organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1223-o1224

Crystal structure of (R)-N-benzyl-1-phenylethanaminium (R)-4-chloro­mandelate

aSchool of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China, bDepartment of Chemical and Biochemical Engineering, Western University, London, Ontario, N6A 5B9, Canada, and cDepartment of Engineering, Faculty of Agriculture, Dalhousie University, Truro, NovaScotia, B2N 5E3, Canada
*Correspondence e-mail: srohani@uwo.ca

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 18 October 2014; accepted 21 October 2014; online 5 November 2014)

The absolute configuration of the title mol­ecular salt, C15H18N+·C8H6ClO3, has been confirmed by resonant scattering. In the (R)-N-benzyl-1-phenyl-ethyl­ammonium cation, the phenyl rings are inclined to one another by 44.65 (7)°. In the crystal, the (R)-4-chloro­mandelate anions are linked via O—H⋯O hydrogen bonds and bridged by N—H⋯O hydrogen bonds involving the cations, forming chains along [010]. There are C—H⋯O hydrogen bonds present within the chains, which are linked via C—H⋯π inter­actions and a short Cl⋯Cl inter­action [3.193 (1) Å] forming a three-dimensional framework. The structure was refined as a two-component inversion twin giving a Flack parameter of 0.05 (4).

1. Related literature

For the resolution of chlorine-substituted mandelic acids, see: He, Gomaa et al. (2010[He, Q., Gomaa, H., Rohani, S., Zhu, J. & Jennings, M. (2010). Chirality, 22, 707-716.]); He, Peng et al. (2010[He, Q., Peng, Y. & Rohani, S. (2010). Chirality, 22, 16-23.]); Peng et al. (2012[Peng, Y., He, Q., Rohani, S. & Jenkins, H. (2012). Chirality, 24, 349-355.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C15H18N+·C8H6ClO3

  • Mr = 397.88

  • Monoclinic, C 2

  • a = 17.783 (5) Å

  • b = 9.6993 (19) Å

  • c = 12.796 (3) Å

  • β = 107.868 (10)°

  • V = 2100.6 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 110 K

  • 0.56 × 0.13 × 0.12 mm

2.2. Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.685, Tmax = 0.747

  • 34940 measured reflections

  • 7574 independent reflections

  • 6778 reflections with I > 2σ(I)

  • Rint = 0.031

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.092

  • S = 1.04

  • 7574 reflections

  • 350 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.45 e Å−3

  • Absolute structure: Refined as an inversion twin.

  • Absolute structure parameter: 0.05 (4)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of rings C1B–C6B and C10B–C15B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
O3A—H3A⋯O1Ai 0.87 (2) 1.84 (2) 2.6878 (15) 164.9 (17)
O3A—H3A⋯O2Ai 0.87 (2) 2.52 (2) 3.1629 (14) 130.6 (16)
N1B—H1BA⋯O2Ai 0.85 (2) 1.90 (2) 2.7457 (16) 176.1 (16)
N1B—H1BB⋯O1A 0.98 (2) 1.78 (2) 2.7337 (15) 163.7 (18)
N1B—H1BB⋯O3A 0.98 (2) 2.42 (2) 3.0019 (14) 117.4 (15)
C6B—H6B⋯O2Ai 0.92 (2) 2.39 (2) 3.2275 (19) 152.1 (15)
C2A—H2ACg2 1.00 (2) 2.827 (19) 3.7029 (18) 146.7 (14)
C9B—H9B2⋯Cg2ii 0.97 (2) 2.69 (2) 3.4243 (17) 146.7 (14)
C7A—H7ACg1iii 0.99 (2) 2.753 (19) 3.6111 (18) 145.5 (15)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (ii) -x+2, y, -z+1; (iii) x, y, z+1.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT); program(s) used to solve structure: SHELXT (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2014, PLATON and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

In our on-going research work on the resolution of chlorine-substituted mandelic acids with optically active phenyl-ethyl-amine­(PEA) and it was found that that PEA was an excellent resolving agent for the resolution of racemic 4-chloro-mandelic acid (He, Gomaa et al., 2010; He, Peng et al., 2010). However, it failed to resolve racemic 2-chloro-mandelic acid. A benzyl functional group was introduced in PEA, leading to a new resolving agent, N-benzyl-phenyl-ethyl-amine­(BPA), which demonstrated a high resolution efficiency in the resolution of 2-chloro-mandelic acid (Peng et al., 2012). In order to obtain insight into the enhanced chiral discrimination ability of BPA, the resolution of 4-chloro-mandelic acid with BPA has been investigated, and the single crystal structure of the resulting less soluble diastereomeric title salt, is reported on herein.

The title compound consists of an ion pair; an amine cation and a carboxyl­ate anion (Fig. 1). The absolute stereochemistry of each ion has been confirmed by resonant scattering.

In the crystal, the (R)-4-chloro-mandelate anions are linked via O—H···O hydrogen bonds and bridged by N—H···O hydrogen bonds involving the cations forming chains along [010], see Table 1 and Fig. 2. There are C—H···O hydrogen bonds present within the chains which are linked via C—H···π inter­actions (Table 1), and a short Cl1···Cl1i inter­action [3.193 (1) Å; symmetry code: (i) -x + 1, y, -z + 2], forming a three-dimensional framework.

Refinement details top

All of the hydrogen atoms were located in difference Fourier maps and freely refined. The structure was refined as a 2-component inversion twin giving a Flack parameter of 0.05 (4).

Related literature top

For the resolution of chlorine-substituted mandelic acids, see: He, Gomaa et al. (2010); He, Peng et al. (2010); Peng et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
A view of the molecular structure of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A view along the a axis of the crystal packing of the title molecular salt. The O-H···O and N-H···O hydrogen bonds are shown as dashed lines (see Table 1 for details; C-bound H atoms have been omitted for clarity).
(R)-N-benzyl-1-phenylethanaminium (R)-4-chloromandelate top
Crystal data top
C15H18N+·C8H6ClO3F(000) = 840
Mr = 397.88Dx = 1.258 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
a = 17.783 (5) ÅCell parameters from 9969 reflections
b = 9.6993 (19) Åθ = 2.5–35.8°
c = 12.796 (3) ŵ = 0.21 mm1
β = 107.868 (10)°T = 110 K
V = 2100.6 (8) Å3Prism, colourless
Z = 40.56 × 0.13 × 0.12 mm
Data collection top
Bruker APEXII
diffractometer
6778 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.031
phi and ω scansθmax = 37.0°, θmin = 3.8°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2729
Tmin = 0.685, Tmax = 0.747k = 1016
34940 measured reflectionsl = 2119
7574 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0666P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
7574 reflectionsΔρmax = 0.34 e Å3
350 parametersΔρmin = 0.45 e Å3
1 restraintAbsolute structure: Refined as an inversion twin.
Primary atom site location: dualAbsolute structure parameter: 0.05 (4)
Crystal data top
C15H18N+·C8H6ClO3V = 2100.6 (8) Å3
Mr = 397.88Z = 4
Monoclinic, C2Mo Kα radiation
a = 17.783 (5) ŵ = 0.21 mm1
b = 9.6993 (19) ÅT = 110 K
c = 12.796 (3) Å0.56 × 0.13 × 0.12 mm
β = 107.868 (10)°
Data collection top
Bruker APEXII
diffractometer
7574 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6778 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.747Rint = 0.031
34940 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036All H-atom parameters refined
wR(F2) = 0.092Δρmax = 0.34 e Å3
S = 1.04Δρmin = 0.45 e Å3
7574 reflectionsAbsolute structure: Refined as an inversion twin.
350 parametersAbsolute structure parameter: 0.05 (4)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.74654 (6)0.67270 (10)0.48017 (7)0.01801 (17)
O2A0.73497 (6)0.71450 (10)0.64630 (8)0.02089 (19)
C1A0.73400 (7)0.63607 (12)0.56813 (9)0.0140 (2)
C2A0.71982 (7)0.48180 (12)0.58184 (9)0.01356 (19)
H2A0.7731 (10)0.439 (2)0.6135 (14)0.018 (4)*
O3A0.68420 (5)0.42149 (10)0.47752 (7)0.01833 (17)
H3A0.7016 (11)0.338 (2)0.4792 (15)0.019 (4)*
C3A0.67231 (7)0.45775 (12)0.65978 (9)0.0135 (2)
C4A0.59064 (7)0.44317 (16)0.62065 (10)0.0211 (3)
H4A0.5657 (12)0.446 (2)0.5482 (16)0.027 (5)*
C5A0.54612 (7)0.42553 (19)0.69271 (10)0.0250 (3)
H5A0.4896 (14)0.413 (3)0.6653 (18)0.045 (6)*
C6A0.58539 (8)0.42250 (16)0.80456 (10)0.0210 (2)
Cl1A0.53108 (2)0.40049 (6)0.89547 (3)0.03874 (12)
C7A0.66664 (8)0.43605 (14)0.84569 (10)0.0195 (2)
H7A0.6948 (11)0.435 (2)0.9253 (15)0.024 (5)*
C8A0.70965 (7)0.45356 (14)0.77258 (10)0.0168 (2)
H8A0.7667 (11)0.4584 (18)0.7988 (14)0.015 (4)*
C1B0.80429 (7)0.47938 (13)0.15898 (9)0.0159 (2)
C2B0.83482 (8)0.56797 (15)0.09643 (10)0.0213 (2)
H2B0.8295 (15)0.673 (3)0.105 (2)0.043 (6)*
C3B0.87017 (9)0.51600 (17)0.02130 (11)0.0248 (3)
H3B0.8938 (12)0.582 (2)0.0200 (16)0.032 (5)*
C4B0.87563 (8)0.37495 (18)0.00863 (10)0.0244 (3)
H4B0.9019 (12)0.345 (2)0.0409 (17)0.031 (5)*
C5B0.84581 (9)0.28592 (16)0.07139 (11)0.0239 (3)
H5B0.8480 (13)0.188 (3)0.0656 (18)0.036 (6)*
C6B0.80992 (9)0.33748 (15)0.14612 (10)0.0203 (2)
H6B0.7919 (10)0.277 (2)0.1883 (14)0.016 (4)*
C7B0.76252 (7)0.54065 (14)0.23543 (9)0.0163 (2)
H7B0.7728 (11)0.637 (2)0.2405 (15)0.020 (4)*
C8B0.67419 (8)0.50930 (18)0.19966 (11)0.0254 (3)
H8B10.6469 (13)0.540 (3)0.1221 (18)0.041 (6)*
H8B20.6493 (12)0.548 (3)0.2523 (17)0.035 (5)*
H8B30.6662 (11)0.412 (3)0.1986 (15)0.028 (5)*
N1B0.79666 (6)0.49143 (11)0.35198 (8)0.01298 (17)
H1BA0.7855 (9)0.406 (2)0.3544 (12)0.012 (4)*
H1BB0.7704 (11)0.545 (2)0.3959 (16)0.023 (4)*
C9B0.88367 (7)0.51675 (15)0.39986 (10)0.0177 (2)
H9B10.8911 (11)0.614 (2)0.3831 (15)0.021 (4)*
H9B20.9115 (11)0.463 (2)0.3600 (15)0.020 (4)*
C10B0.91101 (7)0.48164 (15)0.52067 (10)0.0179 (2)
C11B0.92328 (8)0.34526 (18)0.55489 (12)0.0257 (3)
H11B0.9173 (12)0.277 (2)0.5014 (16)0.024 (5)*
C12B0.94738 (9)0.3151 (2)0.66696 (15)0.0375 (4)
H12B0.9511 (15)0.221 (3)0.679 (2)0.048 (7)*
C13B0.95961 (9)0.4192 (3)0.74345 (12)0.0444 (5)
H13B0.9770 (14)0.393 (3)0.8221 (19)0.049 (6)*
C14B0.94846 (9)0.5551 (3)0.71019 (12)0.0378 (4)
H14B0.9609 (15)0.631 (3)0.766 (2)0.044 (6)*
C15B0.92392 (8)0.58726 (18)0.59849 (11)0.0253 (3)
H15B0.9134 (11)0.688 (2)0.5689 (16)0.024 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.0260 (4)0.0155 (4)0.0164 (4)0.0021 (3)0.0121 (3)0.0014 (3)
O2A0.0338 (5)0.0152 (4)0.0178 (4)0.0002 (4)0.0141 (4)0.0018 (3)
C1A0.0155 (5)0.0135 (5)0.0146 (4)0.0028 (4)0.0069 (4)0.0006 (4)
C2A0.0144 (4)0.0135 (5)0.0140 (4)0.0014 (4)0.0061 (4)0.0005 (4)
O3A0.0245 (4)0.0179 (4)0.0151 (4)0.0011 (4)0.0098 (3)0.0048 (3)
C3A0.0141 (4)0.0143 (5)0.0127 (4)0.0003 (4)0.0052 (4)0.0001 (3)
C4A0.0142 (5)0.0374 (8)0.0118 (5)0.0011 (5)0.0038 (4)0.0010 (4)
C5A0.0145 (5)0.0447 (9)0.0169 (5)0.0031 (6)0.0067 (4)0.0027 (5)
C6A0.0234 (5)0.0285 (7)0.0152 (5)0.0023 (5)0.0118 (4)0.0008 (4)
Cl1A0.0331 (2)0.0675 (3)0.0237 (2)0.0058 (2)0.0206 (1)0.0011 (2)
C7A0.0226 (5)0.0240 (6)0.0125 (4)0.0005 (5)0.0061 (4)0.0008 (4)
C8A0.0153 (5)0.0210 (6)0.0136 (4)0.0008 (4)0.0036 (4)0.0017 (4)
C1B0.0181 (5)0.0191 (5)0.0104 (4)0.0002 (4)0.0041 (4)0.0016 (4)
C2B0.0243 (6)0.0237 (6)0.0162 (5)0.0040 (5)0.0068 (4)0.0021 (4)
C3B0.0253 (6)0.0348 (8)0.0157 (5)0.0062 (6)0.0086 (5)0.0028 (5)
C4B0.0223 (6)0.0390 (8)0.0135 (5)0.0008 (6)0.0078 (4)0.0022 (5)
C5B0.0327 (7)0.0243 (7)0.0173 (5)0.0028 (5)0.0116 (5)0.0012 (4)
C6B0.0278 (6)0.0210 (6)0.0152 (5)0.0012 (5)0.0110 (5)0.0003 (4)
C7B0.0193 (5)0.0177 (5)0.0122 (4)0.0023 (4)0.0051 (4)0.0024 (4)
C8B0.0173 (5)0.0390 (9)0.0185 (5)0.0047 (6)0.0035 (4)0.0002 (5)
N1B0.0140 (4)0.0145 (4)0.0111 (4)0.0002 (3)0.0049 (3)0.0002 (3)
C9B0.0140 (5)0.0261 (6)0.0139 (4)0.0032 (4)0.0056 (4)0.0006 (4)
C10B0.0120 (4)0.0278 (6)0.0140 (5)0.0008 (4)0.0040 (4)0.0003 (4)
C11B0.0166 (5)0.0327 (7)0.0264 (6)0.0015 (5)0.0046 (5)0.0071 (5)
C12B0.0200 (6)0.0543 (12)0.0353 (8)0.0022 (7)0.0041 (6)0.0247 (8)
C13B0.0196 (6)0.0945 (17)0.0170 (6)0.0065 (9)0.0024 (5)0.0128 (8)
C14B0.0206 (6)0.0767 (14)0.0157 (6)0.0034 (7)0.0051 (5)0.0103 (7)
C15B0.0164 (5)0.0407 (8)0.0183 (5)0.0015 (5)0.0047 (4)0.0079 (5)
Geometric parameters (Å, º) top
O1A—C1A1.2636 (14)C5B—C6B1.395 (2)
O2A—C1A1.2525 (15)C5B—H5B0.95 (2)
C1A—C2A1.5364 (17)C6B—H6B0.921 (19)
C2A—O3A1.4164 (14)C7B—N1B1.5051 (15)
C2A—C3A1.5100 (16)C7B—C8B1.5258 (19)
C2A—H2A1.001 (17)C7B—H7B0.95 (2)
O3A—H3A0.87 (2)C8B—H8B11.01 (2)
C3A—C4A1.3905 (16)C8B—H8B20.99 (2)
C3A—C8A1.3920 (16)C8B—H8B30.95 (3)
C4A—C5A1.3979 (18)N1B—C9B1.4994 (16)
C4A—H4A0.897 (19)N1B—H1BA0.85 (2)
C5A—C6A1.3869 (17)N1B—H1BB0.98 (2)
C5A—H5A0.97 (2)C9B—C10B1.5103 (17)
C6A—C7A1.3839 (18)C9B—H9B10.98 (2)
C6A—Cl1A1.7381 (13)C9B—H9B20.968 (19)
C7A—C8A1.3886 (17)C10B—C11B1.389 (2)
C7A—H7A0.988 (19)C10B—C15B1.398 (2)
C8A—H8A0.967 (18)C11B—C12B1.396 (2)
C1B—C2B1.3931 (18)C11B—H11B0.94 (2)
C1B—C6B1.3934 (19)C12B—C13B1.376 (4)
C1B—C7B1.5191 (18)C12B—H12B0.93 (3)
C2B—C3B1.394 (2)C13B—C14B1.381 (4)
C2B—H2B1.03 (3)C13B—H13B0.99 (2)
C3B—C4B1.385 (2)C14B—C15B1.396 (2)
C3B—H3B1.00 (2)C14B—H14B1.00 (3)
C4B—C5B1.390 (2)C15B—H15B1.04 (2)
C4B—H4B0.94 (2)
O2A—C1A—O1A125.28 (12)C1B—C6B—H6B120.9 (12)
O2A—C1A—C2A117.57 (10)C5B—C6B—H6B119.1 (12)
O1A—C1A—C2A117.10 (10)N1B—C7B—C1B112.69 (10)
O3A—C2A—C3A112.31 (10)N1B—C7B—C8B107.40 (11)
O3A—C2A—C1A109.65 (10)C1B—C7B—C8B113.00 (11)
C3A—C2A—C1A111.76 (10)N1B—C7B—H7B103.5 (11)
O3A—C2A—H2A107.7 (10)C1B—C7B—H7B107.9 (11)
C3A—C2A—H2A108.7 (10)C8B—C7B—H7B111.9 (11)
C1A—C2A—H2A106.5 (11)C7B—C8B—H8B1112.1 (13)
C2A—O3A—H3A108.1 (12)C7B—C8B—H8B2110.9 (12)
C4A—C3A—C8A118.93 (11)H8B1—C8B—H8B2112.3 (19)
C4A—C3A—C2A120.80 (10)C7B—C8B—H8B3109.7 (11)
C8A—C3A—C2A120.24 (10)H8B1—C8B—H8B3104.9 (18)
C3A—C4A—C5A121.01 (11)H8B2—C8B—H8B3106.6 (18)
C3A—C4A—H4A119.9 (13)C9B—N1B—C7B113.88 (10)
C5A—C4A—H4A119.1 (13)C9B—N1B—H1BA111.5 (11)
C6A—C5A—C4A118.39 (11)C7B—N1B—H1BA108.4 (10)
C6A—C5A—H5A120.7 (13)C9B—N1B—H1BB107.0 (11)
C4A—C5A—H5A120.9 (13)C7B—N1B—H1BB106.3 (11)
C7A—C6A—C5A121.79 (11)H1BA—N1B—H1BB109.5 (16)
C7A—C6A—Cl1A119.13 (9)N1B—C9B—C10B110.43 (10)
C5A—C6A—Cl1A119.08 (10)N1B—C9B—H9B1105.0 (11)
C6A—C7A—C8A118.82 (11)C10B—C9B—H9B1114.6 (11)
C6A—C7A—H7A122.0 (11)N1B—C9B—H9B2109.1 (11)
C8A—C7A—H7A119.1 (11)C10B—C9B—H9B2111.2 (11)
C7A—C8A—C3A121.06 (11)H9B1—C9B—H9B2106.3 (16)
C7A—C8A—H8A120.5 (11)C11B—C10B—C15B119.85 (13)
C3A—C8A—H8A118.4 (11)C11B—C10B—C9B120.48 (12)
C2B—C1B—C6B119.12 (13)C15B—C10B—C9B119.67 (13)
C2B—C1B—C7B118.85 (12)C10B—C11B—C12B119.48 (17)
C6B—C1B—C7B121.98 (12)C10B—C11B—H11B118.3 (13)
C1B—C2B—C3B120.71 (14)C12B—C11B—H11B122.2 (13)
C1B—C2B—H2B119.1 (14)C13B—C12B—C11B120.58 (19)
C3B—C2B—H2B120.2 (14)C13B—C12B—H12B127.9 (16)
C4B—C3B—C2B120.04 (13)C11B—C12B—H12B111.4 (16)
C4B—C3B—H3B120.9 (12)C12B—C13B—C14B120.31 (14)
C2B—C3B—H3B119.0 (12)C12B—C13B—H13B117.7 (18)
C3B—C4B—C5B119.55 (13)C14B—C13B—H13B122.0 (18)
C3B—C4B—H4B117.0 (13)C13B—C14B—C15B119.94 (17)
C5B—C4B—H4B123.4 (13)C13B—C14B—H14B120.0 (14)
C4B—C5B—C6B120.60 (14)C15B—C14B—H14B120.0 (14)
C4B—C5B—H5B122.7 (13)C14B—C15B—C10B119.82 (17)
C6B—C5B—H5B116.7 (13)C14B—C15B—H15B123.1 (11)
C1B—C6B—C5B119.97 (13)C10B—C15B—H15B117.0 (11)
O2A—C1A—C2A—O3A152.48 (11)C3B—C4B—C5B—C6B0.6 (2)
O1A—C1A—C2A—O3A29.96 (14)C2B—C1B—C6B—C5B0.0 (2)
O2A—C1A—C2A—C3A27.28 (15)C7B—C1B—C6B—C5B177.19 (12)
O1A—C1A—C2A—C3A155.16 (10)C4B—C5B—C6B—C1B0.5 (2)
O3A—C2A—C3A—C4A29.54 (16)C2B—C1B—C7B—N1B125.48 (12)
C1A—C2A—C3A—C4A94.18 (14)C6B—C1B—C7B—N1B57.34 (16)
O3A—C2A—C3A—C8A152.20 (11)C2B—C1B—C7B—C8B112.54 (14)
C1A—C2A—C3A—C8A84.08 (14)C6B—C1B—C7B—C8B64.64 (16)
C8A—C3A—C4A—C5A0.5 (2)C1B—C7B—N1B—C9B55.64 (14)
C2A—C3A—C4A—C5A177.82 (14)C8B—C7B—N1B—C9B179.28 (11)
C3A—C4A—C5A—C6A0.2 (2)C7B—N1B—C9B—C10B172.64 (11)
C4A—C5A—C6A—C7A0.2 (2)N1B—C9B—C10B—C11B78.45 (15)
C4A—C5A—C6A—Cl1A179.94 (13)N1B—C9B—C10B—C15B101.46 (14)
C5A—C6A—C7A—C8A0.2 (2)C15B—C10B—C11B—C12B0.9 (2)
Cl1A—C6A—C7A—C8A179.98 (11)C9B—C10B—C11B—C12B179.01 (12)
C6A—C7A—C8A—C3A0.1 (2)C10B—C11B—C12B—C13B0.5 (2)
C4A—C3A—C8A—C7A0.41 (19)C11B—C12B—C13B—C14B0.3 (2)
C2A—C3A—C8A—C7A177.88 (12)C12B—C13B—C14B—C15B0.6 (2)
C6B—C1B—C2B—C3B0.4 (2)C13B—C14B—C15B—C10B0.3 (2)
C7B—C1B—C2B—C3B176.84 (12)C11B—C10B—C15B—C14B0.5 (2)
C1B—C2B—C3B—C4B0.4 (2)C9B—C10B—C15B—C14B179.39 (13)
C2B—C3B—C4B—C5B0.1 (2)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1B–C6B and C10B–C15B, respectively.
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O1Ai0.87 (2)1.84 (2)2.6878 (15)164.9 (17)
O3A—H3A···O2Ai0.87 (2)2.52 (2)3.1629 (14)130.6 (16)
N1B—H1BA···O2Ai0.85 (2)1.90 (2)2.7457 (16)176.1 (16)
N1B—H1BB···O1A0.98 (2)1.78 (2)2.7337 (15)163.7 (18)
N1B—H1BB···O3A0.98 (2)2.42 (2)3.0019 (14)117.4 (15)
C6B—H6B···O2Ai0.92 (2)2.39 (2)3.2275 (19)152.1 (15)
C2A—H2A···Cg21.00 (2)2.827 (19)3.7029 (18)146.7 (14)
C9B—H9B2···Cg2ii0.97 (2)2.69 (2)3.4243 (17)146.7 (14)
C7A—H7A···Cg1iii0.99 (2)2.753 (19)3.6111 (18)145.5 (15)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+2, y, z+1; (iii) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of rings C1B–C6B and C10B–C15B, respectively.
D—H···AD—HH···AD···AD—H···A
O3A—H3A···O1Ai0.87 (2)1.84 (2)2.6878 (15)164.9 (17)
O3A—H3A···O2Ai0.87 (2)2.52 (2)3.1629 (14)130.6 (16)
N1B—H1BA···O2Ai0.85 (2)1.90 (2)2.7457 (16)176.1 (16)
N1B—H1BB···O1A0.98 (2)1.78 (2)2.7337 (15)163.7 (18)
N1B—H1BB···O3A0.98 (2)2.42 (2)3.0019 (14)117.4 (15)
C6B—H6B···O2Ai0.92 (2)2.39 (2)3.2275 (19)152.1 (15)
C2A—H2A···Cg21.00 (2)2.827 (19)3.7029 (18)146.7 (14)
C9B—H9B2···Cg2ii0.97 (2)2.69 (2)3.4243 (17)146.7 (14)
C7A—H7A···Cg1iii0.99 (2)2.753 (19)3.6111 (18)145.5 (15)
Symmetry codes: (i) x+3/2, y1/2, z+1; (ii) x+2, y, z+1; (iii) x, y, z+1.
 

Acknowledgements

The authors thank Dr Kazemian for help during the execution of this research.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, Q., Gomaa, H., Rohani, S., Zhu, J. & Jennings, M. (2010). Chirality, 22, 707–716.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationHe, Q., Peng, Y. & Rohani, S. (2010). Chirality, 22, 16–23.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPeng, Y., He, Q., Rohani, S. & Jenkins, H. (2012). Chirality, 24, 349–355.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1223-o1224
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds