organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1285-o1286

Crystal structure of (−)-(2R,3S,4R,5R)-5-(1,3-di­thian-2-yl)-3-methyl-1-(triiso­propyl­sil­yl­oxy)hexane-2,4-diol

aUniversity of Puerto Rico, Rio Piedras Campus, Department of Chemistry, PO Box 23346, San Juan, 000936-8377, Puerto Rico
*Correspondence e-mail: jose.prieto2@upr.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 25 October 2014; accepted 6 November 2014; online 21 November 2014)

The title compound, C20H42O3S2Si, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. They consist of syn,anti,anti-stereo­tetrads with a 1,3-di­thiane motif and a primary alcohol protected as the triisopropyl silyl ether. The 1,3-di­thiane ring adopts a chair conformation, while the rest of each mol­ecule displays a common zigzag conformation. There is an intra­molecular O—H⋯O hydrogen bond in each mol­ecule. In the crystal, the A and B mol­ecules are linked via O—H⋯O hydrogen bonds, forming –ABA--B-- chains along [010]. The absolute structure was determined by resonant scattering (anomalous scattering) [Flack parameter = 0.035 (8)].

1. Related literature

The title compound was obtained as part of our studies toward the synthesis of (+)-crocacin C, using an epoxide-based approach for the stereo­tetrad construction. For the one- and two-dimensional NMR spectra of the acetonide product, see: Rychnovsky & Skalitzky (1990[Rychnovsky, S. D. & Skalitzky, D. J. (1990). Tetrahedron Lett. 31, 945-948.]). For the isolation and bio­logical activity of crocacin, see: Kunze et al. (1994[Kunze, B., Jansen, R., Höfle, G. & Reichenbach, H. (1994). J. Antibiot. 47, 881-886.]); Jansen et al. (1999[Jansen, R., Washausen, P., Kunze, B., Reichenbach, H. & Höfle, G. (1999). Eur. J. Org. Chem. pp. 1085-1089.]). For the di­thiane epoxide cleavage, see: Ide & Nakata (1999[Ide, M. & Nakata, M. (1999). Bull. Chem. Soc. Jpn, 72, 2491-2499.]); Ide et al. (1999[Ide, M., Tsunashima, K. & Nakata, M. (1999). Bull. Chem. Soc. Jpn, 72, 2501-2507.]). For polypropionate-related synthesis and background, see: Li & Menche (2009[Li, J. & Menche, D. (2009). Synthesis, 2009, 2293-2315.]); Rodríguez-Berríos et al. (2011[Rodríguez-Berríos, R., Torres, G. & Prieto, J. A. (2011). Tetrahedron, 67, 830-836.]); Torres et al. (2009[Torres, W., Rodríguez, R. R. & Prieto, J. A. (2009). J. Org. Chem. 74, 2447-2451.]); Dávila et al. (2007[Dávila, W., Torres, W. & Prieto, J. A. (2007). Tetrahedron, 63, 8218-8226.]); Rodríguez et al. (2006[Rodríguez, D., Mulero, M. & Prieto, J. A. (2006). J. Org. Chem. 71, 5826-5829.]). For biological activities of polypropionates, see; Li & Menche (2009[Li, J. & Menche, D. (2009). Synthesis, 2009, 2293-2315.]); Rohr (2000[Rohr, J. (2000). Angew. Chem. Int. Ed. 39, 2847-2849.]). For a related structure, see: Valentín et al. (2012[Valentín, E. M., Mulero, M. & Prieto, J. A. (2012). Tetrahedron Lett. 53, 2199-2201.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C20H42O3S2Si

  • Mr = 422.74

  • Monoclinic, P 21

  • a = 15.9691 (4) Å

  • b = 8.3420 (2) Å

  • c = 19.1245 (5) Å

  • β = 101.253 (2)°

  • V = 2498.68 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.51 mm−1

  • T = 124 K

  • 0.10 × 0.05 × 0.05 mm

2.2. Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.860, Tmax = 0.882

  • 38635 measured reflections

  • 9653 independent reflections

  • 8808 reflections with I > 2σ(I)

  • Rint = 0.062

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.088

  • S = 1.02

  • 9653 reflections

  • 501 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack x determined using 3771 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: 0.035 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H100⋯O3 0.76 (4) 2.00 (4) 2.705 (4) 154 (5)
O5—H103⋯O6 0.81 (5) 1.94 (5) 2.689 (3) 153 (5)
O3—H101⋯O5i 0.66 (3) 2.11 (4) 2.751 (3) 167 (5)
O6—H102⋯O2ii 0.76 (4) 1.93 (4) 2.685 (3) 175 (4)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

The synthesis of the title compound was obtained through regioselective epoxide cleavage of (-)-(2R,3R)-3-((2R,3S)-3-methyloxiran-2-yl)-1- ((triisopropylsilyl)oxy)butan-2-ol with 1,3-dithiane in the presence of tert-butyllithium and di-n-butylmagnesium as metallation reagents. This reaction afforded the optically active syn,anti,anti-polypropionate unit needed for the synthesis of (+)-crocacin C with the correct 2R,3S,4R,5R absolute configuration. The resulting stereochemistry was confirmed by 1D- and 2D-NMR spectra of the acetonide product (Rychnovsky & Skalitzky, 1990), as well as by X-ray crystallography.

Polypropionates are a common moiety consisting of a stereodefined array of methyl and hydroxy substituents in an aliphatic chain. Their structure is found in various natural products, many of them possessing a wide range of biological activity (typically antibiotic, antitumor, antifungal, antiparasitic, among others) (Rohr, 2000). Different methodologies have been applied for their synthesis, although the aldol approach continues to be one of the most used methods (Li & Menche, 2009). An alternative approach to their synthesis is the regioselective cleavage of oxirane rings. The methodology developed in our lab consists of a reiterative sequence in which a disubstituted epoxide is regioselectively cleaved with either a propynylaluminum reagent (Dávila et al., 2007) or Grignard reagent (Rodríguez et al., 2006), followed by reduction (if needed), and further epoxidation of the newly formed alkene. In this methodology, the configuration of the hydroxyl functionality is determined by the configuration of the epoxide, while the syn/anti relative configuration of the methyl and hydroxyl groups is defined by the epoxide geometry. In this substrate controlled synthesis of the title compound, the configuration of the formed hydroxyl group was determined by the configuration of the substrate epoxide, while the anti relative configuration obtained between the formed hydroxyl and methyl group was due to the cis-geometry of the epoxide.

Related literature top

The title compound was obtained as part of our studies toward the synthesis of (+)-crocacin C, using an epoxide-based approach for the stereotetrad construction. For the one- and two-dimensional NMR spectra of the acetonide product, see: Rychnovsky & Skalitzky (1990). For the isolation and biological activity of crocacin, see: Kunze et al. (1994); Jansen et al. (1999). For the dithiane epoxide cleavage, see: Ide & Nakata (1999); Ide et al. (1999). For polypropionate-related synthesis and background, see: Li & Menche (2009); Rodríguez-Berríos et al. (2011); Torres et al. (2009); Dávila et al. (2007); Rodríguez et al. (2006). For biological activities of polypropionates, see; Li & Menche (2009); Rohr (2000). For a related structure, see: Valentín et al. (2012).

Experimental top

The synthesis of the title compound is illustrated in Fig. 3. It was synthesized using Nakata's modified protocol (Ide et al., 1999). To a flame-dried round bottom flask was added 12 mL of t-butyllithium (19.8 mmol, 1.7 M in pentane) and 4.95 mL of di-n-butylmagnesium (4.95 mmol, 1.0 M in heptane) at rt. The mixed reagents were then transferred via cannula to another flame-dried round bottom flask containing a stirred solution of 1,3-dithiane (0.99 g, 8.25 mmol) in dry THF (16 mL) at rt. The reaction mixture turned bright yellow, and was left stirring for 1 hr after which the epoxide was added (1.0 g, 3.30 mmol). After 20 h at rt, the reaction was quenched by adding saturated aqueous NH4Cl, and the resulting mixture was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over MgSO4, and concentrated under reduced pressure. The resulting dithiane was purified using column chromatography (9:1 hexane/Et2O), yielding 0.649 g (66%) of the dithiane product as a white solid, m.p.: 367-369 K. Colourless crystals, suitable for X-ray diffraction, were obtained by slow diffusion of diethylether into a solution in hexanes at room temperature over a period of 2 days. 1H NMR (500 MHz, CDCl3) δ 4.76 (d, J = 2.6 Hz, 1H), 4.05 (dddd, J = 7.4, 5.5, 1.9, 1.9 Hz, 1H), 3.67 (dd, J = 9.6, 7.6 Hz, 1H), 3.60 (ddd, J = 10.1, 7.8, 2.8 Hz, 1H), 3.56 (dd, J = 9.6, 5.5 Hz, 1H), 3.32 (d, J = 7.9 Hz, 1H), 3.04 (ddd, J = 13.8, 12.6, 2.5 Hz, 1H), 2.95 – 2.80 (m, 3H), 2.85 (d, J = 7.4 Hz, 1H), 2.15 (m, 1H), 2.11 (m, 1H), 1.88 (m, 1H), 1.84 (m, 1H), 1.08 (d, J = 7.1 Hz , 3H), 1.05 (m, 21H), 1.02 (d, J = 6.9 Hz, 3H). 13C NMR (125 MHz, CDCl3) δ 77.7, 71.4, 65.2, 52.4, 42.6, 33.9, 31.5, 30.8, 26.5, 17.9, 13.1, 11.9, 11.5. [α]20D= -12.9 (c = 1.0, CHCl3). Anal. Calcd. for C20H42O3S2Si: C, 56.82 %, H, 10.01 %; Found: C, 56.53 %, H, 9.78 %.

Refinement top

All atoms, except hydrogen, were refined anisotropically. The H atoms were placed at calculated positions using suitable riding models except those located on the hydroxy groups, which were found directly on the difference Fourier map and refined using DFIX constraints. Aliphatic H atoms were included in geometrically calculated positions, with C—H distances constrained to 0.98–1.00 Å. Methyl H atoms displacement parameters were set at Uiso(H) = 1.5Ueq(C). Hydroxy H atoms were located from a difference Fourier map and allowed to refine freely.

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
A view of the molecular structure of the two independent molecules (A and B) of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

A view along the c axis of the crystal packing of the title compound. The intermolecular hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).

Reaction scheme.
(-)-(2R,3S,4R,5R)-5-(1,3-Dithian-2-yl)-3-methyl-1-(triisopropylsilyloxy)hexane-2,4-diol top
Crystal data top
C20H42O3S2SiF(000) = 928
Mr = 422.74Dx = 1.124 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54178 Å
a = 15.9691 (4) ÅCell parameters from 8415 reflections
b = 8.3420 (2) Åθ = 2.8–70.9°
c = 19.1245 (5) ŵ = 2.51 mm1
β = 101.253 (2)°T = 124 K
V = 2498.68 (11) Å3Block, colourless
Z = 40.10 × 0.05 × 0.05 mm
Data collection top
Bruker APEXII CCD
diffractometer
9653 independent reflections
Radiation source: sealed tube8808 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ϕ and ω scansθmax = 71.8°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1919
Tmin = 0.860, Tmax = 0.882k = 1010
38635 measured reflectionsl = 2323
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0453P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9653 reflectionsΔρmax = 0.41 e Å3
501 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack x determined using 3771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.035 (8)
Crystal data top
C20H42O3S2SiV = 2498.68 (11) Å3
Mr = 422.74Z = 4
Monoclinic, P21Cu Kα radiation
a = 15.9691 (4) ŵ = 2.51 mm1
b = 8.3420 (2) ÅT = 124 K
c = 19.1245 (5) Å0.10 × 0.05 × 0.05 mm
β = 101.253 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
9653 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
8808 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.882Rint = 0.062
38635 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088Δρmax = 0.41 e Å3
S = 1.02Δρmin = 0.18 e Å3
9653 reflectionsAbsolute structure: Flack x determined using 3771 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
501 parametersAbsolute structure parameter: 0.035 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.16186 (6)0.07437 (9)0.13813 (4)0.03371 (19)
S20.12503 (5)0.30070 (9)0.01309 (4)0.02892 (17)
Si10.34129 (5)0.86798 (10)0.37531 (4)0.02346 (17)
O10.26097 (14)0.7796 (3)0.32190 (13)0.0346 (5)
O20.04565 (13)0.7418 (3)0.22348 (11)0.0246 (4)
O30.01352 (14)0.4290 (3)0.19173 (11)0.0231 (4)
C10.11141 (19)0.2611 (4)0.10346 (14)0.0228 (6)
H10.04880.25130.10260.027*
C20.0977 (2)0.0623 (4)0.07562 (17)0.0341 (7)
H2A0.11580.17360.08860.041*
H2B0.03720.05160.07990.041*
C30.1048 (2)0.0325 (4)0.00130 (16)0.0312 (7)
H3A0.16580.03710.00500.037*
H3B0.07460.11930.03140.037*
C40.0684 (2)0.1269 (4)0.02988 (16)0.0326 (7)
H4A0.00810.13290.02430.039*
H4B0.06880.13170.08150.039*
C50.14528 (18)0.4037 (3)0.15198 (14)0.0205 (6)
H50.12560.50390.12500.025*
C60.24314 (19)0.4086 (4)0.16968 (16)0.0284 (6)
H6A0.26200.51130.19220.043*
H6B0.26540.39680.12570.043*
H6C0.26450.32080.20240.043*
C70.10345 (17)0.3999 (3)0.21755 (14)0.0200 (6)
H70.11030.28970.23850.024*
C80.13915 (17)0.5211 (3)0.27627 (13)0.0188 (5)
H80.20100.49610.29320.023*
C90.0945 (2)0.4992 (4)0.33964 (15)0.0267 (6)
H9A0.03480.53320.32600.040*
H9B0.12340.56420.37980.040*
H9C0.09670.38600.35360.040*
C100.13291 (17)0.6938 (3)0.24864 (14)0.0189 (5)
H100.16320.69980.20760.023*
C110.17329 (18)0.8160 (3)0.30402 (15)0.0229 (6)
H11A0.16480.92580.28430.028*
H11B0.14710.80920.34680.028*
C120.4239 (2)0.8970 (4)0.31910 (18)0.0331 (7)
H120.44040.78630.30700.040*
C130.5064 (2)0.9745 (6)0.3577 (2)0.0504 (10)
H13A0.54760.97780.32580.076*
H13B0.53010.91170.40020.076*
H13C0.49451.08390.37170.076*
C140.3906 (3)0.9783 (6)0.2472 (2)0.0548 (11)
H14A0.38111.09250.25480.082*
H14B0.33660.92830.22430.082*
H14C0.43260.96610.21650.082*
C150.3824 (2)0.7206 (4)0.44862 (19)0.0364 (8)
H150.43220.77130.48080.044*
C160.4144 (3)0.5676 (5)0.4182 (3)0.0536 (11)
H16A0.43260.49040.45680.080*
H16B0.46270.59350.39560.080*
H16C0.36820.52090.38270.080*
C170.3148 (3)0.6832 (6)0.4934 (3)0.0612 (14)
H17A0.26500.63380.46310.092*
H17B0.29760.78280.51390.092*
H17C0.33890.60920.53200.092*
C180.30313 (19)1.0552 (4)0.41417 (16)0.0265 (6)
H180.24901.02570.42980.032*
C190.3641 (2)1.1173 (5)0.48091 (19)0.0394 (8)
H19A0.41771.15200.46800.059*
H19B0.37581.03150.51640.059*
H19C0.33771.20820.50090.059*
C200.2804 (2)1.1928 (4)0.36050 (19)0.0357 (8)
H20A0.25371.28010.38260.054*
H20B0.24061.15390.31830.054*
H20C0.33251.23230.34640.054*
S30.86997 (5)0.22386 (9)0.49223 (4)0.02930 (18)
S40.83329 (5)0.44672 (9)0.36602 (4)0.03153 (18)
Si20.62445 (5)0.36336 (10)0.15228 (4)0.02448 (17)
O40.70944 (13)0.2498 (3)0.17766 (11)0.0284 (5)
O50.92962 (13)0.2292 (3)0.26956 (12)0.0265 (4)
O60.96444 (13)0.0785 (3)0.30587 (11)0.0236 (4)
C210.87904 (18)0.2564 (3)0.40019 (14)0.0214 (6)
H210.94120.25890.39850.026*
C220.9035 (2)0.5798 (4)0.42560 (16)0.0311 (7)
H22A0.88800.69210.41210.037*
H22B0.96290.56230.41940.037*
C230.8996 (2)0.5564 (4)0.50376 (16)0.0281 (6)
H23A0.93400.64120.53220.034*
H23B0.83980.56900.50970.034*
C240.9324 (2)0.3933 (4)0.53254 (16)0.0325 (7)
H24A0.99180.38030.52530.039*
H24B0.93400.39120.58450.039*
C250.83857 (17)0.1149 (3)0.35346 (14)0.0210 (6)
H250.85800.01400.37990.025*
C260.74090 (18)0.1173 (4)0.34094 (16)0.0286 (6)
H26A0.71850.01350.32180.043*
H26B0.72270.13770.38620.043*
H26C0.71900.20220.30680.043*
C270.87422 (17)0.1132 (3)0.28443 (14)0.0208 (6)
H270.86820.22350.26360.025*
C280.83230 (18)0.0047 (3)0.22688 (14)0.0203 (5)
H280.76980.02010.21600.024*
C290.8661 (2)0.0222 (4)0.15776 (15)0.0312 (7)
H29A0.92590.01170.16490.047*
H29B0.83200.04070.11910.047*
H29C0.86190.13620.14520.047*
C300.84170 (17)0.1791 (3)0.25221 (14)0.0198 (5)
H300.81710.18820.29630.024*
C310.79599 (18)0.2985 (4)0.19808 (15)0.0234 (6)
H31A0.79910.40720.21930.028*
H31B0.82330.30150.15590.028*
C320.6343 (2)0.4814 (4)0.07042 (18)0.0355 (7)
H320.57760.53240.05190.043*
C330.6545 (2)0.3703 (6)0.01114 (17)0.0457 (9)
H33A0.66380.43530.02940.069*
H33B0.60650.29720.00450.069*
H33C0.70610.30800.02970.069*
C340.7010 (2)0.6176 (5)0.0870 (2)0.0431 (9)
H34A0.75750.57140.10510.065*
H34B0.68540.68930.12300.065*
H34C0.70220.67830.04330.065*
C350.5335 (2)0.2169 (4)0.13596 (18)0.0343 (7)
H350.51930.19320.18360.041*
C360.5558 (2)0.0553 (5)0.1054 (2)0.0487 (10)
H36A0.50710.01780.10170.073*
H36B0.60550.00860.13710.073*
H36C0.56900.07210.05800.073*
C370.4521 (2)0.2851 (5)0.0896 (2)0.0523 (11)
H37A0.46090.29910.04060.078*
H37B0.43880.38900.10870.078*
H37C0.40460.21090.08970.078*
C380.6164 (2)0.5038 (5)0.2277 (2)0.0392 (8)
H380.67160.56360.23880.047*
C390.5455 (3)0.6314 (6)0.2079 (3)0.0607 (12)
H39A0.48940.57960.20190.091*
H39B0.55120.68400.16330.091*
H39C0.55080.71150.24610.091*
C400.6076 (3)0.4152 (6)0.2961 (2)0.0589 (12)
H40A0.60940.49270.33490.088*
H40B0.65470.33870.30890.088*
H40C0.55310.35740.28830.088*
H1010.007 (2)0.392 (5)0.2137 (18)0.018 (10)*
H1020.988 (2)0.124 (5)0.2815 (19)0.030 (10)*
H1000.022 (3)0.665 (5)0.210 (2)0.028 (10)*
H1030.955 (3)0.150 (6)0.286 (2)0.041 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0478 (5)0.0229 (4)0.0248 (4)0.0026 (3)0.0070 (3)0.0004 (3)
S20.0402 (4)0.0279 (4)0.0189 (3)0.0032 (3)0.0062 (3)0.0004 (3)
Si10.0160 (3)0.0193 (4)0.0325 (4)0.0007 (3)0.0017 (3)0.0017 (3)
O10.0169 (10)0.0278 (12)0.0539 (14)0.0016 (9)0.0058 (9)0.0108 (10)
O20.0193 (10)0.0245 (11)0.0268 (10)0.0047 (9)0.0032 (8)0.0011 (9)
O30.0185 (10)0.0284 (11)0.0216 (10)0.0023 (9)0.0020 (8)0.0012 (9)
C10.0259 (15)0.0237 (15)0.0185 (13)0.0004 (11)0.0034 (10)0.0011 (11)
C20.048 (2)0.0244 (16)0.0268 (16)0.0052 (14)0.0002 (13)0.0017 (12)
C30.0356 (18)0.0297 (17)0.0274 (15)0.0036 (14)0.0041 (12)0.0068 (13)
C40.0422 (19)0.0329 (17)0.0201 (14)0.0031 (14)0.0001 (12)0.0044 (13)
C50.0207 (14)0.0191 (14)0.0207 (12)0.0003 (10)0.0018 (10)0.0008 (10)
C60.0217 (15)0.0313 (16)0.0324 (15)0.0026 (12)0.0055 (11)0.0052 (12)
C70.0180 (13)0.0208 (14)0.0195 (13)0.0003 (10)0.0005 (9)0.0018 (10)
C80.0183 (13)0.0197 (13)0.0173 (12)0.0004 (10)0.0007 (10)0.0019 (10)
C90.0306 (16)0.0290 (16)0.0199 (13)0.0049 (13)0.0037 (11)0.0011 (12)
C100.0166 (13)0.0201 (13)0.0185 (12)0.0023 (10)0.0000 (9)0.0030 (10)
C110.0174 (13)0.0221 (14)0.0278 (14)0.0013 (10)0.0006 (10)0.0006 (11)
C120.0240 (15)0.0360 (19)0.0398 (17)0.0020 (13)0.0077 (12)0.0019 (14)
C130.0262 (19)0.064 (3)0.064 (2)0.0159 (18)0.0150 (17)0.010 (2)
C140.045 (2)0.079 (3)0.044 (2)0.008 (2)0.0183 (17)0.018 (2)
C150.0236 (15)0.0299 (17)0.050 (2)0.0006 (13)0.0059 (14)0.0114 (15)
C160.044 (2)0.0252 (18)0.080 (3)0.0043 (16)0.017 (2)0.0063 (19)
C170.039 (2)0.067 (3)0.073 (3)0.002 (2)0.000 (2)0.049 (2)
C180.0237 (14)0.0247 (15)0.0298 (15)0.0001 (12)0.0020 (11)0.0003 (12)
C190.038 (2)0.039 (2)0.0381 (19)0.0020 (16)0.0016 (14)0.0084 (15)
C200.0358 (18)0.0216 (15)0.0456 (19)0.0034 (13)0.0023 (14)0.0001 (14)
S30.0408 (4)0.0261 (4)0.0210 (3)0.0026 (3)0.0060 (3)0.0025 (3)
S40.0409 (4)0.0210 (4)0.0263 (4)0.0013 (3)0.0093 (3)0.0033 (3)
Si20.0200 (4)0.0211 (4)0.0301 (4)0.0008 (3)0.0004 (3)0.0005 (3)
O40.0210 (10)0.0232 (10)0.0368 (11)0.0011 (8)0.0046 (8)0.0013 (9)
O50.0189 (10)0.0244 (11)0.0334 (11)0.0024 (9)0.0013 (8)0.0020 (9)
O60.0175 (10)0.0281 (11)0.0238 (10)0.0033 (8)0.0006 (8)0.0012 (8)
C210.0246 (14)0.0219 (14)0.0169 (12)0.0000 (11)0.0025 (10)0.0034 (11)
C220.0375 (18)0.0256 (15)0.0280 (15)0.0084 (13)0.0012 (12)0.0022 (12)
C230.0294 (16)0.0298 (16)0.0257 (15)0.0018 (13)0.0072 (12)0.0044 (12)
C240.0434 (19)0.0316 (17)0.0198 (14)0.0005 (14)0.0011 (12)0.0033 (12)
C250.0205 (13)0.0197 (14)0.0214 (13)0.0010 (11)0.0006 (10)0.0015 (11)
C260.0220 (14)0.0311 (16)0.0330 (15)0.0054 (13)0.0063 (11)0.0031 (13)
C270.0190 (13)0.0203 (14)0.0211 (13)0.0006 (11)0.0008 (10)0.0046 (11)
C280.0203 (13)0.0209 (14)0.0187 (12)0.0029 (11)0.0010 (10)0.0021 (10)
C290.0395 (18)0.0332 (17)0.0199 (14)0.0095 (14)0.0030 (12)0.0034 (12)
C300.0175 (14)0.0199 (14)0.0209 (13)0.0004 (10)0.0014 (10)0.0021 (10)
C310.0205 (14)0.0220 (13)0.0259 (13)0.0005 (11)0.0001 (10)0.0005 (11)
C320.0297 (17)0.0385 (19)0.0366 (17)0.0037 (14)0.0025 (13)0.0103 (15)
C330.042 (2)0.064 (3)0.0306 (16)0.001 (2)0.0052 (13)0.0022 (18)
C340.036 (2)0.038 (2)0.055 (2)0.0006 (16)0.0095 (16)0.0163 (17)
C350.0280 (16)0.0317 (17)0.0405 (18)0.0092 (14)0.0005 (13)0.0033 (14)
C360.037 (2)0.0311 (19)0.070 (3)0.0056 (16)0.0091 (18)0.0081 (18)
C370.0233 (18)0.047 (2)0.080 (3)0.0008 (16)0.0066 (17)0.010 (2)
C380.0318 (18)0.039 (2)0.047 (2)0.0044 (15)0.0089 (14)0.0155 (16)
C390.048 (3)0.050 (3)0.087 (3)0.008 (2)0.019 (2)0.025 (2)
C400.058 (3)0.081 (3)0.040 (2)0.018 (2)0.0149 (18)0.019 (2)
Geometric parameters (Å, º) top
S1—C21.816 (3)S3—C241.813 (3)
S1—C11.819 (3)S3—C211.814 (3)
S2—C11.814 (3)S4—C221.813 (3)
S2—C41.818 (3)S4—C211.815 (3)
Si1—O11.649 (2)Si2—O41.649 (2)
Si1—C121.873 (3)Si2—C351.877 (3)
Si1—C181.882 (3)Si2—C321.882 (3)
Si1—C151.884 (3)Si2—C381.883 (4)
O1—C111.408 (3)O4—C311.420 (3)
O2—C101.439 (3)O5—C301.440 (3)
O2—H1000.76 (4)O5—H1030.80 (5)
O3—C71.445 (3)O6—C271.448 (3)
O3—H1010.66 (4)O6—H1020.76 (4)
C1—C51.540 (4)C21—C251.544 (4)
C1—H11.0000C21—H211.0000
C2—C31.518 (4)C22—C231.520 (4)
C2—H2A0.9900C22—H22A0.9900
C2—H2B0.9900C22—H22B0.9900
C3—C41.511 (5)C23—C241.523 (5)
C3—H3A0.9900C23—H23A0.9900
C3—H3B0.9900C23—H23B0.9900
C4—H4A0.9900C24—H24A0.9900
C4—H4B0.9900C24—H24B0.9900
C5—C71.532 (4)C25—C261.531 (4)
C5—C61.533 (4)C25—C271.537 (4)
C5—H51.0000C25—H251.0000
C6—H6A0.9800C26—H26A0.9800
C6—H6B0.9800C26—H26B0.9800
C6—H6C0.9800C26—H26C0.9800
C7—C81.536 (4)C27—C281.529 (4)
C7—H71.0000C27—H271.0000
C8—C101.531 (4)C28—C301.531 (4)
C8—C91.533 (4)C28—C291.539 (4)
C8—H81.0000C28—H281.0000
C9—H9A0.9800C29—H29A0.9800
C9—H9B0.9800C29—H29B0.9800
C9—H9C0.9800C29—H29C0.9800
C10—C111.520 (4)C30—C311.518 (4)
C10—H101.0000C30—H301.0000
C11—H11A0.9900C31—H31A0.9900
C11—H11B0.9900C31—H31B0.9900
C12—C131.522 (5)C32—C331.547 (5)
C12—C141.533 (5)C32—C341.547 (5)
C12—H121.0000C32—H321.0000
C13—H13A0.9800C33—H33A0.9800
C13—H13B0.9800C33—H33B0.9800
C13—H13C0.9800C33—H33C0.9800
C14—H14A0.9800C34—H34A0.9800
C14—H14B0.9800C34—H34B0.9800
C14—H14C0.9800C34—H34C0.9800
C15—C161.531 (5)C35—C371.533 (5)
C15—C171.536 (6)C35—C361.538 (5)
C15—H151.0000C35—H351.0000
C16—H16A0.9800C36—H36A0.9800
C16—H16B0.9800C36—H36B0.9800
C16—H16C0.9800C36—H36C0.9800
C17—H17A0.9800C37—H37A0.9800
C17—H17B0.9800C37—H37B0.9800
C17—H17C0.9800C37—H37C0.9800
C18—C201.535 (4)C38—C401.533 (6)
C18—C191.536 (4)C38—C391.546 (6)
C18—H181.0000C38—H381.0000
C19—H19A0.9800C39—H39A0.9800
C19—H19B0.9800C39—H39B0.9800
C19—H19C0.9800C39—H39C0.9800
C20—H20A0.9800C40—H40A0.9800
C20—H20B0.9800C40—H40B0.9800
C20—H20C0.9800C40—H40C0.9800
C2—S1—C198.33 (15)C24—S3—C2198.88 (14)
C1—S2—C498.28 (14)C22—S4—C2198.81 (14)
O1—Si1—C12104.60 (14)O4—Si2—C35103.93 (14)
O1—Si1—C18110.06 (13)O4—Si2—C32110.38 (14)
C12—Si1—C18115.97 (15)C35—Si2—C32112.94 (16)
O1—Si1—C15106.58 (14)O4—Si2—C38107.91 (14)
C12—Si1—C15109.22 (15)C35—Si2—C38111.46 (16)
C18—Si1—C15109.91 (15)C32—Si2—C38109.95 (17)
C11—O1—Si1132.1 (2)C31—O4—Si2128.14 (19)
C10—O2—H100105 (3)C30—O5—H103104 (3)
C7—O3—H101107 (3)C27—O6—H102108 (3)
C5—C1—S2109.89 (19)C25—C21—S3110.08 (19)
C5—C1—S1111.31 (19)C25—C21—S4111.50 (18)
S2—C1—S1112.11 (16)S3—C21—S4112.18 (16)
C5—C1—H1107.8C25—C21—H21107.6
S2—C1—H1107.8S3—C21—H21107.6
S1—C1—H1107.8S4—C21—H21107.6
C3—C2—S1113.3 (2)C23—C22—S4113.6 (2)
C3—C2—H2A108.9C23—C22—H22A108.8
S1—C2—H2A108.9S4—C22—H22A108.8
C3—C2—H2B108.9C23—C22—H22B108.8
S1—C2—H2B108.9S4—C22—H22B108.8
H2A—C2—H2B107.7H22A—C22—H22B107.7
C4—C3—C2113.5 (3)C22—C23—C24113.1 (3)
C4—C3—H3A108.9C22—C23—H23A109.0
C2—C3—H3A108.9C24—C23—H23A109.0
C4—C3—H3B108.9C22—C23—H23B109.0
C2—C3—H3B108.9C24—C23—H23B109.0
H3A—C3—H3B107.7H23A—C23—H23B107.8
C3—C4—S2114.5 (2)C23—C24—S3114.9 (2)
C3—C4—H4A108.6C23—C24—H24A108.5
S2—C4—H4A108.6S3—C24—H24A108.5
C3—C4—H4B108.6C23—C24—H24B108.5
S2—C4—H4B108.6S3—C24—H24B108.5
H4A—C4—H4B107.6H24A—C24—H24B107.5
C7—C5—C6114.1 (2)C26—C25—C27113.7 (2)
C7—C5—C1108.6 (2)C26—C25—C21112.3 (2)
C6—C5—C1112.1 (2)C27—C25—C21108.7 (2)
C7—C5—H5107.2C26—C25—H25107.2
C6—C5—H5107.2C27—C25—H25107.2
C1—C5—H5107.2C21—C25—H25107.2
C5—C6—H6A109.5C25—C26—H26A109.5
C5—C6—H6B109.5C25—C26—H26B109.5
H6A—C6—H6B109.5H26A—C26—H26B109.5
C5—C6—H6C109.5C25—C26—H26C109.5
H6A—C6—H6C109.5H26A—C26—H26C109.5
H6B—C6—H6C109.5H26B—C26—H26C109.5
O3—C7—C5106.2 (2)O6—C27—C28110.3 (2)
O3—C7—C8110.0 (2)O6—C27—C25105.9 (2)
C5—C7—C8115.2 (2)C28—C27—C25116.2 (2)
O3—C7—H7108.4O6—C27—H27108.1
C5—C7—H7108.4C28—C27—H27108.1
C8—C7—H7108.4C25—C27—H27108.1
C10—C8—C9112.1 (2)C27—C28—C30112.4 (2)
C10—C8—C7112.2 (2)C27—C28—C29110.3 (2)
C9—C8—C7109.6 (2)C30—C28—C29112.4 (2)
C10—C8—H8107.6C27—C28—H28107.1
C9—C8—H8107.6C30—C28—H28107.1
C7—C8—H8107.6C29—C28—H28107.1
C8—C9—H9A109.5C28—C29—H29A109.5
C8—C9—H9B109.5C28—C29—H29B109.5
H9A—C9—H9B109.5H29A—C29—H29B109.5
C8—C9—H9C109.5C28—C29—H29C109.5
H9A—C9—H9C109.5H29A—C29—H29C109.5
H9B—C9—H9C109.5H29B—C29—H29C109.5
O2—C10—C11107.3 (2)O5—C30—C31106.5 (2)
O2—C10—C8111.7 (2)O5—C30—C28112.3 (2)
C11—C10—C8113.6 (2)C31—C30—C28113.8 (2)
O2—C10—H10108.0O5—C30—H30108.0
C11—C10—H10108.0C31—C30—H30108.0
C8—C10—H10108.0C28—C30—H30108.0
O1—C11—C10106.9 (2)O4—C31—C30108.2 (2)
O1—C11—H11A110.3O4—C31—H31A110.1
C10—C11—H11A110.3C30—C31—H31A110.1
O1—C11—H11B110.3O4—C31—H31B110.1
C10—C11—H11B110.3C30—C31—H31B110.1
H11A—C11—H11B108.6H31A—C31—H31B108.4
C13—C12—C14111.3 (3)C33—C32—C34110.8 (3)
C13—C12—Si1114.6 (2)C33—C32—Si2111.1 (3)
C14—C12—Si1114.3 (2)C34—C32—Si2112.3 (2)
C13—C12—H12105.2C33—C32—H32107.4
C14—C12—H12105.2C34—C32—H32107.4
Si1—C12—H12105.2Si2—C32—H32107.4
C12—C13—H13A109.5C32—C33—H33A109.5
C12—C13—H13B109.5C32—C33—H33B109.5
H13A—C13—H13B109.5H33A—C33—H33B109.5
C12—C13—H13C109.5C32—C33—H33C109.5
H13A—C13—H13C109.5H33A—C33—H33C109.5
H13B—C13—H13C109.5H33B—C33—H33C109.5
C12—C14—H14A109.5C32—C34—H34A109.5
C12—C14—H14B109.5C32—C34—H34B109.5
H14A—C14—H14B109.5H34A—C34—H34B109.5
C12—C14—H14C109.5C32—C34—H34C109.5
H14A—C14—H14C109.5H34A—C34—H34C109.5
H14B—C14—H14C109.5H34B—C34—H34C109.5
C16—C15—C17111.4 (3)C37—C35—C36109.8 (3)
C16—C15—Si1110.8 (3)C37—C35—Si2113.3 (3)
C17—C15—Si1111.5 (2)C36—C35—Si2113.9 (3)
C16—C15—H15107.6C37—C35—H35106.4
C17—C15—H15107.6C36—C35—H35106.4
Si1—C15—H15107.6Si2—C35—H35106.4
C15—C16—H16A109.5C35—C36—H36A109.5
C15—C16—H16B109.5C35—C36—H36B109.5
H16A—C16—H16B109.5H36A—C36—H36B109.5
C15—C16—H16C109.5C35—C36—H36C109.5
H16A—C16—H16C109.5H36A—C36—H36C109.5
H16B—C16—H16C109.5H36B—C36—H36C109.5
C15—C17—H17A109.5C35—C37—H37A109.5
C15—C17—H17B109.5C35—C37—H37B109.5
H17A—C17—H17B109.5H37A—C37—H37B109.5
C15—C17—H17C109.5C35—C37—H37C109.5
H17A—C17—H17C109.5H37A—C37—H37C109.5
H17B—C17—H17C109.5H37B—C37—H37C109.5
C20—C18—C19109.4 (3)C40—C38—C39110.9 (4)
C20—C18—Si1114.1 (2)C40—C38—Si2112.7 (3)
C19—C18—Si1114.0 (2)C39—C38—Si2113.4 (3)
C20—C18—H18106.2C40—C38—H38106.4
C19—C18—H18106.2C39—C38—H38106.4
Si1—C18—H18106.2Si2—C38—H38106.4
C18—C19—H19A109.5C38—C39—H39A109.5
C18—C19—H19B109.5C38—C39—H39B109.5
H19A—C19—H19B109.5H39A—C39—H39B109.5
C18—C19—H19C109.5C38—C39—H39C109.5
H19A—C19—H19C109.5H39A—C39—H39C109.5
H19B—C19—H19C109.5H39B—C39—H39C109.5
C18—C20—H20A109.5C38—C40—H40A109.5
C18—C20—H20B109.5C38—C40—H40B109.5
H20A—C20—H20B109.5H40A—C40—H40B109.5
C18—C20—H20C109.5C38—C40—H40C109.5
H20A—C20—H20C109.5H40A—C40—H40C109.5
H20B—C20—H20C109.5H40B—C40—H40C109.5
C12—Si1—O1—C11128.0 (3)C35—Si2—O4—C31178.8 (2)
C18—Si1—O1—C112.8 (3)C32—Si2—O4—C3159.8 (3)
C15—Si1—O1—C11116.4 (3)C38—Si2—O4—C3160.4 (3)
C4—S2—C1—C5173.4 (2)C24—S3—C21—C25173.8 (2)
C4—S2—C1—S162.28 (19)C24—S3—C21—S461.44 (19)
C2—S1—C1—C5173.0 (2)C22—S4—C21—C25173.3 (2)
C2—S1—C1—S263.40 (19)C22—S4—C21—S362.73 (19)
C1—S1—C2—C361.1 (3)C21—S4—C22—C2361.1 (3)
S1—C2—C3—C465.9 (4)S4—C22—C23—C2465.4 (3)
C2—C3—C4—S265.3 (4)C22—C23—C24—S364.5 (3)
C1—S2—C4—C359.6 (3)C21—S3—C24—C2358.9 (3)
S2—C1—C5—C7158.25 (18)S3—C21—C25—C2673.4 (3)
S1—C1—C5—C777.0 (2)S4—C21—C25—C2651.8 (3)
S2—C1—C5—C674.8 (3)S3—C21—C25—C27159.84 (18)
S1—C1—C5—C650.0 (3)S4—C21—C25—C2775.0 (2)
C6—C5—C7—O3168.4 (2)C26—C25—C27—O6168.7 (2)
C1—C5—C7—O365.7 (3)C21—C25—C27—O665.3 (3)
C6—C5—C7—C846.4 (3)C26—C25—C27—C2845.9 (3)
C1—C5—C7—C8172.3 (2)C21—C25—C27—C28171.9 (2)
O3—C7—C8—C1062.8 (3)O6—C27—C28—C3059.3 (3)
C5—C7—C8—C1057.2 (3)C25—C27—C28—C3061.1 (3)
O3—C7—C8—C962.5 (3)O6—C27—C28—C2967.0 (3)
C5—C7—C8—C9177.5 (2)C25—C27—C28—C29172.6 (2)
C9—C8—C10—O261.4 (3)C27—C28—C30—O562.6 (3)
C7—C8—C10—O262.4 (3)C29—C28—C30—O562.6 (3)
C9—C8—C10—C1160.2 (3)C27—C28—C30—C31176.3 (2)
C7—C8—C10—C11176.0 (2)C29—C28—C30—C3158.5 (3)
Si1—O1—C11—C10177.0 (2)Si2—O4—C31—C30149.5 (2)
O2—C10—C11—O1172.9 (2)O5—C30—C31—O4178.0 (2)
C8—C10—C11—O163.0 (3)C28—C30—C31—O453.7 (3)
O1—Si1—C12—C13178.7 (3)O4—Si2—C32—C3352.6 (3)
C18—Si1—C12—C1359.9 (3)C35—Si2—C32—C3363.3 (3)
C15—Si1—C12—C1364.9 (3)C38—Si2—C32—C33171.5 (2)
O1—Si1—C12—C1451.1 (3)O4—Si2—C32—C3472.2 (3)
C18—Si1—C12—C1470.3 (3)C35—Si2—C32—C34171.9 (3)
C15—Si1—C12—C14164.9 (3)C38—Si2—C32—C3446.7 (3)
O1—Si1—C15—C1661.1 (3)O4—Si2—C35—C37161.4 (3)
C12—Si1—C15—C1651.4 (3)C32—Si2—C35—C3741.7 (3)
C18—Si1—C15—C16179.6 (2)C38—Si2—C35—C3782.6 (3)
O1—Si1—C15—C1763.6 (3)O4—Si2—C35—C3635.0 (3)
C12—Si1—C15—C17176.1 (3)C32—Si2—C35—C3684.7 (3)
C18—Si1—C15—C1755.6 (3)C38—Si2—C35—C36150.9 (3)
O1—Si1—C18—C2071.4 (3)O4—Si2—C38—C4059.9 (3)
C12—Si1—C18—C2047.1 (3)C35—Si2—C38—C4053.6 (3)
C15—Si1—C18—C20171.5 (2)C32—Si2—C38—C40179.6 (3)
O1—Si1—C18—C19161.9 (2)O4—Si2—C38—C39173.1 (3)
C12—Si1—C18—C1979.6 (3)C35—Si2—C38—C3973.4 (3)
C15—Si1—C18—C1944.8 (3)C32—Si2—C38—C3952.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H100···O30.76 (4)2.00 (4)2.705 (4)154 (5)
O5—H103···O60.81 (5)1.94 (5)2.689 (3)153 (5)
O3—H101···O5i0.66 (3)2.11 (4)2.751 (3)167 (5)
O6—H102···O2ii0.76 (4)1.93 (4)2.685 (3)175 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H100···O30.76 (4)2.00 (4)2.705 (4)154 (5)
O5—H103···O60.81 (5)1.94 (5)2.689 (3)153 (5)
O3—H101···O5i0.66 (3)2.11 (4)2.751 (3)167 (5)
O6—H102···O2ii0.76 (4)1.93 (4)2.685 (3)175 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1, y1, z.
 

Acknowledgements

The authors thank the American Crystallographic Association Summer School and the University of Notre Dame for the use of their X-ray diffraction facilities. We also thank NIH NIGMS RISE (5R25GM061151–12) and SCORE (5SC1GM084826–04) for financial support.

References

First citationBruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDávila, W., Torres, W. & Prieto, J. A. (2007). Tetrahedron, 63, 8218–8226.  PubMed Google Scholar
First citationIde, M. & Nakata, M. (1999). Bull. Chem. Soc. Jpn, 72, 2491–2499.  Web of Science CrossRef CAS Google Scholar
First citationIde, M., Tsunashima, K. & Nakata, M. (1999). Bull. Chem. Soc. Jpn, 72, 2501–2507.  Web of Science CrossRef CAS Google Scholar
First citationJansen, R., Washausen, P., Kunze, B., Reichenbach, H. & Höfle, G. (1999). Eur. J. Org. Chem. pp. 1085–1089.  CrossRef Google Scholar
First citationKunze, B., Jansen, R., Höfle, G. & Reichenbach, H. (1994). J. Antibiot. 47, 881–886.  CrossRef CAS PubMed Google Scholar
First citationLi, J. & Menche, D. (2009). Synthesis, 2009, 2293–2315.  Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodríguez, D., Mulero, M. & Prieto, J. A. (2006). J. Org. Chem. 71, 5826–5829.  PubMed Google Scholar
First citationRodríguez-Berríos, R., Torres, G. & Prieto, J. A. (2011). Tetrahedron, 67, 830–836.  PubMed Google Scholar
First citationRohr, J. (2000). Angew. Chem. Int. Ed. 39, 2847–2849.  CrossRef CAS Google Scholar
First citationRychnovsky, S. D. & Skalitzky, D. J. (1990). Tetrahedron Lett. 31, 945–948.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTorres, W., Rodríguez, R. R. & Prieto, J. A. (2009). J. Org. Chem. 74, 2447–2451.  Web of Science CrossRef PubMed CAS Google Scholar
First citationValentín, E. M., Mulero, M. & Prieto, J. A. (2012). Tetrahedron Lett. 53, 2199–2201.  PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1285-o1286
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds