—C21—C26 | 62.4 (4) |
C2—N2—C3—C6 | −178.6 (3) | C2—N1—C21—C22 | 107.1 (3) |
C11—N2—C3—C6 | 6.1 (5) | C4—N1—C21—C22 | −67.7 (4) |
N2—C3—C4—N1 | −0.3 (3) | N1—C21—C22—C23 | −173.0 (3) |
C6—C3—C4—N1 | 178.8 (3) | C26—C21—C22—C23 | 56.9 (4) |
N2—C3—C4—C5 | −179.4 (3) | C21—C22—C23—C24 | −53.3 (4) |
C6—C3—C4—C5 | −0.3 (5) | C22—C23—C24—C25 | 53.2 (5) |
C2—N1—C4—C3 | −0.1 (3) | C23—C24—C25—C26 | −54.0 (5) |
C21—N1—C4—C3 | 175.2 (3) | N1—C21—C26—C25 | 172.9 (3) |
C2—N1—C4—C5 | 179.1 (3) | C22—C21—C26—C25 | −57.6 (4) |
C21—N1—C4—C5 | −5.6 (5) | C24—C25—C26—C21 | 54.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15B···S2i | 0.98 | 2.76 | 3.650 (4) | 151 |
C30—H30···S1i | 0.99 | 2.79 | 3.646 (4) | 145 |
C30—H30···S2i | 0.99 | 2.68 | 3.543 (3) | 145 |
Symmetry code: (i) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
C15—H15B···S2i | 0.98 | 2.76 | 3.650 (4) | 151 |
C30—H30···S1i | 0.99 | 2.79 | 3.646 (4) | 145 |
C30—H30···S2i | 0.99 | 2.68 | 3.543 (3) | 145 |
Symmetry code: (i) x+1, y, z. |
Acknowledgements
The authors are indebted to the University of Petra, the University of Jordan and the University of Tübingen for their continuous support and help.
References
Enraf–Nonius (1998). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Kuhn, N. & Alsheikh, A. (2005). Coord. Chem. Rev. 249, 829–857. Web of Science CrossRef CAS Google Scholar
Kuhn, N., Bohnen, H. & Henkel, G. (1994). Z. Naturforsch. Teil B, 49, 1473–1480. CAS Google Scholar
Kuhn, N. & Kratz, Th. (1993). Synthesis, pp. 561–562. CrossRef Google Scholar
Kuhn, N., Kratz, Th., Bläser, D. & Boese, R. (1995). Chem. Ber. 128, 245–250. CrossRef CAS Web of Science Google Scholar
Kuhn, N., Niquet, E., Steimann, M. & Walker, I. (1999). Z. Naturforsch. Teil B, 54, 1181–1187. CAS Google Scholar
Mallah, E., Kuhn, N., Maichle-Mössmer, C., Steimann, M., Ströbele, M. & Zeller, K. P. (2009). Z. Naturforsch. Teil B, 64, 1176–1182. CAS Google Scholar
Margulis, T. & Templeton, D. H. (1962). J. Chem. Phys. 36, 2311–2316. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 87, 2776–2777. CrossRef CAS Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Owing to their highly nucleophilic character, heterocyclic carbenes can act as organic ligands in complexes of metal and metalloid centers in a manner similar to the tertiary phosphanes (Kuhn et al., 2005; Mallah et al., 2009). The nucleophilic carbenes with carbon disulfide are known only sporadically to give disulfide adducts (Winberg et al., 1965; Kuhn et al., 1994). The formation of stable 1.3-dicyclohexyl-4.5-dimethylimidazol-2-ylidene adducts confirmed the previous approach about nucleophilic character of N-heterocyclic carbenes (Kuhn et al., 1994.
The title compound, crystallized in the zwitterion form, Fig. 1. Bond length C1—C2 [1.484 (4) Å] is intermediate of carbon-carbon single and double bond lengths. The binding geometry of the CS2 [C1—S2 1.657 (3) Å, S2—C1—S1 129.54 (6)°] is similar to that in the structure of Et3PCS2 (Margulis & Tempelton, 1962) and are also very close to the bond lengths S1—C1, S2—C1 1.670 (5) Å] in IMCS2 (Kuhn et al., 1999). Parallel to this, the expansion of the bond angle S1—C1—S2 [129.54 (6)°] and the reduction of the angle N2—C2—N1 [108.8 (3)°] were observed. A comparison of the structure data speaks for the extensive conservation the π-electrons configuration in the heterocyclic ring, so that the coordination of CS2 substantially the negative charge of C(2) to CS2 fragment delocalized.
The CS2 fragment is almost normal to the mean plane of the five-membered ring. The has the effect of isolating the two π systems which is also reflected in the relatively long C1—C2 bond, which is 1.484 (4) Å, confirms the sma behaviour in (Kuhn et al., 1994). A comparison of the N-heterocyclic carbenes structures of (Kuhn et al., 1995) and the crystal in the title compound, a marked expansion of the ring constant angle at the carbon-carbene by about 8° [N2—C2—N1 108.8 (2)°] as the only significant difference. The fact confirms the idea of a coordinative bond between the carbene system and the CS2-fragment without the participation of the respective π-systems.
In the crystal, adjacent molecules are linked via C-H···S hydrogen bonds forming chains along [100]. The chloroform molecule of solvent, which is disordered over two positions [occupancy ratio of 0.51 (2):0.49 (2)], is linked to the chain by bifurcated C-H···S,S hydrogen bonds (Table 1).