organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1295-o1296

Crystal structure of methyl 1-methyl-3,5-di­phenyl-7-tosyl-3,6,7,11b-tetra­hydro­pyrazolo­[4′,3′:5,6]pyrano[3,4-c]quinoline-5a(5H)-carboxyl­ate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: gunaunom@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 6 November 2014; accepted 17 November 2014; online 29 November 2014)

In the title compound, C35H31N3O5S, the piperidine ring adopts an envelope conformation, with the methine C atom as the flap, and the pyran ring adopts a sofa conformation. The mean planes of these two rings are almost normal to one another, making a dihedral angle of 85.96 (5)°. The two phenyl rings, one attached to the pyrazole ring and the other to the pyran ring, are inclined to one another by 65.41 (11)°. They are inclined to the mean planes of the rings to which they are attached by 12.59 (11) and 70.09 (9)°, respectively. There is an intra­molecular C—H⋯π inter­action involving the tosyl­ate methyl group and the phenyl ring attached to the pyrazole ring. In the crystal, mol­ecules are linked by C—H⋯π inter­actions, forming ribbons parallel to (10-2). The ribbons are linked by slipped parallel ππ inter­actions involving inversion-related pyrazole rings [inter-centroid distance = 3.672 (2) Å], forming slabs parallel to (001). A preliminary report of this structure has been published [Bakthadoss et al. (2014[Bakthadoss, M., Devaraj, A. & Kannan, D. (2014). Eur. J. Org. Chem. pp. 1505-1513.]). Eur. J. Org. Chem. pp. 1505–1513].

1. Related literature

For biological activity of sulfonamide compounds, see: Genç et al. (2008[Genç, Y., Özkanca, R. & Bekdemir, Y. (2008). Ann. Clin. Microbiol. Antimicrob. 7, 17-22.]); Özbek et al. (2007[Özbek, N., Katırcıoğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105-5109.]); Briganti et al. (1997[Briganti, F., Scozzafava, A. & Supuran, C. T. (1997). Eur. J. Med. Chem. 32, 901-910.]); Borne et al. (1974[Borne, R. F., Peden, R. L., Waters, I. W., Weiner, M., Jordan, R. & Coats, E. A. (1974). J. Pharm. Sci. 63, 615-617.]); De Clercq (2001[De Clercq, E. (2001). Curr. Med. Chem. 8, 1543-1572.]). For details of the Thrope–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For a preliminary report of this structure, see: Bakthadoss et al. (2014[Bakthadoss, M., Devaraj, A. & Kannan, D. (2014). Eur. J. Org. Chem. pp. 1505-1513.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C35H31N3O5S

  • Mr = 605.69

  • Triclinic, [P \overline 1]

  • a = 10.781 (5) Å

  • b = 11.682 (5) Å

  • c = 14.560 (5) Å

  • α = 112.708 (5)°

  • β = 91.908 (5)°

  • γ = 113.180 (5)°

  • V = 1517.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.16 mm−1

  • T = 293 K

  • 0.25 × 0.20 × 0.20 mm

2.2. Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.983

  • 23138 measured reflections

  • 6308 independent reflections

  • 5070 reflections with I > 2σ(I)

  • Rint = 0.028

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.118

  • S = 1.04

  • 6308 reflections

  • 406 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg4, Cg6 and Cg7 are the centroids of rings C2–C7, C20–C25 and C26–C31, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1CCg7 0.96 2.80 3.682 (4) 154
C29—H29⋯Cg6i 0.93 2.94 3.734 (3) 144
C35—H35BCg4ii 0.96 2.97 3.853 (4) 154
Symmetry codes: (i) -x+2, -y+3, -z+1; (ii) x, y+1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

Sulfonamides are widely used as antimicrobial (Genç et al., 2008; Özbek et al., 2007), antifungal (Briganti et al., 1997), anti-inflammatory (Borne et al., 1974) and antiviral agents as well as HIV protease inhibitors (De Clercq et al., 2001). In view of their importance, a series of such compounds were synthesized and the crystal structure of the title compound was briefly reported (Bakthadoss et al., 2014). Herein we report on the full details of the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. Atom S1 has a distorted tetrahedral geometry, with the O1—S1—O2 [119.33 (1)°] and N3—S1—C5 [103.46 (1)°] bond angles deviating from the ideal tetrahedral values which is attributed to the Thrope-Ingold effect (Bassindale et al., 1984). The sum of the bond angles around atom N3 (359.22 (2)°) indicates that N3 is sp2 hybridized. The pyridine ring (N3/C8—C12) adopts an envelop conformation with atom C10 as the flap; it is displaced by -0.352 (2) Å from the mean formed by the remaining ring atoms. The pyran ring (C9/C10/C17/C18/O3/C19) adopts a sofa conformation [puckering parameters: q2 = 0.434 (2) Å, q3 = 0.358 (2) Å, ϕ2 = -19.64 (22) °]. The mean planes of these two rings are almost normal to one another with a dihedral angle of 85.96 (5)°. The two different phenyl rings (C26-C31 and C20-C25), attached to the pyrazole (N1/N2/C32/C17/C18) and pyran rings, respectively, are inclined to the mean planes of the rings to which they are attached by 12.59 (11) and 70.09 (9) °, respectively. They are inclined to one another by 65.41 (11) °. There is an intramolecular C-H···π interaction (Table 1) involving the tosylate methyl group, C1, and the phenyl ring (C26-C31) attached to the pyrazole ring.

In the crystal, molecules are linked by C-H···π interactions (Table 1) forming ribbons lying parallel to (102); see Fig. 2. The ribbons are linked via slipped parallel π-π interactions involving inversion related pyrazole rings [Fig. 3; Cg1···Cg1i = 3.672((2) Å; normal distance = 3.565 (1) Å, slippage = 0.882 Å; Cg1 centroid of ring (N1/N2/C18/C17/C32); symmetry code: (i) -x+1, -y+3, -z+1] forming slabs parallel to (001).

Related literature top

For biological activity of sulfonamide compounds, see: Genç et al. (2008); Özbek et al. (2007); Briganti et al. (1997); Borne et al. (1974); De Clercq (2001). For details of the Thrope–Ingold effect, see: Bassindale (1984). For a preliminary report of this structure, see: Bakthadoss et al. (2014).

Experimental top

A mixture of methyl (2E)-2-{[N-(2-formylphenyl)(4-methylbenzene) sulfonamido]methyl}-3-phenylprop-2-enoate (0.450 g, 1 mmol) and 3-methyl-1-phenyl-4,5-dihydro-1H-pyrazol-5-one (0.174 g, 1 mmol) was placed in a round bottom flask and heated at 453 K for 1 h. After completion of the reaction, as indicated by TLC, the crude product was washed with 5 ml of an ethylacetate/hexane mixture (ratio 1:49) which successfully provided the pure title product as a colourless solid in 96% yield (0.58 g). Diffraction quality crystals were obtained by slow evaporation from an ethyl acetate solution.

Refinement top

Atoms H10, H19 were located in a difference Fourier map and freely refined. The other C-bound H atoms were positioned geometrically and treated as riding atoms, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level (H atoms have been omitted for clarity).

A partial view along the b axis of the crystal packing of the title compound, showing the π-π interaction (red circles represent the centroids of the pyrazole rings; H atoms have been omitted for clarity).

A view along the c axis of the crystal packing of the title compound, showing the C—H···π interactions as dashed lines (H atoms as silver balls; see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
Methyl 1-methyl-3,5-diphenyl-7-tosyl-3,6,7,11b-tetrahydropyrazolo[4',3':5,6]pyrano[3,4-c]quinoline-5a(5H)-carboxylate top
Crystal data top
C35H31N3O5SZ = 2
Mr = 605.69F(000) = 636
Triclinic, P1Dx = 1.326 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.781 (5) ÅCell parameters from 8834 reflections
b = 11.682 (5) Åθ = 2.1–31.2°
c = 14.560 (5) ŵ = 0.16 mm1
α = 112.708 (5)°T = 293 K
β = 91.908 (5)°Block, colourless
γ = 113.180 (5)°0.25 × 0.20 × 0.20 mm
V = 1517.5 (11) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6308 independent reflections
Radiation source: fine-focus sealed tube5070 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω and ϕ scanθmax = 26.6°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.979, Tmax = 0.983k = 1414
23138 measured reflectionsl = 1818
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0517P)2 + 0.4727P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6308 reflectionsΔρmax = 0.29 e Å3
406 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (12)
Crystal data top
C35H31N3O5Sγ = 113.180 (5)°
Mr = 605.69V = 1517.5 (11) Å3
Triclinic, P1Z = 2
a = 10.781 (5) ÅMo Kα radiation
b = 11.682 (5) ŵ = 0.16 mm1
c = 14.560 (5) ÅT = 293 K
α = 112.708 (5)°0.25 × 0.20 × 0.20 mm
β = 91.908 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
6308 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5070 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.983Rint = 0.028
23138 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.118H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
6308 reflectionsΔρmin = 0.46 e Å3
406 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H100.3360 (16)1.4361 (17)0.3161 (12)0.040 (4)*
H190.5740 (16)1.5341 (17)0.3206 (12)0.039 (4)*
S10.28913 (5)0.93229 (4)0.10089 (4)0.05837 (16)
O30.63192 (11)1.40325 (11)0.34307 (8)0.0427 (3)
N20.44250 (14)1.28179 (15)0.50555 (10)0.0451 (3)
N10.56158 (13)1.32792 (14)0.47097 (10)0.0408 (3)
O50.39810 (15)1.50993 (13)0.17850 (9)0.0585 (3)
C100.33680 (16)1.34586 (16)0.28908 (11)0.0383 (3)
C180.53403 (16)1.35576 (15)0.39247 (11)0.0381 (3)
C80.42521 (16)1.19731 (15)0.15787 (12)0.0428 (4)
H8A0.44201.18260.09010.051*
H8B0.49771.19190.19470.051*
C110.19167 (16)1.23858 (17)0.23342 (12)0.0428 (4)
C260.68408 (17)1.33323 (16)0.51560 (12)0.0434 (4)
N30.29016 (14)1.08531 (14)0.14857 (12)0.0519 (4)
C90.43402 (16)1.34228 (15)0.21259 (11)0.0374 (3)
C320.34569 (16)1.28201 (17)0.44719 (12)0.0415 (3)
C190.58361 (16)1.45108 (15)0.27642 (11)0.0378 (3)
C120.17045 (17)1.10761 (18)0.16377 (12)0.0463 (4)
C200.69474 (16)1.48845 (15)0.21891 (11)0.0405 (3)
C170.39844 (16)1.32776 (15)0.37384 (11)0.0373 (3)
C340.39288 (18)1.38461 (17)0.13379 (12)0.0471 (4)
C310.6898 (2)1.31935 (19)0.60547 (13)0.0534 (4)
H310.61421.30670.63610.064*
O40.35987 (19)1.31515 (16)0.04410 (10)0.0804 (5)
O10.33189 (16)0.90828 (14)0.00616 (10)0.0696 (4)
C210.7437 (2)1.61657 (19)0.21789 (15)0.0584 (5)
H210.70501.67600.25010.070*
C330.20231 (19)1.2383 (2)0.46483 (16)0.0623 (5)
H33A0.19761.21240.52020.093*
H33B0.13911.16070.40410.093*
H33C0.17791.31350.48150.093*
C50.4190 (2)0.95070 (16)0.18862 (14)0.0535 (4)
C250.75349 (19)1.40223 (17)0.17003 (14)0.0540 (4)
H250.72151.31540.16940.065*
O20.16039 (16)0.83495 (14)0.10388 (15)0.0914 (5)
C160.08020 (19)1.2695 (2)0.24679 (15)0.0574 (5)
H160.09471.35810.29150.069*
C230.9079 (2)1.5709 (2)0.12211 (15)0.0671 (6)
H230.98001.59880.09030.080*
C130.03616 (19)1.0084 (2)0.11023 (14)0.0599 (5)
H130.02070.92060.06310.072*
C300.8089 (2)1.3243 (2)0.64975 (16)0.0653 (5)
H300.81271.31520.71040.078*
C280.9133 (2)1.3542 (3)0.5160 (2)0.0762 (6)
H280.98901.36610.48550.091*
C140.0727 (2)1.0410 (3)0.12734 (16)0.0709 (6)
H140.16200.97380.09260.085*
C240.8596 (2)1.4436 (2)0.12183 (15)0.0648 (5)
H240.89831.38440.08910.078*
C290.9205 (2)1.3424 (2)0.60559 (18)0.0706 (6)
H291.00031.34650.63600.085*
C270.7955 (2)1.3489 (2)0.46962 (17)0.0639 (5)
H270.79171.35580.40820.077*
C40.5298 (2)0.9284 (2)0.15784 (17)0.0696 (6)
H40.54000.90940.09110.084*
C20.6146 (3)0.9648 (2)0.32640 (18)0.0749 (6)
C60.4065 (3)0.9812 (2)0.28845 (17)0.0773 (7)
H60.33190.99700.30990.093*
C150.0524 (2)1.1702 (3)0.19444 (18)0.0717 (6)
H150.12701.19110.20480.086*
C220.8497 (2)1.6572 (2)0.16937 (18)0.0731 (6)
H220.88141.74330.16890.088*
C10.7210 (4)0.9729 (3)0.4012 (2)0.1103 (10)
H1A0.79040.95370.36760.165*
H1B0.67720.90620.42720.165*
H1C0.76331.06390.45660.165*
C30.6255 (3)0.9343 (3)0.2266 (2)0.0811 (7)
H30.69940.91730.20510.097*
C70.5029 (3)0.9882 (3)0.35505 (18)0.0877 (8)
H70.49351.00930.42210.105*
C350.3590 (3)1.5611 (3)0.1114 (2)0.0913 (8)
H35B0.36661.65180.15130.137*
H35A0.26531.49990.07410.137*
H35C0.41931.56520.06450.137*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0555 (3)0.0336 (2)0.0674 (3)0.00953 (19)0.0169 (2)0.0141 (2)
O30.0370 (6)0.0510 (6)0.0478 (6)0.0183 (5)0.0128 (5)0.0297 (5)
N20.0434 (8)0.0582 (8)0.0469 (7)0.0262 (7)0.0174 (6)0.0310 (7)
N10.0384 (7)0.0492 (7)0.0440 (7)0.0221 (6)0.0125 (6)0.0260 (6)
O50.0812 (9)0.0553 (7)0.0515 (7)0.0362 (7)0.0097 (6)0.0295 (6)
C100.0407 (8)0.0399 (8)0.0391 (8)0.0208 (7)0.0108 (6)0.0186 (6)
C180.0402 (8)0.0386 (7)0.0391 (8)0.0183 (7)0.0116 (6)0.0192 (6)
C80.0405 (9)0.0353 (8)0.0470 (9)0.0120 (7)0.0154 (7)0.0169 (7)
C110.0390 (9)0.0544 (9)0.0410 (8)0.0204 (7)0.0103 (7)0.0266 (7)
C260.0420 (9)0.0413 (8)0.0499 (9)0.0203 (7)0.0061 (7)0.0211 (7)
N30.0405 (8)0.0370 (7)0.0665 (9)0.0105 (6)0.0173 (7)0.0174 (7)
C90.0388 (8)0.0355 (7)0.0370 (7)0.0141 (6)0.0097 (6)0.0171 (6)
C320.0421 (9)0.0495 (9)0.0411 (8)0.0243 (7)0.0150 (7)0.0227 (7)
C190.0422 (9)0.0343 (7)0.0374 (7)0.0157 (7)0.0091 (6)0.0171 (6)
C120.0392 (9)0.0543 (9)0.0416 (8)0.0146 (7)0.0103 (7)0.0231 (7)
C200.0402 (8)0.0360 (7)0.0373 (8)0.0096 (6)0.0067 (6)0.0156 (6)
C170.0383 (8)0.0390 (7)0.0379 (7)0.0193 (6)0.0110 (6)0.0175 (6)
C340.0473 (10)0.0483 (9)0.0432 (9)0.0157 (8)0.0085 (7)0.0232 (7)
C310.0554 (11)0.0603 (11)0.0497 (10)0.0301 (9)0.0089 (8)0.0245 (8)
O40.1224 (14)0.0725 (9)0.0388 (7)0.0412 (9)0.0013 (8)0.0200 (7)
O10.0846 (10)0.0541 (8)0.0490 (7)0.0274 (7)0.0122 (7)0.0056 (6)
C210.0624 (12)0.0466 (9)0.0712 (12)0.0200 (9)0.0212 (10)0.0340 (9)
C330.0481 (11)0.0974 (15)0.0655 (12)0.0370 (11)0.0260 (9)0.0524 (11)
C50.0718 (12)0.0342 (8)0.0576 (10)0.0222 (8)0.0291 (9)0.0231 (7)
C250.0528 (10)0.0390 (8)0.0604 (10)0.0135 (8)0.0218 (8)0.0181 (8)
O20.0651 (10)0.0440 (8)0.1374 (15)0.0041 (7)0.0300 (10)0.0326 (9)
C160.0482 (11)0.0734 (12)0.0613 (11)0.0323 (10)0.0156 (9)0.0337 (10)
C230.0573 (12)0.0717 (13)0.0573 (11)0.0091 (10)0.0221 (9)0.0326 (10)
C130.0459 (10)0.0661 (12)0.0472 (10)0.0098 (9)0.0079 (8)0.0202 (9)
C300.0686 (13)0.0733 (13)0.0588 (11)0.0372 (11)0.0015 (10)0.0284 (10)
C280.0486 (12)0.0986 (17)0.1131 (19)0.0394 (12)0.0253 (12)0.0689 (15)
C140.0384 (10)0.0953 (17)0.0600 (12)0.0134 (10)0.0042 (9)0.0325 (12)
C240.0549 (11)0.0579 (11)0.0605 (11)0.0144 (9)0.0250 (9)0.0149 (9)
C290.0519 (12)0.0750 (13)0.0912 (15)0.0313 (11)0.0010 (11)0.0400 (12)
C270.0512 (11)0.0893 (14)0.0827 (14)0.0388 (11)0.0244 (10)0.0591 (12)
C40.0756 (14)0.0833 (14)0.0634 (12)0.0378 (12)0.0333 (11)0.0405 (11)
C20.1020 (18)0.0482 (11)0.0754 (14)0.0260 (11)0.0109 (13)0.0356 (10)
C60.123 (2)0.0769 (14)0.0718 (14)0.0663 (15)0.0543 (14)0.0453 (12)
C150.0422 (11)0.1032 (18)0.0780 (14)0.0350 (12)0.0131 (10)0.0444 (14)
C220.0742 (14)0.0611 (12)0.0874 (15)0.0142 (11)0.0269 (12)0.0508 (12)
C10.146 (3)0.0780 (17)0.106 (2)0.0447 (18)0.0054 (19)0.0468 (16)
C30.0771 (16)0.0935 (17)0.0934 (17)0.0399 (14)0.0352 (13)0.0570 (14)
C70.155 (3)0.0794 (15)0.0605 (13)0.0726 (18)0.0419 (15)0.0387 (12)
C350.134 (2)0.0933 (17)0.0816 (16)0.0638 (17)0.0154 (15)0.0578 (14)
Geometric parameters (Å, º) top
S1—O21.4217 (16)C33—H33B0.9600
S1—O11.4279 (15)C33—H33C0.9600
S1—N31.6442 (16)C5—C41.373 (3)
S1—C51.752 (2)C5—C61.382 (3)
O3—C181.3552 (18)C25—C241.384 (2)
O3—C191.4627 (18)C25—H250.9300
N2—C321.325 (2)C16—C151.382 (3)
N2—N11.3784 (18)C16—H160.9300
N1—C181.3567 (19)C23—C241.367 (3)
N1—C261.420 (2)C23—C221.369 (3)
O5—C341.329 (2)C23—H230.9300
O5—C351.453 (2)C13—C141.372 (3)
C10—C111.504 (2)C13—H130.9300
C10—C171.506 (2)C30—C291.365 (3)
C10—C91.555 (2)C30—H300.9300
C10—H100.977 (16)C28—C291.367 (3)
C18—C171.359 (2)C28—C271.385 (3)
C8—N31.483 (2)C28—H280.9300
C8—C91.529 (2)C14—C151.367 (3)
C8—H8A0.9700C14—H140.9300
C8—H8B0.9700C24—H240.9300
C11—C161.384 (2)C29—H290.9300
C11—C121.390 (2)C27—H270.9300
C26—C271.378 (3)C4—C31.376 (3)
C26—C311.382 (2)C4—H40.9300
N3—C121.422 (2)C2—C31.377 (3)
C9—C341.528 (2)C2—C71.380 (4)
C9—C191.567 (2)C2—C11.505 (4)
C32—C171.411 (2)C6—C71.354 (4)
C32—C331.491 (2)C6—H60.9300
C19—C201.505 (2)C15—H150.9300
C19—H190.983 (16)C22—H220.9300
C12—C131.398 (3)C1—H1A0.9600
C20—C251.379 (2)C1—H1B0.9600
C20—C211.384 (2)C1—H1C0.9600
C34—O41.189 (2)C3—H30.9300
C31—C301.387 (3)C7—H70.9300
C31—H310.9300C35—H35B0.9600
C21—C221.384 (3)C35—H35A0.9600
C21—H210.9300C35—H35C0.9600
C33—H33A0.9600
O2—S1—O1119.29 (10)H33A—C33—H33B109.5
O2—S1—N3108.19 (9)C32—C33—H33C109.5
O1—S1—N3108.89 (8)H33A—C33—H33C109.5
O2—S1—C5108.09 (11)H33B—C33—H33C109.5
O1—S1—C5107.78 (9)C4—C5—C6119.6 (2)
N3—S1—C5103.47 (8)C4—C5—S1120.53 (15)
C18—O3—C19111.44 (12)C6—C5—S1119.75 (17)
C32—N2—N1105.70 (12)C20—C25—C24120.66 (17)
C18—N1—N2109.14 (12)C20—C25—H25119.7
C18—N1—C26131.38 (13)C24—C25—H25119.7
N2—N1—C26119.42 (12)C15—C16—C11120.7 (2)
C34—O5—C35116.36 (16)C15—C16—H16119.6
C11—C10—C17115.19 (13)C11—C16—H16119.6
C11—C10—C9109.36 (13)C24—C23—C22119.68 (18)
C17—C10—C9106.39 (12)C24—C23—H23120.2
C11—C10—H10107.5 (10)C22—C23—H23120.2
C17—C10—H10109.8 (9)C14—C13—C12119.8 (2)
C9—C10—H10108.4 (9)C14—C13—H13120.1
O3—C18—N1122.47 (14)C12—C13—H13120.1
O3—C18—C17127.94 (14)C29—C30—C31120.89 (19)
N1—C18—C17109.59 (13)C29—C30—H30119.6
N3—C8—C9113.72 (13)C31—C30—H30119.6
N3—C8—H8A108.8C29—C28—C27121.4 (2)
C9—C8—H8A108.8C29—C28—H28119.3
N3—C8—H8B108.8C27—C28—H28119.3
C9—C8—H8B108.8C15—C14—C13121.25 (19)
H8A—C8—H8B107.7C15—C14—H14119.4
C16—C11—C12119.56 (16)C13—C14—H14119.4
C16—C11—C10121.39 (16)C23—C24—C25120.4 (2)
C12—C11—C10118.99 (14)C23—C24—H24119.8
C27—C26—C31119.75 (16)C25—C24—H24119.8
C27—C26—N1121.13 (15)C30—C29—C28119.08 (19)
C31—C26—N1119.11 (15)C30—C29—H29120.5
C12—N3—C8122.18 (14)C28—C29—H29120.5
C12—N3—S1124.35 (11)C26—C27—C28119.28 (19)
C8—N3—S1112.69 (11)C26—C27—H27120.4
C34—C9—C8109.29 (13)C28—C27—H27120.4
C34—C9—C10109.65 (13)C5—C4—C3119.4 (2)
C8—C9—C10110.66 (12)C5—C4—H4120.3
C34—C9—C19109.12 (12)C3—C4—H4120.3
C8—C9—C19111.53 (13)C3—C2—C7117.4 (2)
C10—C9—C19106.54 (12)C3—C2—C1121.1 (3)
N2—C32—C17111.64 (14)C7—C2—C1121.4 (2)
N2—C32—C33119.83 (14)C7—C6—C5119.9 (2)
C17—C32—C33128.53 (15)C7—C6—H6120.1
O3—C19—C20106.54 (12)C5—C6—H6120.1
O3—C19—C9109.95 (11)C14—C15—C16119.4 (2)
C20—C19—C9117.66 (12)C14—C15—H15120.3
O3—C19—H19107.2 (9)C16—C15—H15120.3
C20—C19—H19109.9 (9)C23—C22—C21120.24 (18)
C9—C19—H19105.2 (10)C23—C22—H22119.9
C11—C12—C13119.26 (17)C21—C22—H22119.9
C11—C12—N3116.79 (15)C2—C1—H1A109.5
C13—C12—N3123.90 (17)C2—C1—H1B109.5
C25—C20—C21118.44 (16)H1A—C1—H1B109.5
C25—C20—C19122.73 (14)C2—C1—H1C109.5
C21—C20—C19118.79 (15)H1A—C1—H1C109.5
C18—C17—C32103.92 (13)H1B—C1—H1C109.5
C18—C17—C10121.65 (13)C4—C3—C2121.6 (2)
C32—C17—C10134.42 (14)C4—C3—H3119.2
O4—C34—O5123.95 (16)C2—C3—H3119.2
O4—C34—C9124.90 (16)C6—C7—C2122.0 (2)
O5—C34—C9111.15 (13)C6—C7—H7119.0
C26—C31—C30119.63 (18)C2—C7—H7119.0
C26—C31—H31120.2O5—C35—H35B109.5
C30—C31—H31120.2O5—C35—H35A109.5
C20—C21—C22120.60 (19)H35B—C35—H35A109.5
C20—C21—H21119.7O5—C35—H35C109.5
C22—C21—H21119.7H35B—C35—H35C109.5
C32—C33—H33A109.5H35A—C35—H35C109.5
C32—C33—H33B109.5
C32—N2—N1—C180.31 (17)O3—C18—C17—C100.9 (2)
C32—N2—N1—C26177.06 (14)N1—C18—C17—C10178.65 (13)
C19—O3—C18—N1168.50 (13)N2—C32—C17—C180.31 (18)
C19—O3—C18—C1712.0 (2)C33—C32—C17—C18179.12 (18)
N2—N1—C18—O3179.90 (13)N2—C32—C17—C10178.67 (16)
C26—N1—C18—O33.2 (3)C33—C32—C17—C101.9 (3)
N2—N1—C18—C170.52 (17)C11—C10—C17—C18142.60 (15)
C26—N1—C18—C17176.42 (15)C9—C10—C17—C1821.25 (19)
C17—C10—C11—C16107.29 (17)C11—C10—C17—C3236.2 (2)
C9—C10—C11—C16132.99 (15)C9—C10—C17—C32157.59 (17)
C17—C10—C11—C1275.64 (18)C35—O5—C34—O40.7 (3)
C9—C10—C11—C1244.08 (18)C35—O5—C34—C9179.09 (17)
C18—N1—C26—C2711.1 (3)C8—C9—C34—O40.3 (2)
N2—N1—C26—C27165.55 (16)C10—C9—C34—O4121.7 (2)
C18—N1—C26—C31170.30 (16)C19—C9—C34—O4121.9 (2)
N2—N1—C26—C3113.0 (2)C8—C9—C34—O5179.48 (13)
C9—C8—N3—C1215.9 (2)C10—C9—C34—O558.02 (17)
C9—C8—N3—S1173.73 (11)C19—C9—C34—O558.32 (18)
O2—S1—N3—C1215.17 (18)C27—C26—C31—C301.4 (3)
O1—S1—N3—C12115.88 (15)N1—C26—C31—C30179.97 (16)
C5—S1—N3—C12129.68 (15)C25—C20—C21—C220.4 (3)
O2—S1—N3—C8174.75 (13)C19—C20—C21—C22177.39 (18)
O1—S1—N3—C854.20 (15)O2—S1—C5—C4124.05 (17)
C5—S1—N3—C860.24 (14)O1—S1—C5—C46.13 (18)
N3—C8—C9—C3492.95 (16)N3—S1—C5—C4121.37 (16)
N3—C8—C9—C1027.89 (18)O2—S1—C5—C652.72 (18)
N3—C8—C9—C19146.30 (14)O1—S1—C5—C6177.09 (15)
C11—C10—C9—C3464.66 (16)N3—S1—C5—C661.85 (16)
C17—C10—C9—C34170.33 (12)C21—C20—C25—C240.5 (3)
C11—C10—C9—C855.97 (16)C19—C20—C25—C24177.17 (17)
C17—C10—C9—C869.04 (15)C12—C11—C16—C152.4 (3)
C11—C10—C9—C19177.37 (12)C10—C11—C16—C15179.42 (17)
C17—C10—C9—C1952.37 (15)C11—C12—C13—C140.4 (3)
N1—N2—C32—C170.00 (18)N3—C12—C13—C14177.57 (17)
N1—N2—C32—C33179.48 (16)C26—C31—C30—C290.2 (3)
C18—O3—C19—C20174.85 (12)C12—C13—C14—C151.5 (3)
C18—O3—C19—C946.32 (16)C22—C23—C24—C250.8 (3)
C34—C9—C19—O3172.63 (12)C20—C25—C24—C230.1 (3)
C8—C9—C19—O351.79 (16)C31—C30—C29—C280.6 (3)
C10—C9—C19—O369.06 (15)C27—C28—C29—C300.3 (4)
C34—C9—C19—C2050.48 (18)C31—C26—C27—C281.7 (3)
C8—C9—C19—C2070.36 (16)N1—C26—C27—C28179.71 (19)
C10—C9—C19—C20168.78 (13)C29—C28—C27—C260.9 (4)
C16—C11—C12—C131.5 (2)C6—C5—C4—C31.2 (3)
C10—C11—C12—C13178.65 (14)S1—C5—C4—C3175.61 (17)
C16—C11—C12—N3175.88 (15)C4—C5—C6—C70.4 (3)
C10—C11—C12—N31.3 (2)S1—C5—C6—C7176.45 (18)
C8—N3—C12—C1131.4 (2)C13—C14—C15—C160.7 (3)
S1—N3—C12—C11159.43 (13)C11—C16—C15—C141.3 (3)
C8—N3—C12—C13145.87 (17)C24—C23—C22—C210.9 (3)
S1—N3—C12—C1323.3 (2)C20—C21—C22—C230.3 (3)
O3—C19—C20—C2548.67 (19)C5—C4—C3—C21.3 (4)
C9—C19—C20—C2575.2 (2)C7—C2—C3—C40.6 (3)
O3—C19—C20—C21129.00 (16)C1—C2—C3—C4179.1 (2)
C9—C19—C20—C21107.12 (17)C5—C6—C7—C20.4 (4)
O3—C18—C17—C32179.96 (15)C3—C2—C7—C60.3 (4)
N1—C18—C17—C320.49 (17)C1—C2—C7—C6180.0 (2)
Hydrogen-bond geometry (Å, º) top
Cg4, Cg6 and Cg7 are the centroids of rings C2–C7, C20–C25 and C26–C31, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg70.962.803.682 (4)154
C29—H29···Cg6i0.932.943.734 (3)144
C35—H35B···Cg4ii0.962.973.853 (4)154
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg4, Cg6 and Cg7 are the centroids of rings C2–C7, C20–C25 and C26–C31, respectively.
D—H···AD—HH···AD···AD—H···A
C1—H1C···Cg70.962.803.682 (4)154
C29—H29···Cg6i0.932.943.734 (3)144
C35—H35B···Cg4ii0.962.973.853 (4)154
Symmetry codes: (i) x+2, y+3, z+1; (ii) x, y+1, z.
 

References

First citationBakthadoss, M., Devaraj, A. & Kannan, D. (2014). Eur. J. Org. Chem. pp. 1505–1513.  Web of Science CSD CrossRef Google Scholar
First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBorne, R. F., Peden, R. L., Waters, I. W., Weiner, M., Jordan, R. & Coats, E. A. (1974). J. Pharm. Sci. 63, 615–617.  CrossRef CAS PubMed Web of Science Google Scholar
First citationBriganti, F., Scozzafava, A. & Supuran, C. T. (1997). Eur. J. Med. Chem. 32, 901–910.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDe Clercq, E. (2001). Curr. Med. Chem. 8, 1543–1572.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGenç, Y., Özkanca, R. & Bekdemir, Y. (2008). Ann. Clin. Microbiol. Antimicrob. 7, 17–22.  PubMed Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationÖzbek, N., Katırcıoğlu, H., Karacan, N. & Baykal, T. (2007). Bioorg. Med. Chem. 15, 5105–5109.  PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1295-o1296
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds