organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1227-o1228

Crystal structure of 1,3-di­cyclo­hexyl-4,5-di­methyl-1H-imidazol-3-ium-2-carbodi­thio­ate chloro­form monosolvate

aFaculty of Pharmacy and Medical Science, University of Petra, Amman, Jordan, bDepartment of Chemistry, Faculty of Science, University of Jordan, Amman, Jordan, cInstitut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany, and dDepartment of Chemistry, Faculty of Science, The Hashemite University, Jordan
*Correspondence e-mail: eyad782002@yahoo.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 16 October 2014; accepted 28 October 2014; online 5 November 2014)

The title compound, C18H28N2S2·CHCl3, crystallizes as a zwitterion. The C—S bonds are almost equivalent, with lengths of 1.666 (3) and 1.657 (3) Å. The S—C—S bond angle is expanded to 129.54 (16)° and the N—C—N angle is reduced to the tetra­hedal value of 108.8 (2)°. In the crystal, adjacent mol­ecules are linked via C—H⋯S hydrogen bonds, forming chains along [100]. The chloro­form solvent mol­ecule, which is disordered over two positions [occupancy ratio = 0.51 (2):0.49 (2)], is linked to the chain by bifurcated C—H⋯(S,S) hydrogen bonds.

1. Related literature

For the properties and uses of heterocyclic carbenes, see: Kuhn & Al-Sheikh (2005[Kuhn, N. & Alsheikh, A. (2005). Coord. Chem. Rev. 249, 829-857.]); Kuhn et al. (1995[Kuhn, N., Kratz, Th., Bläser, D. & Boese, R. (1995). Chem. Ber. 128, 245-250.], 1999[Kuhn, N., Niquet, E., Steimann, M. & Walker, I. (1999). Z. Naturforsch. Teil B, 54, 1181-1187.]); Mallah et al. (2009[Mallah, E., Kuhn, N., Maichle-Mössmer, C., Steimann, M., Ströbele, M. & Zeller, K. P. (2009). Z. Naturforsch. Teil B, 64, 1176-1182.]); Margulis & Tempelton (1962[Margulis, T. & Templeton, D. H. (1962). J. Chem. Phys. 36, 2311-2316.]). For the structures of similar compounds, see: Winberg & Coffman (1965[Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 87, 2776-2777.]); Kuhn et al. (1994[Kuhn, N., Bohnen, H. & Henkel, G. (1994). Z. Naturforsch. Teil B, 49, 1473-1480.]). For the synthesis of the starting material, see: Kuhn & Kratz (1993[Kuhn, N. & Kratz, Th. (1993). Synthesis, pp. 561-562.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C18H28N2S2·CHCl3

  • Mr = 455.91

  • Monoclinic, P 21 /c

  • a = 8.4800 (17) Å

  • b = 16.227 (3) Å

  • c = 17.263 (4) Å

  • β = 98.78 (3)°

  • V = 2347.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.58 mm−1

  • T = 223 K

  • 0.60 × 0.50 × 0.30 mm

2.2. Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: multi-scan (CAD-4 Software; Enraf–Nonius, 1998[Enraf-Nonius (1998). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]) Tmin = 0.775, Tmax = 0.939

  • 5278 measured reflections

  • 4797 independent reflections

  • 3215 reflections with I > 2σ(I)

  • Rint = 0.062

  • 3 standard reflections every 400 reflections intensity decay: 7%

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.153

  • S = 1.04

  • 4797 reflections

  • 272 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15B⋯S2i 0.98 2.76 3.650 (4) 151
C30—H30⋯S1i 0.99 2.79 3.646 (4) 145
C30—H30⋯S2i 0.99 2.68 3.543 (3) 145
Symmetry code: (i) x+1, y, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1998[Enraf-Nonius (1998). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software); data reduction: HELENA/PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Owing to their highly nucleophilic character, heterocyclic carbenes can act as organic ligands in complexes of metal and metalloid centers in a manner similar to the tertiary phosphanes (Kuhn et al., 2005; Mallah et al., 2009). The nucleophilic carbenes with carbon disulfide are known only sporadically to give disulfide adducts (Winberg et al., 1965; Kuhn et al., 1994). The formation of stable 1.3-dicyclohexyl-4.5-dimethylimidazol-2-ylidene adducts confirmed the previous approach about nucleophilic character of N-heterocyclic carbenes (Kuhn et al., 1994.

The title compound, crystallized in the zwitterion form, Fig. 1. Bond length C1—C2 [1.484 (4) Å] is intermediate of carbon-carbon single and double bond lengths. The binding geometry of the CS2 [C1—S2 1.657 (3) Å, S2—C1—S1 129.54 (6)°] is similar to that in the structure of Et3PCS2 (Margulis & Tempelton, 1962) and are also very close to the bond lengths S1—C1, S2—C1 1.670 (5) Å] in IMCS2 (Kuhn et al., 1999). Parallel to this, the expansion of the bond angle S1—C1—S2 [129.54 (6)°] and the reduction of the angle N2—C2—N1 [108.8 (3)°] were observed. A comparison of the structure data speaks for the extensive conservation the π-electrons configuration in the heterocyclic ring, so that the coordination of CS2 substantially the negative charge of C(2) to CS2 fragment delocalized.

The CS2 fragment is almost normal to the mean plane of the five-membered ring. The has the effect of isolating the two π systems which is also reflected in the relatively long C1—C2 bond, which is 1.484 (4) Å, confirms the sma behaviour in (Kuhn et al., 1994). A comparison of the N-heterocyclic carbenes structures of (Kuhn et al., 1995) and the crystal in the title compound, a marked expansion of the ring constant angle at the carbon-carbene by about 8° [N2—C2—N1 108.8 (2)°] as the only significant difference. The fact confirms the idea of a coordinative bond between the carbene system and the CS2-fragment without the participation of the respective π-systems.

In the crystal, adjacent molecules are linked via C-H···S hydrogen bonds forming chains along [100]. The chloroform molecule of solvent, which is disordered over two positions [occupancy ratio of 0.51 (2):0.49 (2)], is linked to the chain by bifurcated C-H···S,S hydrogen bonds (Table 1).

Related literature top

For the properties and uses of heterocyclic carbenes, see: Kuhn & Al-Sheikh (2005); Kuhn et al. (1995, 1999); Mallah et al. (2009); Margulis & Tempelton (1962). For the structures of similar compounds, see: Winberg & Coffman (1965); Kuhn et al. (1994). For the synthesis of the starting material, see: Kuhn & Kratz (1993).

Experimental top

The title compound was synthesized according to the published procedure (Kuhn & Kratz, 1993). 0.34 g (6.0 mmol) of CS2 was added to a solution of of 1.3-dicyclohexyl-4.5-dimethylimidazol-2-yliden (1.56 g, 6.0 mmol) in 20 ml of THF at 258 K. The reaction mixture was stirred over night and the precipitate formed was filtered off and dried in vacuo. Yield after recrystallization from methanol/diethylether was 1.72 g (85%), as red crystals.

Refinement top

The C-bound H atoms were included in calculated positions and refined as riding: C- H = 0.97 - 0.99 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. The chloroform molecule of solvent is disordered over two positions with an occupancy ratio of 0.51 (2):0.49 (2) .

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1998); cell refinement: CAD-4 Software (Enraf–Nonius, 1998); data reduction: HELENA/PLATON (Spek, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 20% probability level.
1,3-Dicyclohexyl-4,5-dimethyl-1H-imidazol-3-ium-2-carbodithioate chloroform monosolvate top
Crystal data top
C18H28N2S2·CHCl3F(000) = 960
Mr = 455.91Dx = 1.290 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 8.4800 (17) Åθ = 7.6–13.7°
b = 16.227 (3) ŵ = 0.57 mm1
c = 17.263 (4) ÅT = 223 K
β = 98.78 (3)°Block, red
V = 2347.6 (8) Å30.60 × 0.50 × 0.30 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
3215 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
ω scansh = 1010
Absorption correction: multi-scan
(CAD-4 Software; Enraf–Nonius, 1998)
k = 020
Tmin = 0.775, Tmax = 0.939l = 121
5278 measured reflections3 standard reflections every 400 reflections
4797 independent reflections intensity decay: 7%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0736P)2 + 1.0555P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
4797 reflectionsΔρmax = 0.40 e Å3
272 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0056 (12)
Crystal data top
C18H28N2S2·CHCl3V = 2347.6 (8) Å3
Mr = 455.91Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.4800 (17) ŵ = 0.57 mm1
b = 16.227 (3) ÅT = 223 K
c = 17.263 (4) Å0.60 × 0.50 × 0.30 mm
β = 98.78 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
3215 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CAD-4 Software; Enraf–Nonius, 1998)
Rint = 0.062
Tmin = 0.775, Tmax = 0.9393 standard reflections every 400 reflections
5278 measured reflections intensity decay: 7%
4797 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.04Δρmax = 0.40 e Å3
4797 reflectionsΔρmin = 0.45 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.33013 (10)0.35829 (5)0.21958 (5)0.0524 (2)
S20.08543 (11)0.22805 (5)0.16626 (5)0.0601 (3)
N10.2665 (3)0.22155 (13)0.36574 (12)0.0374 (5)
N20.4181 (3)0.15925 (13)0.29338 (12)0.0357 (5)
C10.2388 (3)0.26807 (16)0.22524 (14)0.0366 (6)
C20.3059 (3)0.21643 (15)0.29333 (14)0.0346 (6)
C30.4543 (3)0.12642 (17)0.36899 (15)0.0401 (6)
C40.3592 (3)0.16530 (17)0.41371 (15)0.0410 (6)
C50.3515 (5)0.1536 (2)0.49892 (17)0.0598 (9)
H5A0.42390.10990.51950.090*
H5B0.24350.13900.50570.090*
H5C0.38210.20440.52690.090*
C60.5769 (4)0.0621 (2)0.39258 (19)0.0584 (9)
H6A0.58290.05080.44810.088*
H6B0.67980.08150.38210.088*
H6C0.54810.01210.36290.088*
C110.4780 (3)0.13436 (17)0.22026 (15)0.0401 (6)
H110.42620.17220.17910.048*
C120.4225 (4)0.04907 (19)0.19417 (18)0.0486 (7)
H12A0.30610.04600.18980.058*
H12B0.46860.00870.23340.058*
C130.4722 (4)0.0282 (2)0.11543 (19)0.0596 (9)
H13A0.44640.02960.10280.072*
H13B0.41130.06240.07460.072*
C140.6454 (4)0.0417 (2)0.1153 (2)0.0643 (9)
H14A0.67010.03210.06240.077*
H14B0.70640.00190.15070.077*
C150.6956 (4)0.1279 (3)0.1410 (2)0.0710 (11)
H15A0.64200.16770.10300.085*
H15B0.81090.13380.14220.085*
C160.6529 (4)0.1466 (2)0.2229 (2)0.0627 (9)
H16A0.71200.10960.26180.075*
H16B0.68180.20350.23780.075*
C210.1355 (3)0.27565 (18)0.38309 (16)0.0433 (7)
H210.10260.30820.33480.052*
C220.0096 (4)0.2273 (2)0.3958 (2)0.0629 (9)
H22A0.01440.19420.44370.075*
H22B0.04080.18980.35160.075*
C230.1469 (4)0.2874 (3)0.4031 (2)0.0765 (11)
H23A0.18050.31420.35250.092*
H23B0.23810.25640.41670.092*
C240.0988 (5)0.3520 (3)0.4644 (2)0.0739 (11)
H24A0.18580.39190.46340.089*
H24B0.08200.32580.51620.089*
C250.0500 (5)0.3964 (2)0.4524 (2)0.0744 (11)
H25A0.08100.43430.49630.089*
H25B0.02850.42930.40430.089*
C260.1874 (4)0.33744 (19)0.4464 (2)0.0589 (9)
H26A0.27990.36820.43420.071*
H26B0.21840.30910.49650.071*
C300.9203 (4)0.42877 (19)0.1636 (2)0.034 (3)0.51 (2)
H301.00370.38670.17910.041*0.51 (2)
Cl10.9615 (8)0.5094 (6)0.2138 (5)0.124 (3)0.51 (2)
Cl20.9264 (10)0.4611 (3)0.0639 (4)0.0889 (17)0.51 (2)
Cl30.7332 (7)0.3868 (5)0.1695 (6)0.091 (2)0.51 (2)
C310.9117 (16)0.4311 (8)0.1563 (8)0.095 (6)0.49 (2)
H311.00260.39250.16820.113*0.49 (2)
Cl1A0.9542 (5)0.5234 (3)0.2235 (2)0.0516 (14)0.49 (2)
Cl2A0.8855 (18)0.4481 (8)0.0636 (4)0.161 (4)0.49 (2)
Cl3A0.7452 (9)0.3845 (4)0.1871 (7)0.0886 (19)0.49 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0600 (5)0.0409 (4)0.0582 (5)0.0029 (4)0.0153 (4)0.0107 (3)
S20.0651 (5)0.0540 (5)0.0536 (5)0.0008 (4)0.0152 (4)0.0048 (4)
N10.0485 (13)0.0363 (12)0.0289 (11)0.0043 (10)0.0104 (9)0.0007 (9)
N20.0438 (12)0.0333 (11)0.0319 (11)0.0045 (10)0.0124 (9)0.0009 (9)
C10.0458 (15)0.0362 (14)0.0296 (13)0.0075 (12)0.0116 (11)0.0013 (11)
C20.0402 (13)0.0330 (13)0.0317 (13)0.0006 (11)0.0086 (10)0.0027 (11)
C30.0489 (15)0.0368 (14)0.0342 (14)0.0047 (12)0.0048 (12)0.0024 (11)
C40.0554 (17)0.0370 (14)0.0310 (13)0.0016 (13)0.0080 (12)0.0008 (11)
C50.091 (3)0.056 (2)0.0337 (15)0.0158 (18)0.0123 (16)0.0077 (14)
C60.075 (2)0.0529 (19)0.0468 (18)0.0238 (17)0.0095 (16)0.0109 (15)
C110.0497 (16)0.0382 (15)0.0349 (13)0.0018 (12)0.0153 (12)0.0028 (11)
C120.0522 (17)0.0479 (17)0.0493 (17)0.0099 (14)0.0195 (14)0.0114 (14)
C130.077 (2)0.0550 (19)0.0499 (19)0.0107 (17)0.0214 (17)0.0184 (15)
C140.076 (2)0.069 (2)0.054 (2)0.0061 (19)0.0302 (17)0.0104 (17)
C150.064 (2)0.088 (3)0.070 (2)0.025 (2)0.0379 (18)0.021 (2)
C160.061 (2)0.069 (2)0.064 (2)0.0229 (17)0.0285 (16)0.0217 (18)
C210.0525 (16)0.0441 (16)0.0358 (14)0.0111 (13)0.0144 (12)0.0008 (12)
C220.0540 (19)0.064 (2)0.074 (2)0.0008 (17)0.0196 (17)0.0130 (18)
C230.055 (2)0.099 (3)0.079 (3)0.009 (2)0.0224 (19)0.009 (2)
C240.078 (2)0.094 (3)0.054 (2)0.038 (2)0.0255 (18)0.002 (2)
C250.094 (3)0.060 (2)0.073 (2)0.021 (2)0.023 (2)0.0195 (19)
C260.067 (2)0.0464 (18)0.066 (2)0.0080 (16)0.0163 (17)0.0167 (16)
C300.023 (4)0.040 (6)0.038 (5)0.002 (4)0.003 (3)0.016 (4)
Cl10.090 (3)0.102 (3)0.186 (6)0.010 (2)0.034 (3)0.072 (4)
Cl20.113 (3)0.099 (4)0.0580 (19)0.0136 (19)0.0249 (16)0.0109 (16)
Cl30.048 (2)0.087 (3)0.136 (5)0.0110 (17)0.004 (3)0.014 (2)
C310.120 (12)0.095 (12)0.069 (9)0.058 (9)0.015 (8)0.002 (8)
Cl1A0.0494 (16)0.0500 (17)0.057 (2)0.0037 (10)0.0128 (10)0.0085 (13)
Cl2A0.143 (6)0.285 (10)0.057 (2)0.049 (5)0.021 (3)0.062 (4)
Cl3A0.110 (5)0.048 (2)0.126 (4)0.008 (2)0.072 (4)0.0069 (18)
Geometric parameters (Å, º) top
S1—C11.666 (3)C15—C161.542 (4)
S2—C11.657 (3)C15—H15A0.9800
N1—C21.345 (3)C15—H15B0.9800
N1—C41.392 (3)C16—H16A0.9800
N1—C211.482 (3)C16—H16B0.9800
N2—C21.329 (3)C21—C261.499 (4)
N2—C31.400 (3)C21—C221.504 (4)
N2—C111.487 (3)C21—H210.9900
C1—C21.484 (4)C22—C231.539 (5)
C3—C41.354 (4)C22—H22A0.9800
C3—C61.486 (4)C22—H22B0.9800
C4—C51.494 (4)C23—C241.500 (6)
C5—H5A0.9700C23—H23A0.9800
C5—H5B0.9700C23—H23B0.9800
C5—H5C0.9700C24—C251.495 (6)
C6—H6A0.9700C24—H24A0.9800
C6—H6B0.9700C24—H24B0.9800
C6—H6C0.9700C25—C261.524 (5)
C11—C161.490 (4)C25—H25A0.9800
C11—C121.508 (4)C25—H25B0.9800
C11—H110.9900C26—H26A0.9800
C12—C131.521 (4)C26—H26B0.9800
C12—H12A0.9800C30—Cl11.579 (10)
C12—H12B0.9800C30—Cl31.744 (7)
C13—C141.485 (5)C30—Cl21.807 (7)
C13—H13A0.9800C30—H300.9900
C13—H13B0.9800C31—Cl2A1.605 (16)
C14—C151.509 (5)C31—Cl3A1.754 (15)
C14—H14A0.9800C31—Cl1A1.896 (14)
C14—H14B0.9800C31—H310.9900
C2—N1—C4108.3 (2)C14—C15—H15B109.5
C2—N1—C21121.6 (2)C16—C15—H15B109.5
C4—N1—C21129.8 (2)H15A—C15—H15B108.1
C2—N2—C3108.7 (2)C11—C16—C15108.5 (3)
C2—N2—C11121.8 (2)C11—C16—H16A110.0
C3—N2—C11129.3 (2)C15—C16—H16A110.0
C2—C1—S2115.8 (2)C11—C16—H16B110.0
C2—C1—S1114.64 (19)C15—C16—H16B110.0
S2—C1—S1129.54 (16)H16A—C16—H16B108.4
N2—C2—N1108.8 (2)N1—C21—C26113.5 (2)
N2—C2—C1125.6 (2)N1—C21—C22112.1 (2)
N1—C2—C1125.6 (2)C26—C21—C22113.5 (2)
C4—C3—N2106.8 (2)N1—C21—H21105.7
C4—C3—C6128.6 (3)C26—C21—H21105.7
N2—C3—C6124.6 (2)C22—C21—H21105.7
C3—C4—N1107.3 (2)C21—C22—C23109.1 (3)
C3—C4—C5128.4 (3)C21—C22—H22A109.9
N1—C4—C5124.3 (3)C23—C22—H22A109.9
C4—C5—H5A109.5C21—C22—H22B109.9
C4—C5—H5B109.5C23—C22—H22B109.9
H5A—C5—H5B109.5H22A—C22—H22B108.3
C4—C5—H5C109.5C24—C23—C22111.9 (3)
H5A—C5—H5C109.5C24—C23—H23A109.2
H5B—C5—H5C109.5C22—C23—H23A109.2
C3—C6—H6A109.5C24—C23—H23B109.2
C3—C6—H6B109.5C22—C23—H23B109.2
H6A—C6—H6B109.5H23A—C23—H23B107.9
C3—C6—H6C109.5C25—C24—C23112.6 (3)
H6A—C6—H6C109.5C25—C24—H24A109.1
H6B—C6—H6C109.5C23—C24—H24A109.1
N2—C11—C16113.9 (2)C25—C24—H24B109.1
N2—C11—C12111.8 (2)C23—C24—H24B109.1
C16—C11—C12113.3 (3)H24A—C24—H24B107.8
N2—C11—H11105.7C24—C25—C26112.1 (3)
C16—C11—H11105.7C24—C25—H25A109.2
C12—C11—H11105.7C26—C25—H25A109.2
C11—C12—C13110.8 (2)C24—C25—H25B109.2
C11—C12—H12A109.5C26—C25—H25B109.2
C13—C12—H12A109.5H25A—C25—H25B107.9
C11—C12—H12B109.5C21—C26—C25109.1 (3)
C13—C12—H12B109.5C21—C26—H26A109.9
H12A—C12—H12B108.1C25—C26—H26A109.9
C14—C13—C12112.2 (3)C21—C26—H26B109.9
C14—C13—H13A109.2C25—C26—H26B109.9
C12—C13—H13A109.2H26A—C26—H26B108.3
C14—C13—H13B109.2Cl1—C30—Cl3114.7 (5)
C12—C13—H13B109.2Cl1—C30—Cl2104.3 (4)
H13A—C13—H13B107.9Cl3—C30—Cl2109.1 (4)
C13—C14—C15111.8 (3)Cl1—C30—H30109.5
C13—C14—H14A109.3Cl3—C30—H30109.5
C15—C14—H14A109.3Cl2—C30—H30109.5
C13—C14—H14B109.3Cl2A—C31—Cl3A112.4 (9)
C15—C14—H14B109.3Cl2A—C31—Cl1A117.3 (10)
H14A—C14—H14B107.9Cl3A—C31—Cl1A104.0 (7)
C14—C15—C16110.9 (3)Cl2A—C31—H31107.6
C14—C15—H15A109.5Cl3A—C31—H31107.6
C16—C15—H15A109.5Cl1A—C31—H31107.6
C3—N2—C2—N10.6 (3)C2—N2—C11—C16121.2 (3)
C11—N2—C2—N1175.1 (2)C3—N2—C11—C1664.0 (4)
C3—N2—C2—C1177.6 (2)C2—N2—C11—C12108.8 (3)
C11—N2—C2—C16.7 (4)C3—N2—C11—C1266.0 (4)
C4—N1—C2—N20.4 (3)N2—C11—C12—C13174.7 (3)
C21—N1—C2—N2175.4 (2)C16—C11—C12—C1354.9 (4)
C4—N1—C2—C1177.8 (2)C11—C12—C13—C1452.1 (4)
C21—N1—C2—C16.4 (4)C12—C13—C14—C1554.1 (4)
S2—C1—C2—N287.5 (3)C13—C14—C15—C1656.8 (4)
S1—C1—C2—N292.4 (3)N2—C11—C16—C15173.7 (3)
S2—C1—C2—N194.6 (3)C12—C11—C16—C1557.1 (4)
S1—C1—C2—N185.5 (3)C14—C15—C16—C1157.2 (4)
C2—N2—C3—C40.5 (3)C2—N1—C21—C26122.8 (3)
C11—N2—C3—C4174.8 (3)C4—N1—C21—C2662.4 (4)
C2—N2—C3—C6178.6 (3)C2—N1—C21—C22107.1 (3)
C11—N2—C3—C66.1 (5)C4—N1—C21—C2267.7 (4)
N2—C3—C4—N10.3 (3)N1—C21—C22—C23173.0 (3)
C6—C3—C4—N1178.8 (3)C26—C21—C22—C2356.9 (4)
N2—C3—C4—C5179.4 (3)C21—C22—C23—C2453.3 (4)
C6—C3—C4—C50.3 (5)C22—C23—C24—C2553.2 (5)
C2—N1—C4—C30.1 (3)C23—C24—C25—C2654.0 (5)
C21—N1—C4—C3175.2 (3)N1—C21—C26—C25172.9 (3)
C2—N1—C4—C5179.1 (3)C22—C21—C26—C2557.6 (4)
C21—N1—C4—C55.6 (5)C24—C25—C26—C2154.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···S2i0.982.763.650 (4)151
C30—H30···S1i0.992.793.646 (4)145
C30—H30···S2i0.992.683.543 (3)145
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15B···S2i0.982.763.650 (4)151
C30—H30···S1i0.992.793.646 (4)145
C30—H30···S2i0.992.683.543 (3)145
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors are indebted to the University of Petra, the University of Jordan and the University of Tübingen for their continuous support and help.

References

First citationEnraf–Nonius (1998). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationKuhn, N. & Alsheikh, A. (2005). Coord. Chem. Rev. 249, 829–857.  Web of Science CrossRef CAS Google Scholar
First citationKuhn, N., Bohnen, H. & Henkel, G. (1994). Z. Naturforsch. Teil B, 49, 1473–1480.  CAS Google Scholar
First citationKuhn, N. & Kratz, Th. (1993). Synthesis, pp. 561–562.  CrossRef Google Scholar
First citationKuhn, N., Kratz, Th., Bläser, D. & Boese, R. (1995). Chem. Ber. 128, 245–250.  CrossRef CAS Web of Science Google Scholar
First citationKuhn, N., Niquet, E., Steimann, M. & Walker, I. (1999). Z. Naturforsch. Teil B, 54, 1181–1187.  CAS Google Scholar
First citationMallah, E., Kuhn, N., Maichle-Mössmer, C., Steimann, M., Ströbele, M. & Zeller, K. P. (2009). Z. Naturforsch. Teil B, 64, 1176–1182.  CAS Google Scholar
First citationMargulis, T. & Templeton, D. H. (1962). J. Chem. Phys. 36, 2311–2316.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWinberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 87, 2776–2777.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1227-o1228
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds