organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1229-o1230

Crystal structure of bis­­(allyl­ammonium) oxalate

aFaculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
*Correspondence e-mail: bzarychta@uni.opole.pl

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 22 October 2014; accepted 27 October 2014; online 5 November 2014)

The title salt, 2C3H8N+·C2O42−, crystallized with six independent allyl­ammonium cations and three independent oxalate dianions in the asymmetric unit. One of the oxalate dianions is nearly planar [dihedral angle between CO2 planes = 1.91 (19)°], while the other two are twisted with angles of 11.3 (3) and 26.09 (13)°. One cation has a synperiplanar (cis) conformation with an N—C—C—C torsion angle of 0.9 (3)°, whereas the five remaining cations are characterized by gauche arrangements, with the N—C—C—C torsion angles ranging from 115.9 (12) to 128.8 (3)°. One of the allyl­ammonium cations is positionally disordered (fixed occupancy ratio = 0.45:0.55). In the crystal, the cations and anions are connected by a number of strong N—H⋯O and N—H⋯(O,O) hydrogen bonds, forming layers parallel to (001), with the vinyl groups protruding into the space between the layers.

1. Related literature

For the crystal structures of oxalic acid salts with aliphatic amines, see: Dziuk et al. (2014a[Dziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852.],b[Dziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917-o918.]); Braga et al. (2013[Braga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2013). New J. Chem. 37, 97-104.]); Ejsmont & Zaleski (2006a[Ejsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o3879-o3880.],b[Ejsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o2512-o2513.]); Ejsmont (2006[Ejsmont, K. (2006). Acta Cryst. E62, o5852-o5854.], 2007[Ejsmont, K. (2007). Acta Cryst. E63, o107-o109.]). For the crystal structures of salts with disordered allyl­ammonium cations, see: Płowaś et al. (2010[Płowaś, I., Białońska, A., Jakubas, R., Bator, G., Zarychta, B. & Baran, J. (2010). Chem. Phys. 375, 16-25.]); Zarychta et al. (2007[Zarychta, B., Bujak, M. & Zaleski, J. (2007). Z. Naturforsch. Teil B, 62, 44-50.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • 2C3H8N+·C2O4

  • Mr = 204.23

  • Monoclinic, P 21 /n

  • a = 6.7060 (3) Å

  • b = 12.1364 (10) Å

  • c = 40.6017 (16) Å

  • β = 93.969 (4)°

  • V = 3296.5 (3) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.25 × 0.15 × 0.10 mm

2.2. Data collection

  • Oxford Diffraction Xcalibur CCD diffractometer

  • 21821 measured reflections

  • 6460 independent reflections

  • 4306 reflections with I > 2σ(I)

  • Rint = 0.036

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.132

  • S = 1.03

  • 6460 reflections

  • 397 parameters

  • 38 restraints

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.44 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O10 0.89 2.02 2.829 (2) 150
N1—H1A⋯O12 0.89 2.30 2.905 (2) 125
N1—H1B⋯O9i 0.89 1.89 2.768 (2) 167
N1—H1C⋯O11ii 0.89 1.92 2.801 (2) 169
N2—H2A⋯O6iii 0.89 2.32 2.890 (2) 122
N2—H2A⋯O8iii 0.89 2.02 2.838 (2) 152
N2—H2B⋯O1iv 0.89 1.92 2.797 (2) 168
N2—H2C⋯O7 0.89 1.89 2.773 (2) 172
N3—H3A⋯O4 0.89 1.94 2.737 (2) 148
N3—H3B⋯O6iii 0.89 1.89 2.759 (2) 165
N3—H3C⋯O5 0.89 2.12 2.847 (2) 138
N3—H3C⋯O7 0.89 2.13 2.885 (2) 142
N4—H4A⋯O2 0.89 2.18 2.887 (2) 135
N4—H4A⋯O4 0.89 2.10 2.831 (2) 139
N4—H4B⋯O5iii 0.89 1.89 2.769 (2) 172
N4—H4C⋯O3iii 0.89 1.84 2.728 (2) 176
N5—H5A⋯O8v 0.89 1.83 2.701 (2) 165
N5—H5B⋯O2i 0.89 1.93 2.762 (2) 156
N5—H5C⋯O1 0.89 2.09 2.945 (2) 162
N6—H6A⋯O10vi 0.89 1.85 2.720 (2) 166
N6—H6B⋯O11 0.89 2.04 2.900 (2) 163
N6—H6C⋯O12iii 0.89 1.92 2.744 (2) 153
Symmetry codes: (i) x-1, y, z; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) x+1, y, z; (iv) x, y-1, z; (v) x, y+1, z; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.]); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

The crystal structure of the title salt is illustrated in Fig. 1. It crystallized with six independent allylammonium cations and three independent oxalate dianions in the asymmetric unit. This is in contrast to the structure of a ethylammonium oxalate hemihydrate where the oxalate is present as a monoanion (Ejsmont & Zaleski, 2006a).

The geometry of the anions and cations is alternated. One of oxalate anion is nearly planar with the O5–C21–C22–O8 torsion angle being 179.22 (19)°, while the two remaining oxalate anions are twisted along the C19–C20 and C23–C24 bonds by -154.87 (19)° and 168.12 (19)°. The N3 cation has a syn-periplanar (cis) conformation with the N–C–C–C torsion angle of 0.9 (3)°, whereas the five remaining cations are characterized by a gauche arrangement, with torsion angles ranging from 115.9 (12) to 128.8 (3)° for the N6 and N4 cations, respectively.

Moreover one allylammonium cation is disordered, with a similar type of disorder as in the structures of (C3H5NH3)3 [SbBr6] (Płowaś et al., 2010) and (C3H5NH3)2SbCl5.(C3H5NH3)Cl (Zarychta et al., 2007).

In the crystal, each anion is hydrogen bonded to two cations via N-H···O hydrogen bonds (Table 1 and Fig. 2) forming layers parallel to (001), separated by ca. 7.9 Å. The space is occupied by the vinyl groups of the allylammonium cations (Fig. 2 and Table 1).

Related literature top

For the crystal structures of oxalic acid salts with aliphatic amines, see: Dziuk et al. (2014a,b); Braga et al. (2013); Ejsmont & Zaleski (2006a,b); Ejsmont (2006, 2007). For the crystal structures of salts with disordered allylammonium cations, see: Płowaś et al. (2010); Zarychta et al. (2007).

Experimental top

Crystals were grown at room temperature by slow evaporation of an aqueous solution containing allylamine and oxalic acid in a 1:1 stoichiometric ratio.

Refinement top

All H atoms were positioned geometrically and treated as riding on their parent atoms, with N–H = 0.89 Å, C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.5Ueq(N,C-methyl) and = 1.2Ueq(C) for other H atoms. One of the allylammonium cations is positionally disorded and atoms C17A/C17B and C18A/C18B were refined with a fixed occupany ratio of 0.45:0.55.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008).

Figures top
The molecular structure of the asymmetric unit of the title salt, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. One of the allylammonium cations is positionally disorded and only the major components, atoms C17B and C18B, are shown for clarity.

The crystal packing viewed along the b axis of the title salt. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
Bis(allylammonium) oxalate top
Crystal data top
2C3H8N+·C2O4F(000) = 1320
Mr = 204.23Dx = 1.235 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 6.7060 (3) ÅCell parameters from 21821 reflections
b = 12.1364 (10) Åθ = 3.0–26.0°
c = 40.6017 (16) ŵ = 0.10 mm1
β = 93.969 (4)°T = 100 K
V = 3296.5 (3) Å3Block, colourless
Z = 120.25 × 0.15 × 0.10 mm
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4306 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 26.0°, θmin = 3.0°
ω scanh = 88
21821 measured reflectionsk = 1413
6460 independent reflectionsl = 4947
Refinement top
Refinement on F238 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0677P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
6460 reflectionsΔρmax = 0.57 e Å3
397 parametersΔρmin = 0.44 e Å3
Crystal data top
2C3H8N+·C2O4V = 3296.5 (3) Å3
Mr = 204.23Z = 12
Monoclinic, P21/nMo Kα radiation
a = 6.7060 (3) ŵ = 0.10 mm1
b = 12.1364 (10) ÅT = 100 K
c = 40.6017 (16) Å0.25 × 0.15 × 0.10 mm
β = 93.969 (4)°
Data collection top
Oxford Diffraction Xcalibur CCD
diffractometer
4306 reflections with I > 2σ(I)
21821 measured reflectionsRint = 0.036
6460 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05338 restraints
wR(F2) = 0.132H-atom parameters constrained
S = 1.03Δρmax = 0.57 e Å3
6460 reflectionsΔρmin = 0.44 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0693 (2)0.39719 (14)0.24556 (4)0.0168 (4)
H1A0.18400.36260.25090.025*
H1B0.03190.35030.24690.025*
H1C0.05490.45300.25940.025*
C10.0706 (3)0.43979 (19)0.21148 (5)0.0233 (5)
H1D0.08880.37890.19650.028*
H1E0.18250.48980.21010.028*
C20.1179 (4)0.4984 (2)0.20118 (6)0.0286 (6)
H2D0.23760.46150.20350.034*
C30.1275 (4)0.5981 (2)0.18910 (7)0.0423 (7)
H3D0.01080.63750.18640.051*
H3E0.25110.62970.18320.051*
N20.9169 (2)0.04985 (13)0.07308 (4)0.0146 (4)
H2A1.03390.08180.07860.022*
H2B0.89450.00300.08760.022*
H2C0.81990.09990.07310.022*
C40.9211 (3)0.00129 (18)0.03964 (5)0.0197 (5)
H4D1.02970.05140.03950.024*
H4E0.94630.05910.02390.024*
C50.7292 (3)0.0550 (2)0.02916 (6)0.0247 (5)
H5D0.61140.01480.02980.030*
C60.7165 (4)0.1577 (2)0.01908 (6)0.0354 (7)
H6D0.83170.19990.01820.042*
H6E0.59230.18820.01290.042*
N30.7745 (2)0.40896 (13)0.05764 (4)0.0159 (4)
H3A0.77310.45110.07560.024*
H3B0.88810.37090.05820.024*
H3C0.67160.36250.05710.024*
C70.7589 (3)0.47910 (18)0.02790 (6)0.0262 (6)
H7A0.86980.53060.02900.031*
H7B0.63640.52160.02780.031*
C80.7597 (3)0.4167 (2)0.00353 (6)0.0303 (6)
H8A0.75200.45820.02280.036*
C90.7701 (4)0.3098 (2)0.00713 (6)0.0319 (6)
H9A0.77810.26420.01130.038*
H9B0.76940.27930.02820.038*
N41.2953 (2)0.54981 (14)0.09731 (4)0.0173 (4)
H4A1.18410.58800.09230.026*
H4B1.30410.49470.08300.026*
H4C1.40090.59390.09630.026*
C101.2902 (4)0.5047 (2)0.13118 (6)0.0285 (6)
H10A1.27910.56500.14660.034*
H10B1.17280.45850.13230.034*
C111.4686 (4)0.4398 (2)0.14102 (6)0.0382 (7)
H11A1.59260.47190.13850.046*
C121.4659 (5)0.3402 (3)0.15312 (7)0.0548 (9)
H12A1.34460.30570.15600.066*
H12B1.58540.30380.15880.066*
N50.4296 (2)0.89624 (14)0.10655 (4)0.0174 (4)
H5A0.39220.95400.09410.026*
H5B0.35290.83860.10070.026*
H5C0.55670.88010.10370.026*
C130.4079 (4)0.92265 (19)0.14159 (6)0.0270 (6)
H13A0.49220.98530.14780.032*
H13B0.27050.94360.14430.032*
C140.4622 (5)0.8297 (2)0.16383 (7)0.0433 (7)
H14A0.59260.80430.16300.052*
C150.3600 (5)0.7797 (2)0.18369 (7)0.0518 (9)
H15A0.22810.80040.18590.062*
H15B0.41590.72190.19620.062*
N60.9227 (2)0.05348 (14)0.22058 (4)0.0177 (4)
H6A0.96460.00480.23250.027*
H6B0.79590.06770.22430.027*
H6C0.99810.11160.22640.027*
C160.9382 (4)0.0301 (2)0.18525 (6)0.0298 (6)
H16A1.03650.02780.18330.036*
H16B0.81060.00160.17630.036*
C17A0.9923 (12)0.1216 (5)0.16504 (16)0.0347 (15)0.45
H17A1.11990.14830.17090.042*0.45
C18A0.9094 (14)0.1719 (13)0.1421 (4)0.038 (3)0.45
H18A0.78100.15210.13420.045*0.45
H18B0.97450.23000.13250.045*0.45
C17B0.8712 (8)0.1232 (4)0.16450 (13)0.0240 (11)0.55
H17B0.74100.14820.16600.029*0.55
C18B0.9883 (12)0.1764 (10)0.1429 (3)0.033 (2)0.55
H18C1.11920.15340.14080.040*0.55
H18D0.93640.23520.13030.040*0.55
O10.8657 (2)0.86307 (11)0.11197 (4)0.0174 (3)
O21.1046 (2)0.76253 (12)0.09007 (4)0.0212 (4)
O30.6117 (2)0.69093 (12)0.09661 (4)0.0297 (4)
O40.8778 (2)0.58025 (11)0.09925 (4)0.0239 (4)
C190.9343 (3)0.77562 (17)0.10068 (5)0.0143 (5)
C200.7955 (3)0.67310 (17)0.09876 (5)0.0162 (5)
O50.3551 (2)0.37126 (11)0.05668 (3)0.0159 (3)
O60.0928 (2)0.26559 (12)0.06678 (4)0.0222 (4)
O70.5985 (2)0.19598 (11)0.06801 (4)0.0191 (4)
O80.3342 (2)0.09181 (11)0.07784 (4)0.0219 (4)
C210.2742 (3)0.28163 (16)0.06386 (5)0.0122 (4)
C220.4160 (3)0.18068 (16)0.07032 (5)0.0139 (5)
O90.7477 (2)0.25409 (12)0.23883 (4)0.0237 (4)
O100.4852 (2)0.35506 (12)0.25117 (4)0.0257 (4)
O110.4942 (2)0.08883 (11)0.21818 (4)0.0173 (3)
O120.2475 (2)0.18011 (12)0.24079 (4)0.0226 (4)
C230.5651 (3)0.26894 (17)0.24167 (5)0.0159 (5)
C240.4224 (3)0.17033 (16)0.23246 (5)0.0145 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0115 (9)0.0126 (9)0.0267 (11)0.0018 (7)0.0032 (8)0.0010 (8)
C10.0230 (13)0.0245 (13)0.0229 (13)0.0013 (10)0.0052 (10)0.0006 (10)
C20.0228 (13)0.0355 (15)0.0271 (14)0.0015 (11)0.0021 (11)0.0036 (12)
C30.0470 (18)0.0395 (17)0.0396 (17)0.0115 (14)0.0023 (14)0.0070 (14)
N20.0111 (9)0.0115 (9)0.0215 (10)0.0007 (7)0.0030 (7)0.0005 (8)
C40.0203 (12)0.0191 (12)0.0203 (13)0.0009 (9)0.0057 (9)0.0006 (9)
C50.0182 (12)0.0328 (14)0.0228 (13)0.0016 (10)0.0006 (10)0.0030 (11)
C60.0305 (15)0.0404 (17)0.0354 (16)0.0147 (12)0.0043 (12)0.0091 (13)
N30.0099 (9)0.0121 (9)0.0258 (11)0.0013 (7)0.0019 (7)0.0002 (8)
C70.0200 (13)0.0198 (12)0.0389 (15)0.0038 (10)0.0029 (11)0.0156 (11)
C80.0174 (13)0.0453 (17)0.0284 (15)0.0011 (11)0.0036 (10)0.0180 (12)
C90.0280 (15)0.0460 (17)0.0215 (14)0.0002 (12)0.0008 (11)0.0024 (12)
N40.0132 (9)0.0116 (9)0.0271 (11)0.0004 (7)0.0028 (8)0.0016 (8)
C100.0341 (15)0.0277 (14)0.0243 (14)0.0049 (11)0.0064 (11)0.0018 (11)
C110.0286 (15)0.0543 (19)0.0316 (16)0.0057 (13)0.0012 (11)0.0025 (14)
C120.051 (2)0.051 (2)0.063 (2)0.0295 (16)0.0130 (16)0.0173 (17)
N50.0120 (9)0.0124 (9)0.0284 (11)0.0037 (7)0.0052 (8)0.0034 (8)
C130.0320 (14)0.0199 (13)0.0291 (14)0.0025 (10)0.0023 (11)0.0026 (11)
C140.071 (2)0.0266 (15)0.0324 (16)0.0002 (14)0.0049 (15)0.0014 (13)
C150.089 (3)0.0298 (16)0.0397 (18)0.0032 (16)0.0267 (17)0.0064 (14)
N60.0115 (9)0.0122 (9)0.0298 (11)0.0018 (7)0.0038 (8)0.0012 (8)
C160.0402 (16)0.0240 (14)0.0251 (14)0.0026 (11)0.0022 (11)0.0071 (11)
C17A0.044 (4)0.034 (3)0.027 (3)0.002 (3)0.007 (3)0.004 (3)
C18A0.035 (6)0.041 (5)0.038 (4)0.004 (6)0.010 (6)0.003 (4)
C17B0.020 (3)0.025 (2)0.026 (3)0.002 (2)0.001 (2)0.002 (2)
C18B0.044 (5)0.027 (3)0.030 (4)0.010 (5)0.014 (5)0.003 (3)
O10.0182 (8)0.0107 (8)0.0238 (9)0.0014 (6)0.0054 (7)0.0017 (6)
O20.0151 (8)0.0170 (8)0.0322 (9)0.0004 (6)0.0075 (7)0.0012 (7)
O30.0121 (9)0.0157 (8)0.0617 (13)0.0009 (6)0.0045 (8)0.0035 (8)
O40.0193 (8)0.0096 (8)0.0430 (11)0.0015 (6)0.0030 (7)0.0033 (7)
C190.0149 (11)0.0124 (11)0.0155 (11)0.0007 (9)0.0006 (9)0.0017 (9)
C200.0163 (12)0.0142 (11)0.0187 (12)0.0004 (9)0.0054 (9)0.0032 (9)
O50.0149 (8)0.0095 (7)0.0236 (9)0.0001 (6)0.0045 (6)0.0020 (6)
O60.0112 (8)0.0159 (8)0.0401 (10)0.0028 (6)0.0049 (7)0.0070 (7)
O70.0100 (8)0.0136 (8)0.0340 (10)0.0015 (6)0.0036 (6)0.0030 (7)
O80.0120 (8)0.0114 (8)0.0425 (10)0.0013 (6)0.0026 (7)0.0098 (7)
C210.0117 (11)0.0111 (10)0.0141 (11)0.0016 (8)0.0019 (8)0.0007 (8)
C220.0120 (11)0.0133 (11)0.0165 (11)0.0002 (9)0.0022 (8)0.0005 (9)
O90.0123 (8)0.0156 (8)0.0436 (11)0.0008 (6)0.0054 (7)0.0042 (7)
O100.0167 (9)0.0126 (8)0.0479 (11)0.0013 (6)0.0039 (7)0.0110 (7)
O110.0171 (8)0.0126 (8)0.0227 (9)0.0005 (6)0.0041 (6)0.0034 (6)
O120.0118 (8)0.0193 (8)0.0376 (10)0.0019 (6)0.0072 (7)0.0065 (7)
C230.0142 (11)0.0118 (11)0.0217 (12)0.0005 (9)0.0013 (9)0.0008 (9)
C240.0145 (12)0.0103 (11)0.0188 (12)0.0010 (9)0.0025 (9)0.0026 (9)
Geometric parameters (Å, º) top
N1—C11.478 (3)C12—H12B0.9300
N1—H1A0.8900N5—C131.475 (3)
N1—H1B0.8900N5—H5A0.8900
N1—H1C0.8900N5—H5B0.8900
C1—C21.485 (3)N5—H5C0.8900
C1—H1D0.9700C13—C141.475 (3)
C1—H1E0.9700C13—H13A0.9700
C2—C31.305 (3)C13—H13B0.9700
C2—H2D0.9300C14—C151.251 (4)
C3—H3D0.9300C14—H14A0.9300
C3—H3E0.9300C15—H15A0.9300
N2—C41.482 (3)C15—H15B0.9300
N2—H2A0.8900N6—C161.473 (3)
N2—H2B0.8900N6—H6A0.8900
N2—H2C0.8900N6—H6B0.8900
C4—C51.492 (3)N6—H6C0.8900
C4—H4D0.9700C16—C17A1.442 (7)
C4—H4E0.9700C16—C17B1.461 (6)
C5—C61.313 (3)C16—H16A0.9700
C5—H5D0.9300C16—H16B0.9700
C6—H6D0.9300C17A—C18A1.215 (17)
C6—H6E0.9300C17A—H17A0.9300
N3—C71.475 (3)C18A—H18A0.9300
N3—H3A0.8900C18A—H18B0.9300
N3—H3B0.8900C17B—C18B1.379 (11)
N3—H3C0.8900C17B—H17B0.9300
C7—C81.484 (3)C18B—H18C0.9300
C7—H7A0.9700C18B—H18D0.9300
C7—H7B0.9700O1—C191.256 (2)
C8—C91.308 (3)O2—C191.259 (2)
C8—H8A0.9300O3—C201.249 (2)
C9—H9A0.9300O4—C201.254 (2)
C9—H9B0.9300C19—C201.552 (3)
N4—C101.483 (3)O5—C211.259 (2)
N4—H4A0.8900O6—C211.246 (2)
N4—H4B0.8900O7—C221.247 (2)
N4—H4C0.8900O8—C221.257 (2)
C10—C111.464 (3)C21—C221.562 (3)
C10—H10A0.9700O9—C231.251 (2)
C10—H10B0.9700O10—C231.248 (2)
C11—C121.305 (4)O11—C241.259 (2)
C11—H11A0.9300O12—C241.249 (2)
C12—H12A0.9300C23—C241.562 (3)
C1—N1—H1A109.5C12—C11—H11A117.7
C1—N1—H1B109.5C10—C11—H11A117.7
H1A—N1—H1B109.5C11—C12—H12A120.0
C1—N1—H1C109.5C11—C12—H12B120.0
H1A—N1—H1C109.5H12A—C12—H12B120.0
H1B—N1—H1C109.5C13—N5—H5A109.5
N1—C1—C2111.78 (18)C13—N5—H5B109.5
N1—C1—H1D109.3H5A—N5—H5B109.5
C2—C1—H1D109.3C13—N5—H5C109.5
N1—C1—H1E109.3H5A—N5—H5C109.5
C2—C1—H1E109.3H5B—N5—H5C109.5
H1D—C1—H1E107.9C14—C13—N5112.82 (19)
C3—C2—C1124.7 (2)C14—C13—H13A109.0
C3—C2—H2D117.7N5—C13—H13A109.0
C1—C2—H2D117.7C14—C13—H13B109.0
C2—C3—H3D120.0N5—C13—H13B109.0
C2—C3—H3E120.0H13A—C13—H13B107.8
H3D—C3—H3E120.0C15—C14—C13130.0 (3)
C4—N2—H2A109.5C15—C14—H14A115.0
C4—N2—H2B109.5C13—C14—H14A115.0
H2A—N2—H2B109.5C14—C15—H15A120.0
C4—N2—H2C109.5C14—C15—H15B120.0
H2A—N2—H2C109.5H15A—C15—H15B120.0
H2B—N2—H2C109.5C16—N6—H6A109.5
N2—C4—C5111.87 (17)C16—N6—H6B109.5
N2—C4—H4D109.2H6A—N6—H6B109.5
C5—C4—H4D109.2C16—N6—H6C109.5
N2—C4—H4E109.2H6A—N6—H6C109.5
C5—C4—H4E109.2H6B—N6—H6C109.5
H4D—C4—H4E107.9C17A—C16—N6116.3 (3)
C6—C5—C4124.0 (2)C17B—C16—N6111.9 (3)
C6—C5—H5D118.0C17A—C16—H16A108.2
C4—C5—H5D118.0N6—C16—H16A108.2
C5—C6—H6D120.0C17A—C16—H16B108.2
C5—C6—H6E120.0N6—C16—H16B108.2
H6D—C6—H6E120.0H16A—C16—H16B107.4
C7—N3—H3A109.5C18A—C17A—C16134.7 (9)
C7—N3—H3B109.5C18A—C17A—H17A112.7
H3A—N3—H3B109.5C16—C17A—H17A112.7
C7—N3—H3C109.5C17A—C18A—H18A120.0
H3A—N3—H3C109.5C17A—C18A—H18B120.0
H3B—N3—H3C109.5H18A—C18A—H18B120.0
N3—C7—C8113.89 (19)C18B—C17B—C16124.3 (6)
N3—C7—H7A108.8C18B—C17B—H17B117.9
C8—C7—H7A108.8C16—C17B—H17B117.9
N3—C7—H7B108.8C17B—C18B—H18C120.0
C8—C7—H7B108.8C17B—C18B—H18D120.0
H7A—C7—H7B107.7H18C—C18B—H18D120.0
C9—C8—C7127.3 (2)O1—C19—O2126.54 (19)
C9—C8—H8A116.4O1—C19—C20117.53 (18)
C7—C8—H8A116.4O2—C19—C20115.91 (18)
C8—C9—H9A120.0O3—C20—O4126.0 (2)
C8—C9—H9B120.0O3—C20—C19116.75 (18)
H9A—C9—H9B120.0O4—C20—C19117.23 (18)
C10—N4—H4A109.5O6—C21—O5126.61 (19)
C10—N4—H4B109.5O6—C21—C22116.67 (17)
H4A—N4—H4B109.5O5—C21—C22116.71 (17)
C10—N4—H4C109.5O7—C22—O8126.35 (19)
H4A—N4—H4C109.5O7—C22—C21117.36 (17)
H4B—N4—H4C109.5O8—C22—C21116.28 (18)
C11—C10—N4112.4 (2)O10—C23—O9126.4 (2)
C11—C10—H10A109.1O10—C23—C24116.53 (18)
N4—C10—H10A109.1O9—C23—C24117.08 (18)
C11—C10—H10B109.1O12—C24—O11126.59 (19)
N4—C10—H10B109.1O12—C24—C23115.73 (18)
H10A—C10—H10B107.9O11—C24—C23117.67 (18)
C12—C11—C10124.6 (3)
N1—C1—C2—C3127.2 (3)O1—C19—C20—O4154.87 (19)
N2—C4—C5—C6125.8 (2)O2—C19—C20—O426.3 (3)
N3—C7—C8—C90.9 (3)O6—C21—C22—O7178.86 (18)
N4—C10—C11—C12128.8 (3)O5—C21—C22—O70.2 (3)
N5—C13—C14—C15120.8 (3)O6—C21—C22—O80.2 (3)
C17B—C16—C17A—C18A26.1 (11)O5—C21—C22—O8179.22 (19)
N6—C16—C17A—C18A115.9 (12)O10—C23—C24—O1211.9 (3)
C17A—C16—C17B—C18B16.7 (7)O9—C23—C24—O12168.12 (19)
N6—C16—C17B—C18B121.6 (7)O10—C23—C24—O11169.54 (19)
O1—C19—C20—O325.7 (3)O9—C23—C24—O1110.5 (3)
O2—C19—C20—O3153.11 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O100.892.022.829 (2)150
N1—H1A···O120.892.302.905 (2)125
N1—H1B···O9i0.891.892.768 (2)167
N1—H1C···O11ii0.891.922.801 (2)169
N2—H2A···O6iii0.892.322.890 (2)122
N2—H2A···O8iii0.892.022.838 (2)152
N2—H2B···O1iv0.891.922.797 (2)168
N2—H2C···O70.891.892.773 (2)172
N3—H3A···O40.891.942.737 (2)148
N3—H3B···O6iii0.891.892.759 (2)165
N3—H3C···O50.892.122.847 (2)138
N3—H3C···O70.892.132.885 (2)142
N4—H4A···O20.892.182.887 (2)135
N4—H4A···O40.892.102.831 (2)139
N4—H4B···O5iii0.891.892.769 (2)172
N4—H4C···O3iii0.891.842.728 (2)176
N5—H5A···O8v0.891.832.701 (2)165
N5—H5B···O2i0.891.932.762 (2)156
N5—H5C···O10.892.092.945 (2)162
N6—H6A···O10vi0.891.852.720 (2)166
N6—H6B···O110.892.042.900 (2)163
N6—H6C···O12iii0.891.922.744 (2)153
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x+3/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O100.892.022.829 (2)150
N1—H1A···O120.892.302.905 (2)125
N1—H1B···O9i0.891.892.768 (2)167
N1—H1C···O11ii0.891.922.801 (2)169
N2—H2A···O6iii0.892.322.890 (2)122
N2—H2A···O8iii0.892.022.838 (2)152
N2—H2B···O1iv0.891.922.797 (2)168
N2—H2C···O70.891.892.773 (2)172
N3—H3A···O40.891.942.737 (2)148
N3—H3B···O6iii0.891.892.759 (2)165
N3—H3C···O50.892.122.847 (2)138
N3—H3C···O70.892.132.885 (2)142
N4—H4A···O20.892.182.887 (2)135
N4—H4A···O40.892.102.831 (2)139
N4—H4B···O5iii0.891.892.769 (2)172
N4—H4C···O3iii0.891.842.728 (2)176
N5—H5A···O8v0.891.832.701 (2)165
N5—H5B···O2i0.891.932.762 (2)156
N5—H5C···O10.892.092.945 (2)162
N6—H6A···O10vi0.891.852.720 (2)166
N6—H6B···O110.892.042.900 (2)163
N6—H6C···O12iii0.891.922.744 (2)153
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z; (iv) x, y1, z; (v) x, y+1, z; (vi) x+3/2, y1/2, z+1/2.
 

References

First citationBraga, D., Chelazzi, L., Ciabatti, I. & Grepioni, F. (2013). New J. Chem. 37, 97–104.  Web of Science CSD CrossRef CAS Google Scholar
First citationDziuk, B., Zarychta, B. & Ejsmont, K. (2014a). Acta Cryst. E70, o852.  CSD CrossRef IUCr Journals Google Scholar
First citationDziuk, B., Zarychta, B. & Ejsmont, K. (2014b). Acta Cryst. E70, o917–o918.  CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K. (2006). Acta Cryst. E62, o5852–o5854.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. (2007). Acta Cryst. E63, o107–o109.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006a). Acta Cryst. E62, o3879–o3880.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEjsmont, K. & Zaleski, J. (2006b). Acta Cryst. E62, o2512–o2513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationPłowaś, I., Białońska, A., Jakubas, R., Bator, G., Zarychta, B. & Baran, J. (2010). Chem. Phys. 375, 16–25.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZarychta, B., Bujak, M. & Zaleski, J. (2007). Z. Naturforsch. Teil B, 62, 44–50.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1229-o1230
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds