research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of bis­­[2-(di­phenyl­phosphino­thio­yl)phen­yl] ether and bis­­{2-[diphen­yl(selanyl­­idene)phosphan­yl]phen­yl} ether

aDepartment of Chemistry and Biochemistry, St Catherine University, St Paul, MN 55105, USA
*Correspondence e-mail: dejanzen@stkate.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 21 October 2014; accepted 30 October 2014; online 19 November 2014)

The title compounds, C36H28OP2S2, (1), and C36H28OP2Se2, (2), exhibit remarkably similar structures although they are not isomorphous. The whole mol­ecule of compound (2) is generated by twofold symmetry, with the ether O atom located on the twofold axis. Both compounds have intra­molecular ππ inter­actions between terminal phenyl rings with centroid–centroid distances of 3.6214 (16) and 3.8027 (14) Å in (1) and (2), respectively. In the crystal of (1), short C—H⋯S hydrogen bonds link the mol­ecules, forming chains along [001], while in (2) there are no analogous C—H⋯Se inter­actions present.

1. Chemical context

The ligand bis­[2-(di­phenyl­phosphan­yl)phen­yl] ether (POP) and its congeners, including the more rigid Xantphos [(9,9-dimethyl-9H-xanthene-4,5-di­yl)bis­(di­phenyl­phosphane)], comprise a series of chelating diphosphines with a range of flexibility to accommodate variable bonding geometries at transition metals. Experimental and theoretical studies of metal complexes with diphosphines have shown a strong correlation between diphosphine bite angle and selectivity in catalytic transformations (Dierkes & van Leeuwen, 1999[Dierkes, P. & van Leeuwen, P. W. N. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1519-1530.]; Gathy et al., 2011[Gathy, T., Riant, O., Peeters, D. & Leyssens, T. (2011). J. Organomet. Chem. 696, 3425-3430.]). Simple functionalization of these diphos­phines to form diphosphine dioxides, di­sulfides, and diselen­ides has permitted further tuning of the bonding of these ligands to metals by changing the bite-angle range as well as the electronic properties of these ligands. The π-accepting phospho­rous donor atoms of the parent diphosphines are profoundly altered with the addition of π-donor chalcogen donor atoms (Dairiki et al., 2009[Dairiki, A., Tsukuda, T., Matsumoto, K. & Tsubomura, T. (2009). Polyhedron, 28, 2730-2734.]). Chalcogen-modified diphosphine ligands have been utilized in strategies to tune the catalytic behavior of systems including the PdII-catalysed hydro­amination of dienes (Jahromi et al., 2012[Jahromi, B. T., Kharat, A. N., Zamanian, S., Bakhoda, A., Mashayekh, K. & Khazaeli, S. (2012). Appl. Catal. A, 433, 188-196.]) and RuII transfer hydrogenation of aldehydes and ketones (Deb et al., 2010[Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710-1716.]). Hemilability, implicated in the selectivity and reactivity of some catalytic reactions (Braunstein et al., 2001[Braunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680-699.]), can also result from the chalcogen functionalization of phosphines as well (Deb et al., 2010[Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710-1716.]).

Our inter­est in the application of chalcogen-substituted diphosphines to alter the electronic features of photoluminescent CuI sensor materials (Smith et al., 2010[Smith, C. S., Branham, C. W., Marquardt, B. J. & Mann, K. R. (2010). J. Am. Chem. Soc. 132, 14079-14085.]) led us to study the solid-state structural features of the dichalcogen diphosphines, including the di­sulfide and diselenide of the ligand POP. We wanted to investigate the inter- and intra­molecular features that dominate the solid-state structural behavior of these ligands. The mol­ecular geometry and packing of these chalcogen diphosphines may strongly influence the geometric features of their d10 metal complexes, as d10 metals typically have poor stereochemical preferences. In this study, the structures obtained for bis­[2-(di­phenyl­phosphino­thio­yl)phen­yl] ether, (1), and bis­{2-[diphen­yl(selanyl­idene)phosphan­yl]phen­yl} ether, (2), are compared.

[Scheme 1]

2. Structural commentary

The mol­ecular structures of (1) and (2) are illustrated in Figs. 1[link] and 2[link], respectively. The P—S [1.9543 (8) and 1.9552 (9) Å] and P—Se [2.1125 (6) Å] bond lengths are consistent with covalent radii predictions as well as typical bond lengths for di­aryl­phosphine sulfides and selenides. Although these structures are not isomorphous, many intra­molecular features are remarkably alike despite the potentially flexible ether linkage of the diphosphine backbone. To demonstrate the similarity, several metrics were compared. The intra­molecular P⋯P distances [5.6452 (8) Å for (1); 5.669 (1) Å for (2)], the intra­molecular EE distances [E = S 6.636 (1) Å for (1); E = Se 6.8246 (7) Å for (2)], and the EP⋯PE angles [158.29 (4)° for (1); 158.44 (2)° for (2)] all indicate a common geometry near the phospho­rous–chalcogen bonds. This similarity extends to the phenyl ring orientations. A structural overlap calculation of the pairwise atomic coordinates of all related atoms of (1) and (2) (except the chalcogens) reveals an r.m.s. deviation of only 0.214 Å over 39 atom pairs (Fig. 3[link]).

[Figure 1]
Figure 1
The mol­ecular structure of (1), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The mol­ecular structure of (2), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, y, −z + [{3\over 2}].]
[Figure 3]
Figure 3
Structural overlay of (1) (red) and (2) (blue).

The largest differences in the intra­molecular features of (1) and (2) can be found in the closest approach of a pair of terminal phenyl rings, each bonded to different phospho­rous atoms (Fig. 4[link]). In the structure of (2), the angle between mean planes formed by atoms C1–C6 and the twofold axis-related atoms C1–C6 of the same mol­ecule is 0.98 (12)°, with a centroid–centroid distance of 3.8027 (14) Å. The analogous relationship in the structure of (1), involving phenyl rings C1–C6 and C31–C36, is a dihedral angle of 6.52 (13)° and a centroid–centroid distance of 3.6214 (16) Å. The result of these differences is that in (2) there is only one C⋯C intra­molecular contact between these phenyl rings shorter than 3.6 Å, while in (1) there are six unique contacts that meet this criteria. Although these intra­molecular C⋯C contacts are slightly longer than the van der Waals radii sum of 3.4 Å, the additional C⋯C close-contacts in (1) may contribute to stronger intra­molecular ππ inter­actions between these phenyl rings compared to (2). The dihedral angles between the mean planes formed by the ether-linked phenyl groups [(C13–C18 and C19–C24) 76.83 (11)° for (1); (C13–C18 and the symmetry-related C13–C18 ring) 84.53 (11)° for (2)] also show a significant difference in the twist around the ether linkage.

[Figure 4]
Figure 4
Intra­molecular ππ inter­actions in (1) and (2).

3. Supra­molecular features

The inter­molecular features of (1) and (2) reveal additional differences between these seemingly similar structures. In the crystal of (1), most notably there are three unique inter­molecular C—H⋯S inter­actions (Table 1[link]) shorter than the sum of the van der Waals radii. Each mol­ecule participates as a C—H donor with two different S2 acceptors as well as one S1 acceptor (Table 1[link] and Fig. 5[link]). As such, each mol­ecule is involved in C—H⋯S inter­molecular inter­actions with three other unique mol­ecules. In the crystal of (2), no analogous C—H⋯Se inter­molecular inter­actions are present.

Table 1
Hydrogen-bond geometry (Å, °) for (1)[link]

Cg4 is the centroid of ring C19–C24.

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯S2i 0.95 2.82 3.696 (2) 153
C4—H4⋯S2ii 0.95 2.94 3.698 (3) 138
C5—H5⋯S1iii 0.95 2.93 3.796 (3) 152
C9—H9⋯Cg4iv 0.95 2.94 3.598 (3) 127
Symmetry codes: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].
[Figure 5]
Figure 5
Inter­molecular C—H⋯S inter­actions in (1). [Symmetry codes: (i) x + [{1\over 2}], −y + [{1\over 2}], −z + 1; (ii) x, −y + [{1\over 2}], z + [{1\over 2}].]

Both structures show that several inter­molecular C—H⋯π contacts less than ca 3.0 Å are present but these are likely to play a weak role in packing inter­actions [see Table 1[link] for (1) and Table 2[link] for (2)]. Mol­ecules of (1) stack in columns parallel to [010] (Fig. 6[link]). The intra­molecular ππ stacking inter­actions of (1) are all aligned perpendicular to the column stacking axis. Mol­ecules of (2) stack in columns parallel to [101] (Fig. 7[link]) with intra­molecular ππ stacking perpendicular to the column stacking vector.

Table 2
Hydrogen-bond geometry (Å, °) for (2)[link]

Cg2 and Cg3 are the centroids of rings C7–C12 and C13–C18, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg2i 0.95 2.63 3.546 (3) 161
C9—H9⋯Cg3ii 0.95 2.94 3.676 (3) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].
[Figure 6]
Figure 6
Crystal packing of (1), viewed along [010] (above) and [100] (below). Color to highlight mol­ecules packing within columns.
[Figure 7]
Figure 7
Crystal packing of (2) viewed along [101] (above) and [010] (below). Color to highlight mol­ecules packing within columns.

4. Database survey

The Cambridge Structural Database (Version 5.35; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) contains several closely related phosphine sulfide structures, including Xantphos di­sulfide (Jahromi et al., 2012[Jahromi, B. T., Kharat, A. N., Zamanian, S., Bakhoda, A., Mashayekh, K. & Khazaeli, S. (2012). Appl. Catal. A, 433, 188-196.]), POP mono­sulfide (Deb et al., 2010[Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710-1716.]), and POP dioxide (Deb & Dutta, 2010[Deb, B. & Dutta, D. K. (2010). J. Mol. Catal. A Chem. 326, 21-28.]). As the xanthene backbone of the diphosphine linkage is more sterically constrained compared with the ether linkage of POP, the Xantphos di­sulfide structure forces the intra­molecular S⋯S [4.207 (1) Å] and P⋯P [4.984 (1) Å] distances to be much shorter compared with (1). The structure of POP mono­sulfide is also very different from (1), as intra­molecular phenyl ring inter­actions are present but these involve a terminal phenyl ring and a bridging phenyl ring rather than two terminal phenyl rings as in (1). POP dioxide adopts a conformation unlike (1) or (2), as the P—O bond vectors are closer to anti­parallel [intra­molecular OP⋯P—O angles of 37.0 (6)°]. Considering metal complexes of related ligands, the structures of only two ruthenium(II) complexes (Deb et al., 2010[Deb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710-1716.]), three palladium(II) complexes (Milheiro & Faller, 2011[Milheiro, S. C. & Faller, J. W. (2011). J. Organomet. Chem. 696, 879-886.]; Saikia et al., 2012[Saikia, K., Deb, B., Borah, B. J., Sarmah, P. P. & Dutta, D. K. (2012). J. Organomet. Chem. 696, 4293-4297.]), and one rhodium(I) complex (Faller et al., 2008[Faller, J. W., Milheiro, S. C. & Parr, J. (2008). J. Organomet. Chem. 693, 1478-1493.]) have been reported with Xantphos sulfide or POP sulfide. The structure of only one palladium(II) complex of Xantphos di­sulfide (Jahromi et al., 2012[Jahromi, B. T., Kharat, A. N., Zamanian, S., Bakhoda, A., Mashayekh, K. & Khazaeli, S. (2012). Appl. Catal. A, 433, 188-196.]) is reported. POP or Xantphos selenide structures are even rarer, as only one copper(I) complex of POP selenide is reported (Venkateswaran et al., 2007b[Venkateswaran, R., Balakrishna, M. S., Mobin, S. M. & Tuononen, H. M. (2007b). Inorg. Chem. 46, 6535-6541.]). No structures to date have been reported with diselenides of POP or Xantphos.

5. Synthesis and crystallization

Compounds (1) and (2) were prepared using a reported procedure (Venkateswaran et al., 2007a[Venkateswaran, R., Balakrishna, M. S. & Mobin, S. M. (2007a). Eur. J. Inorg. Chem. 13, 1930-1938.]). Crystals of each sample were obtained by diffusion of diethyl ether into a concentrated di­chloro­methane solution.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3[link]. H atoms were placed in calculated positions and refined in the riding-model approximation: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

Table 3
Experimental details

  (1) (2)
Crystal data
Chemical formula C36H28OP2S2 C36H28OP2Se2
Mr 602.64 696.44
Crystal system, space group Orthorhombic, Pbca Monoclinic, C2/c
Temperature (K) 173 173
a, b, c (Å) 14.1161 (9), 18.0874 (12), 23.1986 (16) 14.0964 (15), 13.0854 (13), 17.5918 (18)
α, β, γ (°) 90, 90, 90 90, 109.226 (8), 90
V3) 5923.1 (7) 3064.0 (6)
Z 8 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.32 2.55
Crystal size (mm) 0.52 × 0.24 × 0.12 0.80 × 0.12 × 0.12
 
Data collection
Diffractometer Rigaku XtaLAB mini Rigaku XtaLAB mini
Absorption correction Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.])
Tmin, Tmax 0.718, 0.963 0.556, 0.737
No. of measured, independent and observed [I > 2σ(I)] reflections 54343, 6050, 4671 15840, 3521, 2958
Rint 0.073 0.045
(sin θ/λ)max−1) 0.625 0.649
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.101, 1.07 0.032, 0.066, 1.07
No. of reflections 6050 3521
No. of parameters 370 186
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.33 0.40, −0.41
Computer programs: CrystalClear-SM Expert (Rigaku Americas and Rigaku, 2011[Rigaku Americas and Rigaku (2011). CrystalClear-SM Expert. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]), SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]), SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure . Rigaku Corporation, Tokyo, Japan.]).

A small number of low-angle reflections [nine for (1) and five for (2)] were missing from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced into this routine structure determination.

Supporting information


Chemical context top

The ligand bis­[2-(di­phenyl­phosphanyl)phenyl] ether (POP) and its congeners, including the more rigid Xantphos [(9,9-di­methyl-9H-xanthene-4,5-diyl)bis­(di­phenyl­phosphane)], comprise a series of chelating diphosphines with a range of flexibility to accommodate variable bonding geometries at transition metals. Experimental and theoretical studies of metal complexes with diphosphines have shown a strong correlation between diphosphine bite angle and selectivity in catalytic transformations (Dierkes & van Leeuwen, 1999; Gathy et al., 2011). Simple functionalization of these diphosphines to form diphosphine dioxides, di­sulfides, and diselenides has permitted further tuning of the bonding of these ligands to metals by changing the bite-angle range as well as the electronic properties of these ligands. The π-accepting phospho­rous donor atoms of the parent diphosphines are profoundly altered with the addition of π-donor chalcogen donor atoms (Dairiki et al., 2009). Chalcogen-modified diphosphine ligands have been utilized in strategies to tune the catalytic behavior of systems including the PdII-catalysed hydro­amination of dienes (Jahromi et al., 2012) and RuII transfer hydrogenation of aldehydes and ketones (Deb et al., 2010). Hemilability, implicated in the selectivity and reactivity of some catalytic reactions (Braunstein et al., 2001), can also result from the chalcogen functionalization of phosphines as well (Deb et al., 2010).

Our inter­est in the application of chalcogen-substituted diphosphines to alter the electronic features of photoluminescent CuI sensor materials (Smith et al., 2010) led us to study the solid-state structural features of the dichalcogen diphosphines, including the di­sulfide and diselenide of the ligand POP. We wanted to investigate the inter- and intra­molecular features that dominate the solid-state structural behavior of these ligands. The molecular geometry and packing of these chalcogen diphosphines may strongly influence the geometric features of their d10 metal complexes, as d10 metals typically have poor stereochemical preferences. In this study, the structures obtained for bis­[2-(di­phenyl­phosphino­thioyl)phenyl] ether, (1), and bis­{2-[di­phenyl­(selanyl­idene)phosphanyl]phenyl} ether, (2), are compared.

Structural commentary top

The molecular structures of (1) and (2) are illustrated in Figs. 1 and 2, respectively. The P—S [1.9543 (8) and 1.9552 (9) Å] and P—Se [2.1125 (6) Å] bond lengths are consistent with covalent radii predictions as well as typical bond lengths for di­aryl­phosphine sulfides and selenides. Although these structures are not isomorphous, many intra­molecular features are remarkably alike despite the potentially flexible ether linkage of the diphosphine backbone. To demonstrate the similarity, several metrics were compared. The intra­molecular P···P distances [5.6452 (8) Å for (1); 5.669 (1) Å for (2)], the intra­molecular E···E distances [E = S 6.636 (1) Å for (1); E = Se 6.8246 (7) Å for (2)], and the EP···PE angles [158.29 (4)° for (1); 158.44 (2)° for (2)] all indicate a common geometry near the phospho­rous–chalcogen bonds. This similarity extends to the phenyl ring orientations. A structural overlap calculation of the pairwise atomic coordinates of all related atoms of (1) and (2) (except the chalcogens) reveals an r.m.s. deviation of only 0.214 Å over 39 atom pairs (Fig. 3).

The largest differences in the intra­molecular features of (1) and (2) can be found in the closest approach of a pair of terminal phenyl rings, each bonded to different phospho­rous atoms (Fig. 4). In the structure of (2), the angle between mean planes formed by atoms C1–C6 and the twofold axis-related atoms C1–C6 of the same molecule is 0.98 (12)°, with a centroid–centroid distance of 3.8027 (14) Å. The analogous relationship in the structure of (1), involving phenyl rings C1–C6 and C31–C36, is a dihedral angle of 6.52 (13)° and a centroid–centroid distance of 3.6214 (16) Å. The result of these differences is that in (2) there is only one C···C intra­molecular contact between these phenyl rings shorter than 3.6 Å, while in (1) there are six unique contacts that meet this criteria. Although these intra­molecular C···C contacts are slightly longer than the van der Waals radii sum of 3.4 Å, the additional C···C close-contacts in (1) may contribute to stronger intra­molecular ππ inter­actions between these phenyl rings compared to (2). The dihedral angles between the mean planes formed by the ether-linked phenyl groups [(C13–C18 and C19–C24) 76.83 (11)° for (1); (C13–C18 and the symmetry-related C13–C18 ring) 84.53 (11)° for (2)] also show a significant difference in the twist around the ether linkage.

Supra­molecular features top

The inter­molecular features of (1) and (2) reveal additional differences between these seemingly similar structures. In the crystal of (1), most notably there are three unique inter­molecular C—H···S inter­actions (Table 1) shorter than the sum of the van der Waals radii. Each molecule participates as a C—H donor with two different S2 acceptors as well as one S1 acceptor (Table 1 and Fig. 5). As such, each molecule is involved in C—H···S inter­molecular inter­actions with three other unique molecules. In the crystal of (2), no analogous C—H···Se inter­molecular inter­actions are present.

Both structures show that several inter­molecular C–H···π contacts less than ca 3.0 Å are present but these are likely to play a weak role in packing inter­actions [see Table 1 for (1) and Table 2 for (2)]. Molecules of (1) stack in columns parallel to [010] (Fig. 6). The intra­molecular ππ stacking inter­actions of (1) are all aligned perpendicular to the column stacking axis. Molecules of (2) stack in columns parallel to [101] (Fig. 7) with intra­molecular ππ stacking perpendicular to the column stacking vector.

Database survey top

The Cambridge Structural Database (Version 5.35; Groom & Allen, 2014) contains several closely related phosphine sulfide structures, including Xantphos di­sulfide (Jahromi et al., 2012), POP mono­sulfide (Deb et al., 2010), and POP dioxide (Deb & Dutta, 2010). As the xanthene backbone of the diphosphine linkage is more sterically constrained compared with the ether linkage of POP, the Xantphos di­sulfide structure forces the intra­molecular S···S [4.207 (1) Å] and P···P [4.984 (1) Å] distances to be much shorter compared with (1). The structure of POP mono­sulfide is also very different from (1), as intra­molecular phenyl ring inter­actions are present but these involve a terminal phenyl ring and a bridging phenyl ring rather than two terminal phenyl rings as in (1). POP dioxide adopts a conformation unlike (1) or (2), as the P—O bond vectors are closer to anti­parallel [intra­molecular OP···P—O angles of 37.0 (6)°]. Considering metal complexes of related ligands, the structures of only two ruthenium(II) complexes (Deb et al., 2010), three palladium(II) complexes (Milheiro & Faller, 2011; Saikia et al., 2012), and one rhodium(I) complex (Faller et al., 2008) have been reported with Xantphos sulfide or POP sulfide. The structure of only one palladium(II) complex of Xantphos di­sulfide (Jahromi et al., 2012) is reported. POP or Xantphos selenide structures are even rarer, as only one copper(I) complex of POP selenide is reported (Venkateswaran et al., 2007b). No structures to date have been reported with diselenides of POP or Xantphos.

Synthesis and crystallization top

Compounds (1) and (2) were prepared using a reported procedure (Venkateswaran et al., 2007a). Crystals of each sample were obtained by diffusion of di­ethyl ether into a concentrated di­chloro­methane solution.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 3. H atoms were placed in calculated positions and refined in the riding-model approximation: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C).

A small number of low-angle reflections [nine for (1) and five for (2)] were missing from these high-quality data sets due to the arrangement of the instrument with a conservatively sized beam stop and a fixed-position detector. The large number of reflections in the data sets (and the Fourier-transform relationship of intensities to atoms) ensures that no particular bias was thereby introduced into this routine structure determination.

Related literature top

For related literature, see: Braunstein & Naud (2001); Dairiki et al. (2009); Deb & Dutta (2010); Deb, Sarmah & Dutta (2010); Dierkes & van Leeuwen (1999); Faller et al. (2008); Gathy et al. (2011); Groom & Allen (2014); Jahromi et al. (2012); Milheiro & Faller (2011); Saikia et al. (2012); Smith et al. (2010); Venkateswaran et al. (2007a, 2007b).

Computing details top

For both compounds, data collection: CrystalClear-SM Expert (Rigaku Americas and Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku Americas and Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku Americas and Rigaku, 2011); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
The molecular structure of (1), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level.

The molecular structure of (2), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) -x, y, -z+3/2.]

Structural overlay of (1) (red) and (2) (blue).

Intramolecular ππ interactions in (1) and (2).

Intermolecular C—H···S interactions in (1). [Symmetry codes: (i) x+1/2, -y+1/2, -z+1; (ii) x, -y+1/2, z+1/2.]

Crystal packing of (1), viewed along [010] (above) and [100] (below). Color to highlight molecules packing within columns.

Crystal packing of (2) viewed along [101] (above) and [010] (below). Color to highlight molecules packing within columns.
(1) {2-[2-(Diphenylphosphinothioyl)phenoxy]phenyl}diphenylphosphanethione top
Crystal data top
C36H28OP2S2Dx = 1.352 Mg m3
Mr = 602.64Mo Kα radiation, λ = 0.71075 Å
Orthorhombic, PbcaCell parameters from 42656 reflections
a = 14.1161 (9) Åθ = 3.0–26.5°
b = 18.0874 (12) ŵ = 0.32 mm1
c = 23.1986 (16) ÅT = 173 K
V = 5923.1 (7) Å3Prism, colorless
Z = 80.52 × 0.24 × 0.12 mm
F(000) = 2512
Data collection top
Rigaku XtaLAB mini
diffractometer
6050 independent reflections
Radiation source: normal-focu sealed tube4671 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.073
ω scansθmax = 26.4°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1717
Tmin = 0.718, Tmax = 0.963k = 2222
54343 measured reflectionsl = 2828
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0365P)2 + 4.2594P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
6050 reflectionsΔρmax = 0.37 e Å3
370 parametersΔρmin = 0.33 e Å3
Crystal data top
C36H28OP2S2V = 5923.1 (7) Å3
Mr = 602.64Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.1161 (9) ŵ = 0.32 mm1
b = 18.0874 (12) ÅT = 173 K
c = 23.1986 (16) Å0.52 × 0.24 × 0.12 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
6050 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
4671 reflections with I > 2σ(I)
Tmin = 0.718, Tmax = 0.963Rint = 0.073
54343 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.07Δρmax = 0.37 e Å3
6050 reflectionsΔρmin = 0.33 e Å3
370 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.76118 (5)0.32675 (3)0.22627 (3)0.03418 (16)
S20.84441 (6)0.36984 (4)0.50579 (3)0.0443 (2)
P10.75393 (4)0.24001 (3)0.27630 (2)0.02270 (14)
P20.79892 (4)0.44866 (3)0.45519 (2)0.02408 (14)
O10.84740 (10)0.34242 (8)0.36159 (6)0.0249 (3)
C10.65450 (15)0.24111 (11)0.32542 (9)0.0237 (5)
C20.66367 (17)0.23755 (13)0.38463 (10)0.0290 (5)
H20.72480.23630.40170.035*
C30.58330 (18)0.23575 (14)0.41906 (11)0.0384 (6)
H30.58950.23300.45980.046*
C40.49506 (18)0.23795 (14)0.39448 (13)0.0408 (7)
H40.44020.23640.41820.049*
C50.48573 (18)0.24238 (15)0.33517 (13)0.0421 (7)
H50.42450.24460.31830.051*
C60.56461 (17)0.24356 (14)0.30074 (11)0.0343 (6)
H60.55800.24610.26000.041*
C70.73603 (15)0.15479 (11)0.23648 (9)0.0229 (5)
C80.70755 (18)0.09086 (12)0.26540 (10)0.0311 (5)
H80.69450.09280.30550.037*
C90.69823 (17)0.02464 (13)0.23609 (11)0.0328 (6)
H90.67910.01870.25600.039*
C100.71694 (17)0.02185 (13)0.17759 (11)0.0329 (6)
H100.71190.02370.15750.039*
C110.74291 (17)0.08518 (14)0.14842 (10)0.0324 (6)
H110.75430.08330.10810.039*
C120.75247 (15)0.15149 (13)0.17768 (9)0.0264 (5)
H120.77040.19490.15730.032*
C130.85929 (15)0.22209 (12)0.31969 (9)0.0240 (5)
C140.90793 (17)0.15465 (13)0.31680 (11)0.0330 (6)
H140.88530.11700.29180.040*
C150.98812 (18)0.14166 (14)0.34947 (12)0.0405 (6)
H151.02080.09600.34620.049*
C161.02045 (18)0.19535 (14)0.38683 (12)0.0378 (6)
H161.07500.18620.40970.045*
C170.97394 (16)0.26249 (13)0.39116 (11)0.0318 (5)
H170.99550.29910.41740.038*
C180.89568 (15)0.27550 (12)0.35685 (10)0.0249 (5)
C190.90192 (15)0.40629 (12)0.35800 (9)0.0239 (5)
C200.97288 (16)0.41302 (13)0.31744 (10)0.0299 (5)
H200.98690.37330.29210.036*
C211.02346 (17)0.47847 (14)0.31416 (11)0.0342 (6)
H211.07310.48330.28680.041*
C221.00247 (17)0.53676 (13)0.35025 (10)0.0332 (6)
H221.03700.58170.34740.040*
C230.93094 (16)0.52955 (12)0.39068 (10)0.0273 (5)
H230.91660.56980.41550.033*
C240.87957 (15)0.46395 (12)0.39544 (9)0.0225 (5)
C250.78799 (16)0.53749 (12)0.49171 (9)0.0249 (5)
C260.83608 (17)0.54978 (13)0.54298 (10)0.0313 (5)
H260.87790.51320.55770.038*
C270.82286 (19)0.61579 (14)0.57274 (11)0.0372 (6)
H270.85550.62410.60800.045*
C280.76293 (19)0.66911 (14)0.55147 (11)0.0373 (6)
H280.75420.71400.57210.045*
C290.71556 (17)0.65764 (13)0.50035 (11)0.0335 (6)
H290.67470.69480.48560.040*
C300.72726 (16)0.59212 (12)0.47047 (10)0.0278 (5)
H300.69390.58420.43540.033*
C310.68058 (16)0.43557 (12)0.42751 (11)0.0295 (5)
C320.6092 (2)0.42773 (16)0.46861 (14)0.0516 (8)
H320.62500.42670.50840.062*
C330.5165 (2)0.42145 (18)0.4520 (2)0.0707 (11)
H330.46820.41670.48030.085*
C340.4934 (2)0.42201 (17)0.3948 (2)0.0689 (11)
H340.42900.41750.38350.083*
C350.5633 (2)0.42916 (16)0.35337 (16)0.0577 (9)
H350.54680.42930.31370.069*
C360.65762 (18)0.43611 (14)0.36972 (12)0.0370 (6)
H360.70580.44120.34140.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0458 (4)0.0225 (3)0.0343 (3)0.0026 (3)0.0019 (3)0.0067 (3)
S20.0743 (5)0.0295 (3)0.0289 (3)0.0155 (3)0.0029 (3)0.0074 (3)
P10.0250 (3)0.0189 (3)0.0241 (3)0.0008 (2)0.0017 (2)0.0006 (2)
P20.0300 (3)0.0201 (3)0.0221 (3)0.0005 (2)0.0013 (2)0.0002 (2)
O10.0214 (8)0.0210 (8)0.0324 (9)0.0002 (6)0.0013 (7)0.0049 (7)
C10.0243 (12)0.0169 (10)0.0299 (12)0.0011 (9)0.0011 (9)0.0018 (9)
C20.0270 (12)0.0283 (12)0.0318 (13)0.0015 (10)0.0024 (10)0.0020 (10)
C30.0417 (16)0.0390 (15)0.0346 (14)0.0041 (12)0.0127 (12)0.0047 (12)
C40.0286 (14)0.0297 (14)0.0642 (19)0.0001 (11)0.0197 (13)0.0014 (13)
C50.0236 (13)0.0405 (15)0.0622 (19)0.0006 (11)0.0018 (13)0.0022 (14)
C60.0291 (13)0.0339 (14)0.0397 (14)0.0012 (11)0.0042 (11)0.0025 (11)
C70.0227 (11)0.0204 (11)0.0256 (11)0.0002 (9)0.0022 (9)0.0014 (9)
C80.0408 (14)0.0251 (12)0.0274 (12)0.0038 (11)0.0078 (11)0.0005 (10)
C90.0369 (14)0.0209 (11)0.0407 (14)0.0029 (10)0.0076 (12)0.0015 (10)
C100.0289 (13)0.0286 (13)0.0413 (14)0.0003 (10)0.0016 (11)0.0106 (11)
C110.0305 (13)0.0426 (14)0.0239 (12)0.0026 (11)0.0009 (10)0.0071 (11)
C120.0236 (12)0.0284 (12)0.0271 (12)0.0010 (10)0.0012 (10)0.0027 (10)
C130.0219 (11)0.0205 (11)0.0296 (12)0.0003 (9)0.0056 (9)0.0012 (9)
C140.0304 (13)0.0250 (12)0.0435 (15)0.0005 (10)0.0017 (11)0.0034 (11)
C150.0319 (14)0.0290 (13)0.0607 (18)0.0088 (11)0.0005 (13)0.0020 (13)
C160.0262 (13)0.0383 (15)0.0487 (16)0.0028 (11)0.0046 (12)0.0046 (12)
C170.0250 (12)0.0323 (13)0.0383 (14)0.0007 (10)0.0007 (11)0.0007 (11)
C180.0226 (12)0.0233 (11)0.0288 (12)0.0006 (9)0.0047 (9)0.0002 (9)
C190.0213 (12)0.0239 (11)0.0266 (12)0.0005 (9)0.0045 (9)0.0006 (9)
C200.0270 (13)0.0309 (13)0.0316 (13)0.0017 (10)0.0020 (10)0.0014 (10)
C210.0269 (13)0.0390 (14)0.0366 (14)0.0027 (11)0.0060 (11)0.0072 (11)
C220.0301 (13)0.0279 (13)0.0416 (14)0.0066 (10)0.0021 (11)0.0074 (11)
C230.0293 (13)0.0214 (11)0.0312 (13)0.0002 (10)0.0042 (10)0.0009 (10)
C240.0216 (11)0.0228 (11)0.0232 (11)0.0017 (9)0.0042 (9)0.0021 (9)
C250.0291 (12)0.0229 (11)0.0226 (11)0.0016 (9)0.0034 (9)0.0010 (9)
C260.0322 (13)0.0318 (13)0.0298 (13)0.0022 (11)0.0026 (10)0.0005 (11)
C270.0426 (16)0.0408 (15)0.0282 (13)0.0115 (12)0.0012 (11)0.0093 (11)
C280.0445 (15)0.0279 (13)0.0396 (14)0.0059 (11)0.0110 (12)0.0092 (11)
C290.0333 (14)0.0263 (12)0.0409 (15)0.0034 (10)0.0088 (11)0.0006 (11)
C300.0311 (13)0.0258 (12)0.0263 (12)0.0004 (10)0.0005 (10)0.0010 (10)
C310.0276 (13)0.0218 (12)0.0392 (14)0.0021 (9)0.0054 (11)0.0083 (10)
C320.0435 (18)0.0489 (17)0.0623 (19)0.0169 (14)0.0226 (15)0.0221 (15)
C330.0399 (19)0.052 (2)0.121 (3)0.0127 (15)0.029 (2)0.032 (2)
C340.0216 (16)0.0352 (17)0.150 (4)0.0002 (12)0.012 (2)0.004 (2)
C350.0474 (19)0.0404 (17)0.085 (2)0.0005 (14)0.0300 (18)0.0086 (16)
C360.0334 (14)0.0304 (13)0.0472 (16)0.0017 (11)0.0065 (12)0.0039 (12)
Geometric parameters (Å, º) top
S1—P11.9543 (8)C15—H150.9500
S2—P21.9552 (8)C16—C171.384 (3)
P1—C11.808 (2)C16—H160.9500
P1—C71.815 (2)C17—C181.382 (3)
P1—C131.825 (2)C17—H170.9500
P2—C311.805 (2)C19—C201.380 (3)
P2—C241.815 (2)C19—C241.393 (3)
P2—C251.823 (2)C20—C211.384 (3)
O1—C191.391 (3)C20—H200.9500
O1—C181.393 (3)C21—C221.378 (3)
C1—C21.381 (3)C21—H210.9500
C1—C61.393 (3)C22—C231.384 (3)
C2—C31.388 (3)C22—H220.9500
C2—H20.9500C23—C241.395 (3)
C3—C41.370 (4)C23—H230.9500
C3—H30.9500C25—C261.387 (3)
C4—C51.385 (4)C25—C301.398 (3)
C4—H40.9500C26—C271.392 (3)
C5—C61.370 (3)C26—H260.9500
C5—H50.9500C27—C281.374 (4)
C6—H60.9500C27—H270.9500
C7—C121.385 (3)C28—C291.377 (4)
C7—C81.396 (3)C28—H280.9500
C8—C91.384 (3)C29—C301.383 (3)
C8—H80.9500C29—H290.9500
C9—C101.383 (3)C30—H300.9500
C9—H90.9500C31—C361.379 (3)
C10—C111.380 (3)C31—C321.395 (3)
C10—H100.9500C32—C331.368 (5)
C11—C121.385 (3)C32—H320.9500
C11—H110.9500C33—C341.366 (5)
C12—H120.9500C33—H330.9500
C13—C181.393 (3)C34—C351.384 (5)
C13—C141.401 (3)C34—H340.9500
C14—C151.382 (3)C35—C361.390 (4)
C14—H140.9500C35—H350.9500
C15—C161.379 (4)C36—H360.9500
C1—P1—C7102.84 (10)C18—C17—C16119.1 (2)
C1—P1—C13106.68 (10)C18—C17—H17120.4
C7—P1—C13104.09 (10)C16—C17—H17120.4
C1—P1—S1113.96 (8)C17—C18—C13122.2 (2)
C7—P1—S1112.76 (7)C17—C18—O1119.6 (2)
C13—P1—S1115.31 (7)C13—C18—O1118.09 (19)
C31—P2—C24109.20 (10)C20—C19—O1121.1 (2)
C31—P2—C25101.69 (10)C20—C19—C24121.6 (2)
C24—P2—C25105.89 (10)O1—C19—C24117.32 (19)
C31—P2—S2114.95 (8)C19—C20—C21119.2 (2)
C24—P2—S2111.32 (7)C19—C20—H20120.4
C25—P2—S2113.04 (8)C21—C20—H20120.4
C19—O1—C18116.50 (16)C22—C21—C20120.6 (2)
C2—C1—C6119.7 (2)C22—C21—H21119.7
C2—C1—P1123.61 (17)C20—C21—H21119.7
C6—C1—P1116.65 (18)C21—C22—C23119.8 (2)
C1—C2—C3119.8 (2)C21—C22—H22120.1
C1—C2—H2120.1C23—C22—H22120.1
C3—C2—H2120.1C22—C23—C24120.9 (2)
C4—C3—C2120.2 (2)C22—C23—H23119.6
C4—C3—H3119.9C24—C23—H23119.6
C2—C3—H3119.9C19—C24—C23118.0 (2)
C3—C4—C5120.1 (2)C19—C24—P2120.27 (16)
C3—C4—H4120.0C23—C24—P2121.07 (17)
C5—C4—H4120.0C26—C25—C30119.3 (2)
C6—C5—C4120.2 (2)C26—C25—P2119.88 (17)
C6—C5—H5119.9C30—C25—P2120.74 (17)
C4—C5—H5119.9C25—C26—C27119.8 (2)
C5—C6—C1120.0 (2)C25—C26—H26120.1
C5—C6—H6120.0C27—C26—H26120.1
C1—C6—H6120.0C28—C27—C26120.4 (2)
C12—C7—C8119.1 (2)C28—C27—H27119.8
C12—C7—P1120.97 (17)C26—C27—H27119.8
C8—C7—P1119.93 (17)C27—C28—C29120.1 (2)
C9—C8—C7120.5 (2)C27—C28—H28119.9
C9—C8—H8119.7C29—C28—H28119.9
C7—C8—H8119.7C28—C29—C30120.2 (2)
C10—C9—C8119.7 (2)C28—C29—H29119.9
C10—C9—H9120.1C30—C29—H29119.9
C8—C9—H9120.1C29—C30—C25120.2 (2)
C11—C10—C9120.1 (2)C29—C30—H30119.9
C11—C10—H10120.0C25—C30—H30119.9
C9—C10—H10120.0C36—C31—C32119.7 (2)
C10—C11—C12120.3 (2)C36—C31—P2124.20 (19)
C10—C11—H11119.9C32—C31—P2116.0 (2)
C12—C11—H11119.9C33—C32—C31120.4 (3)
C11—C12—C7120.2 (2)C33—C32—H32119.8
C11—C12—H12119.9C31—C32—H32119.8
C7—C12—H12119.9C34—C33—C32120.1 (3)
C18—C13—C14116.9 (2)C34—C33—H33120.0
C18—C13—P1121.25 (16)C32—C33—H33120.0
C14—C13—P1121.84 (18)C33—C34—C35120.3 (3)
C15—C14—C13121.5 (2)C33—C34—H34119.8
C15—C14—H14119.2C35—C34—H34119.8
C13—C14—H14119.2C34—C35—C36120.1 (3)
C16—C15—C14119.7 (2)C34—C35—H35119.9
C16—C15—H15120.1C36—C35—H35119.9
C14—C15—H15120.1C31—C36—C35119.3 (3)
C15—C16—C17120.4 (2)C31—C36—H36120.3
C15—C16—H16119.8C35—C36—H36120.3
C17—C16—H16119.8
C7—P1—C1—C2116.05 (19)C18—O1—C19—C2042.8 (3)
C13—P1—C1—C26.9 (2)C18—O1—C19—C24139.6 (2)
S1—P1—C1—C2121.57 (18)O1—C19—C20—C21178.0 (2)
C7—P1—C1—C662.03 (19)C24—C19—C20—C210.4 (3)
C13—P1—C1—C6171.23 (17)C19—C20—C21—C221.0 (4)
S1—P1—C1—C660.35 (19)C20—C21—C22—C230.8 (4)
C6—C1—C2—C30.6 (3)C21—C22—C23—C240.0 (3)
P1—C1—C2—C3177.44 (18)C20—C19—C24—C230.3 (3)
C1—C2—C3—C40.4 (4)O1—C19—C24—C23177.29 (19)
C2—C3—C4—C50.4 (4)C20—C19—C24—P2170.54 (17)
C3—C4—C5—C60.9 (4)O1—C19—C24—P211.8 (3)
C4—C5—C6—C10.7 (4)C22—C23—C24—C190.5 (3)
C2—C1—C6—C50.0 (3)C22—C23—C24—P2170.25 (17)
P1—C1—C6—C5178.12 (19)C31—P2—C24—C1970.21 (19)
C1—P1—C7—C12139.63 (19)C25—P2—C24—C19179.00 (17)
C13—P1—C7—C12109.22 (19)S2—P2—C24—C1957.77 (19)
S1—P1—C7—C1216.5 (2)C31—P2—C24—C23119.20 (18)
C1—P1—C7—C842.0 (2)C25—P2—C24—C2310.4 (2)
C13—P1—C7—C869.2 (2)S2—P2—C24—C23112.82 (17)
S1—P1—C7—C8165.16 (17)C31—P2—C25—C26142.96 (19)
C12—C7—C8—C91.7 (4)C24—P2—C25—C26102.96 (19)
P1—C7—C8—C9176.74 (19)S2—P2—C25—C2619.2 (2)
C7—C8—C9—C100.3 (4)C31—P2—C25—C3033.3 (2)
C8—C9—C10—C111.3 (4)C24—P2—C25—C3080.8 (2)
C9—C10—C11—C121.5 (4)S2—P2—C25—C30157.06 (16)
C10—C11—C12—C70.0 (3)C30—C25—C26—C270.5 (3)
C8—C7—C12—C111.5 (3)P2—C25—C26—C27175.83 (18)
P1—C7—C12—C11176.86 (17)C25—C26—C27—C280.4 (4)
C1—P1—C13—C1871.5 (2)C26—C27—C28—C290.1 (4)
C7—P1—C13—C18179.78 (18)C27—C28—C29—C300.7 (4)
S1—P1—C13—C1856.2 (2)C28—C29—C30—C250.7 (4)
C1—P1—C13—C14109.3 (2)C26—C25—C30—C290.1 (3)
C7—P1—C13—C141.0 (2)P2—C25—C30—C29176.34 (18)
S1—P1—C13—C14123.07 (18)C24—P2—C31—C361.0 (2)
C18—C13—C14—C150.2 (3)C25—P2—C31—C36112.6 (2)
P1—C13—C14—C15179.5 (2)S2—P2—C31—C36124.9 (2)
C13—C14—C15—C161.4 (4)C24—P2—C31—C32176.13 (19)
C14—C15—C16—C171.0 (4)C25—P2—C31—C3264.5 (2)
C15—C16—C17—C181.1 (4)S2—P2—C31—C3257.9 (2)
C16—C17—C18—C132.8 (3)C36—C31—C32—C330.8 (4)
C16—C17—C18—O1178.9 (2)P2—C31—C32—C33176.5 (2)
C14—C13—C18—C172.4 (3)C31—C32—C33—C340.7 (5)
P1—C13—C18—C17178.35 (17)C32—C33—C34—C350.2 (5)
C14—C13—C18—O1178.50 (19)C33—C34—C35—C360.2 (5)
P1—C13—C18—O12.2 (3)C32—C31—C36—C350.3 (4)
C19—O1—C18—C1751.3 (3)P2—C31—C36—C35176.8 (2)
C19—O1—C18—C13132.5 (2)C34—C35—C36—C310.2 (4)
Hydrogen-bond geometry (Å, º) top
Cg4 is the centroid of ring C19–C24.
D—H···AD—HH···AD···AD—H···A
C11—H11···S2i0.952.823.696 (2)153
C4—H4···S2ii0.952.943.698 (3)138
C5—H5···S1iii0.952.933.796 (3)152
C9—H9···Cg4iv0.952.943.598 (3)127
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2; (iv) x+3/2, y1/2, z.
(2) (2-{2-[Diphenyl(selanylidene)phosphanyl]phenoxy}phenyl)diphenyl-λ5-phosphaneselone top
Crystal data top
C36H28OP2Se2F(000) = 1400
Mr = 696.44Dx = 1.510 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71075 Å
a = 14.0964 (15) ÅCell parameters from 13788 reflections
b = 13.0854 (13) Åθ = 3.1–27.6°
c = 17.5918 (18) ŵ = 2.55 mm1
β = 109.226 (8)°T = 173 K
V = 3064.0 (6) Å3Prism, colorless
Z = 40.80 × 0.12 × 0.12 mm
Data collection top
Rigaku XtaLAB mini
diffractometer
3521 independent reflections
Radiation source: normal-focus sealed tube2958 reflections with I > 2σ(I)
Detector resolution: 6.849 pixels mm-1Rint = 0.045
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
h = 1818
Tmin = 0.556, Tmax = 0.737k = 1616
15840 measured reflectionsl = 2222
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.066 w = 1/[σ2(Fo2) + (0.0183P)2 + 4.7666P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
3521 reflectionsΔρmax = 0.40 e Å3
186 parametersΔρmin = 0.41 e Å3
Crystal data top
C36H28OP2Se2V = 3064.0 (6) Å3
Mr = 696.44Z = 4
Monoclinic, C2/cMo Kα radiation
a = 14.0964 (15) ŵ = 2.55 mm1
b = 13.0854 (13) ÅT = 173 K
c = 17.5918 (18) Å0.80 × 0.12 × 0.12 mm
β = 109.226 (8)°
Data collection top
Rigaku XtaLAB mini
diffractometer
3521 independent reflections
Absorption correction: multi-scan
(REQAB; Rigaku, 1998)
2958 reflections with I > 2σ(I)
Tmin = 0.556, Tmax = 0.737Rint = 0.045
15840 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 1.07Δρmax = 0.40 e Å3
3521 reflectionsΔρmin = 0.41 e Å3
186 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Se10.15497 (2)0.31054 (2)0.63637 (2)0.02846 (8)
P10.00071 (4)0.28040 (4)0.58870 (3)0.01801 (12)
O10.00000.35271 (16)0.75000.0191 (4)
C10.03973 (16)0.15982 (16)0.61952 (12)0.0201 (5)
C20.10828 (17)0.15221 (18)0.66065 (14)0.0267 (5)
H20.13410.21230.67700.032*
C30.13892 (19)0.0569 (2)0.67788 (15)0.0336 (6)
H30.18590.05210.70600.040*
C40.10223 (19)0.03063 (19)0.65480 (15)0.0338 (6)
H40.12420.09560.66650.041*
C50.0331 (2)0.02409 (19)0.61439 (15)0.0333 (6)
H50.00750.08460.59850.040*
C60.00137 (18)0.07029 (18)0.59724 (14)0.0284 (5)
H60.04680.07450.57020.034*
C70.04357 (15)0.27085 (16)0.47944 (12)0.0189 (4)
C80.13290 (16)0.22060 (18)0.43821 (13)0.0238 (5)
H80.17150.19000.46730.029*
C90.16556 (16)0.21505 (18)0.35504 (14)0.0264 (5)
H90.22610.18010.32720.032*
C100.11013 (18)0.26041 (18)0.31268 (14)0.0276 (5)
H100.13320.25760.25550.033*
C110.02133 (19)0.30990 (19)0.35299 (14)0.0312 (6)
H110.01680.34070.32350.037*
C120.01247 (17)0.31487 (18)0.43633 (13)0.0255 (5)
H120.07400.34840.46390.031*
C130.07964 (15)0.37932 (16)0.60936 (12)0.0191 (4)
C140.15170 (16)0.43227 (17)0.54724 (14)0.0237 (5)
H140.16130.41480.49280.028*
C150.20897 (16)0.50950 (17)0.56408 (15)0.0269 (5)
H150.25710.54470.52130.032*
C160.19615 (16)0.53555 (17)0.64311 (15)0.0267 (5)
H160.23610.58800.65450.032*
C170.12510 (16)0.48518 (17)0.70579 (14)0.0227 (5)
H170.11600.50310.76010.027*
C180.06746 (15)0.40848 (16)0.68848 (13)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Se10.01582 (11)0.04058 (16)0.02624 (13)0.00167 (10)0.00320 (9)0.00400 (11)
P10.0159 (3)0.0209 (3)0.0167 (3)0.0006 (2)0.0045 (2)0.0003 (2)
O10.0205 (10)0.0157 (10)0.0196 (10)0.0000.0047 (9)0.000
C10.0214 (11)0.0192 (11)0.0178 (10)0.0017 (8)0.0037 (9)0.0022 (8)
C20.0281 (12)0.0227 (12)0.0325 (13)0.0018 (9)0.0142 (11)0.0006 (10)
C30.0355 (14)0.0317 (15)0.0396 (15)0.0068 (11)0.0202 (12)0.0012 (11)
C40.0409 (14)0.0209 (13)0.0363 (14)0.0047 (11)0.0084 (12)0.0064 (10)
C50.0453 (15)0.0202 (13)0.0329 (13)0.0092 (11)0.0108 (12)0.0022 (10)
C60.0312 (13)0.0279 (13)0.0281 (12)0.0063 (10)0.0126 (10)0.0038 (10)
C70.0194 (10)0.0193 (11)0.0172 (10)0.0004 (8)0.0047 (8)0.0005 (8)
C80.0191 (11)0.0285 (13)0.0233 (11)0.0044 (9)0.0064 (9)0.0018 (9)
C90.0192 (11)0.0282 (13)0.0272 (12)0.0004 (9)0.0013 (9)0.0034 (10)
C100.0347 (13)0.0273 (13)0.0178 (11)0.0008 (10)0.0047 (10)0.0019 (9)
C110.0386 (14)0.0326 (14)0.0244 (12)0.0083 (11)0.0129 (11)0.0066 (10)
C120.0253 (11)0.0257 (12)0.0246 (11)0.0089 (10)0.0071 (9)0.0002 (10)
C130.0170 (10)0.0166 (11)0.0225 (11)0.0018 (8)0.0049 (9)0.0009 (9)
C140.0208 (11)0.0234 (12)0.0240 (11)0.0027 (9)0.0035 (9)0.0032 (9)
C150.0191 (11)0.0208 (12)0.0353 (13)0.0007 (9)0.0018 (10)0.0059 (10)
C160.0199 (11)0.0184 (12)0.0411 (14)0.0014 (9)0.0091 (10)0.0010 (10)
C170.0215 (11)0.0192 (11)0.0282 (12)0.0038 (9)0.0090 (10)0.0029 (9)
C180.0167 (10)0.0161 (11)0.0232 (11)0.0028 (8)0.0058 (9)0.0027 (8)
Geometric parameters (Å, º) top
Se1—P12.1125 (6)C8—C91.384 (3)
P1—C11.812 (2)C8—H80.9500
P1—C71.819 (2)C9—C101.379 (3)
P1—C131.820 (2)C9—H90.9500
O1—C181.389 (2)C10—C111.380 (3)
O1—C18i1.389 (2)C10—H100.9500
C1—C21.388 (3)C11—C121.386 (3)
C1—C61.399 (3)C11—H110.9500
C2—C31.385 (3)C12—H120.9500
C2—H20.9500C13—C181.398 (3)
C3—C41.372 (4)C13—C141.405 (3)
C3—H30.9500C14—C151.385 (3)
C4—C51.385 (4)C14—H140.9500
C4—H40.9500C15—C161.384 (3)
C5—C61.380 (3)C15—H150.9500
C5—H50.9500C16—C171.388 (3)
C6—H60.9500C16—H160.9500
C7—C121.387 (3)C17—C181.387 (3)
C7—C81.394 (3)C17—H170.9500
C1—P1—C7103.20 (10)C10—C9—C8119.9 (2)
C1—P1—C13107.09 (10)C10—C9—H9120.1
C7—P1—C13104.34 (10)C8—C9—H9120.1
C1—P1—Se1114.95 (7)C9—C10—C11120.2 (2)
C7—P1—Se1111.86 (7)C9—C10—H10119.9
C13—P1—Se1114.30 (7)C11—C10—H10119.9
C18—O1—C18i116.6 (2)C10—C11—C12120.2 (2)
C2—C1—C6119.0 (2)C10—C11—H11119.9
C2—C1—P1123.39 (17)C12—C11—H11119.9
C6—C1—P1117.51 (17)C11—C12—C7120.0 (2)
C3—C2—C1119.9 (2)C11—C12—H12120.0
C3—C2—H2120.0C7—C12—H12120.0
C1—C2—H2120.0C18—C13—C14117.4 (2)
C4—C3—C2120.8 (2)C18—C13—P1120.67 (16)
C4—C3—H3119.6C14—C13—P1121.89 (17)
C2—C3—H3119.6C15—C14—C13121.1 (2)
C3—C4—C5119.8 (2)C15—C14—H14119.5
C3—C4—H4120.1C13—C14—H14119.5
C5—C4—H4120.1C16—C15—C14120.1 (2)
C6—C5—C4120.1 (2)C16—C15—H15119.9
C6—C5—H5120.0C14—C15—H15119.9
C4—C5—H5120.0C15—C16—C17120.2 (2)
C5—C6—C1120.3 (2)C15—C16—H16119.9
C5—C6—H6119.8C17—C16—H16119.9
C1—C6—H6119.8C18—C17—C16119.4 (2)
C12—C7—C8119.4 (2)C18—C17—H17120.3
C12—C7—P1119.88 (16)C16—C17—H17120.3
C8—C7—P1120.72 (16)C17—C18—O1120.62 (19)
C9—C8—C7120.3 (2)C17—C18—C13121.83 (19)
C9—C8—H8119.9O1—C18—C13117.40 (18)
C7—C8—H8119.9
C7—P1—C1—C2117.40 (19)C9—C10—C11—C120.4 (4)
C13—P1—C1—C27.6 (2)C10—C11—C12—C70.6 (4)
Se1—P1—C1—C2120.53 (18)C8—C7—C12—C111.0 (4)
C7—P1—C1—C659.79 (19)P1—C7—C12—C11178.38 (19)
C13—P1—C1—C6169.57 (17)C1—P1—C13—C1871.55 (19)
Se1—P1—C1—C662.27 (18)C7—P1—C13—C18179.48 (17)
C6—C1—C2—C31.0 (3)Se1—P1—C13—C1857.00 (18)
P1—C1—C2—C3176.11 (18)C1—P1—C13—C14111.23 (18)
C1—C2—C3—C40.1 (4)C7—P1—C13—C142.2 (2)
C2—C3—C4—C50.5 (4)Se1—P1—C13—C14120.23 (16)
C3—C4—C5—C60.1 (4)C18—C13—C14—C150.7 (3)
C4—C5—C6—C10.9 (4)P1—C13—C14—C15177.99 (17)
C2—C1—C6—C51.5 (3)C13—C14—C15—C160.3 (3)
P1—C1—C6—C5175.86 (18)C14—C15—C16—C170.7 (3)
C1—P1—C7—C12145.39 (19)C15—C16—C17—C180.2 (3)
C13—P1—C7—C12102.79 (19)C16—C17—C18—O1176.18 (19)
Se1—P1—C7—C1221.3 (2)C16—C17—C18—C130.8 (3)
C1—P1—C7—C835.3 (2)C18i—O1—C18—C1751.46 (16)
C13—P1—C7—C876.5 (2)C18i—O1—C18—C13132.9 (2)
Se1—P1—C7—C8159.41 (16)C14—C13—C18—C171.2 (3)
C12—C7—C8—C90.3 (3)P1—C13—C18—C17178.56 (16)
P1—C7—C8—C9179.05 (17)C14—C13—C18—O1176.74 (17)
C7—C8—C9—C100.7 (3)P1—C13—C18—O15.9 (3)
C8—C9—C10—C111.1 (4)
Symmetry code: (i) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of rings C7–C12 and C13–C18, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2ii0.952.633.546 (3)161
C9—H9···Cg3iii0.952.943.676 (3)135
Symmetry codes: (ii) x, y+1, z+1; (iii) x1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) for (1) top
Cg4 is the centroid of ring C19–C24.
D—H···AD—HH···AD···AD—H···A
C11—H11···S2i0.952.823.696 (2)153
C4—H4···S2ii0.952.943.698 (3)138
C5—H5···S1iii0.952.933.796 (3)152
C9—H9···Cg4iv0.952.943.598 (3)127
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x1/2, y+1/2, z+1; (iii) x1/2, y, z+1/2; (iv) x+3/2, y1/2, z.
Hydrogen-bond geometry (Å, º) for (2) top
Cg2 and Cg3 are the centroids of rings C7–C12 and C13–C18, respectively.
D—H···AD—HH···AD···AD—H···A
C5—H5···Cg2i0.952.633.546 (3)161
C9—H9···Cg3ii0.952.943.676 (3)135
Symmetry codes: (i) x, y+1, z+1; (ii) x1/2, y+1/2, z+1.

Experimental details

(1)(2)
Crystal data
Chemical formulaC36H28OP2S2C36H28OP2Se2
Mr602.64696.44
Crystal system, space groupOrthorhombic, PbcaMonoclinic, C2/c
Temperature (K)173173
a, b, c (Å)14.1161 (9), 18.0874 (12), 23.1986 (16)14.0964 (15), 13.0854 (13), 17.5918 (18)
α, β, γ (°)90, 90, 9090, 109.226 (8), 90
V3)5923.1 (7)3064.0 (6)
Z84
Radiation typeMo KαMo Kα
µ (mm1)0.322.55
Crystal size (mm)0.52 × 0.24 × 0.120.80 × 0.12 × 0.12
Data collection
DiffractometerRigaku XtaLAB mini
diffractometer
Rigaku XtaLAB mini
diffractometer
Absorption correctionMulti-scan
(REQAB; Rigaku, 1998)
Multi-scan
(REQAB; Rigaku, 1998)
Tmin, Tmax0.718, 0.9630.556, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
54343, 6050, 4671 15840, 3521, 2958
Rint0.0730.045
(sin θ/λ)max1)0.6250.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.101, 1.07 0.032, 0.066, 1.07
No. of reflections60503521
No. of parameters370186
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.330.40, 0.41

Computer programs: CrystalClear-SM Expert (Rigaku Americas and Rigaku, 2011), SIR2004 (Burla et al., 2005), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010).

 

Acknowledgements

The authors acknowledge funding through the Endowed Chair in the Sciences, School of Humanities, Arts, and Sciences, St Catherine University, as well as the NSF–MRI award #1125975 `MRI Consortium: Acquisition of a Single Crystal X-ray Diffractometer for a Regional PUI Mol­ecular Structure Facility'.

References

First citationBraunstein, P. & Naud, F. (2001). Angew. Chem. Int. Ed. 40, 680–699.  Web of Science CrossRef CAS Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDairiki, A., Tsukuda, T., Matsumoto, K. & Tsubomura, T. (2009). Polyhedron, 28, 2730–2734.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeb, B. & Dutta, D. K. (2010). J. Mol. Catal. A Chem. 326, 21–28.  Web of Science CSD CrossRef CAS Google Scholar
First citationDeb, B., Sarmah, P. P. & Dutta, D. K. (2010). Eur. J. Inorg. Chem. pp. 1710–1716.  Web of Science CSD CrossRef Google Scholar
First citationDierkes, P. & van Leeuwen, P. W. N. M. (1999). J. Chem. Soc. Dalton Trans. pp. 1519–1530.  Web of Science CrossRef Google Scholar
First citationFaller, J. W., Milheiro, S. C. & Parr, J. (2008). J. Organomet. Chem. 693, 1478–1493.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGathy, T., Riant, O., Peeters, D. & Leyssens, T. (2011). J. Organomet. Chem. 696, 3425–3430.  Web of Science CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationJahromi, B. T., Kharat, A. N., Zamanian, S., Bakhoda, A., Mashayekh, K. & Khazaeli, S. (2012). Appl. Catal. A, 433, 188–196.  Google Scholar
First citationMilheiro, S. C. & Faller, J. W. (2011). J. Organomet. Chem. 696, 879–886.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2010). CrystalStructure . Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku Americas and Rigaku (2011). CrystalClear-SM Expert. Rigaku Americas, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSaikia, K., Deb, B., Borah, B. J., Sarmah, P. P. & Dutta, D. K. (2012). J. Organomet. Chem. 696, 4293–4297.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, C. S., Branham, C. W., Marquardt, B. J. & Mann, K. R. (2010). J. Am. Chem. Soc. 132, 14079–14085.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationVenkateswaran, R., Balakrishna, M. S. & Mobin, S. M. (2007a). Eur. J. Inorg. Chem. 13, 1930–1938.  Web of Science CSD CrossRef Google Scholar
First citationVenkateswaran, R., Balakrishna, M. S., Mobin, S. M. & Tuononen, H. M. (2007b). Inorg. Chem. 46, 6535–6541.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds