research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Two-dimensional hydrogen-bonded polymers in the crystal structures of the ammonium salts of phen­­oxy­acetic acid, (4-fluoro­phen­­oxy)acetic acid and (4-chloro-2-methyl­phen­­oxy)acetic acid

aScience and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*Correspondence e-mail: g.smith@qut.edu.au

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 9 November 2014; accepted 12 November 2014; online 19 November 2014)

The structures of the ammonium salts of phen­oxy­acetic acid, NH4+·C8H6O3, (I), (4-fluoro­phen­oxy)acetic acid, NH4+·C8H5FO3, (II), and the herbicidally active (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA), NH4+·C9H8ClO3·0.5H2O, (III) have been determined. All have two-dimensional layered structures based on inter-species ammonium N—H⋯O hydrogen-bonding associations, which give core substructures consisting primarily of conjoined cyclic motifs. The crystals of (I) and (II) are isomorphous with the core comprising R12(5), R12(4) and centrosymmetric R42(8) ring motifs, giving two-dimensional layers lying parallel to (100). In (III), the water mol­ecule of solvation lies on a crystallographic twofold rotation axis and bridges two carboxyl O atoms in an R44(12) hydrogen-bonded motif, creating two R43(10) rings, which together with a conjoined centrosymmetric R42(8) ring incorporating both ammonium cations, generate two-dimensional layers lying parallel to (100). No ππ ring associations are present in any of the structures.

1. Chemical context

The crystal structures of the ammonium salts of carb­oxy­lic acids are, despite their simple formulae, characterized by the presence of a complex array of hydrogen-bonding inter­actions. From a study of the packing motifs of the these ammonium carboxyl­ate salts from examples in the Cambridge Structural Database (Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]), Odendal et al. (2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.]) found that two-dimensional hydrogen-bonded nets, ladders or cubane-type structures could be predicted on the basis of the size and conformation of the anions. These structures are often stabilized by ππ aromatic ring inter­actions. With the benzoic acid analogues, two-dimensional sheet structures are common with inter­actions involving the ammonium cations and the carboxyl­ate anions in N—H⋯O hydrogen bonding, forming core layer structures, with the aromatic rings occupying the inter­stitial cell regions, e.g. with benzoic acid (Odendal et al., 2010[Odendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398-2408.]), 3-nitro­benzoic acid (Eppel & Bernstein, 2009[Eppel, S. & Bernstein, J. (2009). Cryst. Growth Des. 9, 1683-1691.]) and 2,4-di­chloro­benzoic acid (Smith, 2014[Smith, G. (2014). Acta Cryst. C70, 315-319.]). Three-dimensional structures are usually only formed when inter­active substituent groups are present on the benzoate rings, inter­linking the layers e.g. with 3,5-di­nitro­benzoic acid (Smith, 2014[Smith, G. (2014). Acta Cryst. C70, 315-319.]). The presence of water mol­ecules of solvation may also produce a similar effect, although these are usually confined to the primary cation–anion layers.

With the phen­oxy­acetic acid analogues, which comprise a number of herbicidally active commercial herbicides (Zumdahl, 2010[Zumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.]), this should also be the case. In the only reported structure of an ammonium salt of a phen­oxy­acetic acid [with the commercially important herbicide, the 2,4-di­chloro-substituted analogue (2,4-D) (a hemihydrate) (Liu et al., 2009[Liu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905.])], the expected two-dimensional layered structure is found. Herein are reported the preparation and structures of the anhydrous ammonium salts of the parent phen­oxy­acetic acid, NH4+·C8H6O3 (I)[link] and (4-fluoro­phen­oxy)acetic acid, NH4+·C8H5FO3 (II)[link] and the hemihydrate salt of the herbicidally active (4-chloro-2-methyl­phen­oxy)acetic acid (MCPA), NH4+·C9H8ClO3·0.5H2O (III)[link]. The structure of a hydrated chloro­methyl­ammonium salt of MCPA is known (Pernak et al., 2011[Pernak, J., Syguda, A., Janiszewska, D., Materna, K. & Praczyk, T. (2011). Tetrahedron, 67, 4838-4844.]).

[Scheme 1]

2. Structural commentary

In the structures of the isomorphous ammonium phen­oxy­acetate (I)[link] and (4-fluoro­phen­oxy)acetate (II)[link] (Figs. 1[link] and 2[link], respectively), the anionic species are essentially planar; the comparative defining torsion angles in the phen­oxy­acetate side chain (C2—C1—O11—C12, C1—O11—C12—C13 and O11—C12—C13—O14) are 178.93 (19), −177.48 (18) and −173.58 (18)°, respectively, for (I)[link] and −179.05 (18), −178.98 (17) and −174.13 (17)°, respectively, for (II)[link]. This planarity is also found in the MCPA anion in (III)[link] (Fig. 3[link]) where the corresponding torsion angles are −179.13 (15), −173.34 (14) and −178.71 (15)° and is also the case with the parent acids [for (I)[link]: Kennard et al. (1982[Kennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868-875.]), for (II)[link]: Smith et al. (1992[Smith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101-1108.]) and for (III)[link]: Smith & Kennard (1981[Smith, G. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 295-299.]); Sieron et al. (2011[Sieron, L., Kobylecka, J. & Turek, A. (2011). Organic Chemistry International, Volume 2011, Article ID 608165, 5 pages. doi: 10.1155/2011/608165.])]. In (III)[link], the water mol­ecule of solvation lies on a crystallographic twofold rotation axis.

[Figure 1]
Figure 1
Mol­ecular conformation and atom labelling for (I)[link], with inter-species hydrogen bonds shown as a dashed lines (see Table 1[link] for details). Non-H atoms are shown as 40% probability displacement ellipsoids.
[Figure 2]
Figure 2
Mol­ecular conformation and atom labelling for (II)[link], with inter-species hydrogen bonds shown as dashed lines (see Table 2[link] for details). Non-H atoms are shown as 40% probability displacement ellipsoids.
[Figure 3]
Figure 3
Mol­ecular conformation and atom labelling for (III)[link], with inter-species hydrogen bonds shown as dashed lines (see Table 3[link] for details). Non-H atoms are shown as 40% probability displacement ellipsoids.

3. Supra­molecular features

In the crystals of (I)[link] and (II)[link], two H atoms of the ammonium group give cyclic asymmetric three-centre (bifurcated) N—H⋯(O,O) hydrogen-bonding inter­actions with the anion (Tables 1[link] and 2[link], respectively). One of these is with two O-atom acceptors of the carboxyl group (O13, O14) [graph set R12(4)], the other is with the carboxyl and phen­oxy O-atom acceptors (O13ii, O11ii) of an inversion-related anion [graph set R12(5)]. These, together with a third N1—H13⋯O13ii hydrogen bond, give a cyclic R42(8) ring motif, forming a series of conjoined rings which extend the structures along c. The other H atom gives structure extension through an N—H⋯O hydrogen bond to a carboxyl O atom (O14iii), forming a two-dimensional sheet-like structure which lies parallel to (100). Present in the crystal are short inversion-related inter­molecular F4⋯F4iv contacts of 2.793 (2) Å [symmetry code: (iv) −x + 2, −y + 1, −z − 1]. The crystal packing and hydrogen-bonding in (I)[link] is identical to that in isostructural (II)[link], as shown in Fig. 4[link].

Table 1
Hydrogen-bond geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O13 0.96 1.92 2.849 (3) 163
N1—H11⋯O14 0.96 2.55 3.330 (3) 138
N1—H12⋯O13i 0.85 2.03 2.867 (3) 172
N1—H13⋯O11ii 0.90 2.39 3.202 (3) 150
N1—H13⋯O13ii 0.90 2.15 2.869 (3) 136
N1—H14⋯O14iii 0.84 1.95 2.788 (3) 178
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O13 0.90 1.95 2.847 (2) 177
N1—H11⋯O14 0.90 2.55 3.347 (2) 135
N1—H12⋯O13i 0.97 1.88 2.847 (3) 173
N1—H13⋯O11ii 0.96 2.36 3.172 (2) 142
N1—H13⋯O13ii 0.96 2.13 2.892 (2) 135
N1—H14⋯O14iii 0.89 1.91 2.793 (2) 173
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z; (iii) -x+1, -y+1, -z+1.
[Figure 4]
Figure 4
The two-dimensional hydrogen-bonded network structure of (I)[link], which is equivalent to that of the isomorphous compound (II)[link]. Hydrogen bonds are shown as dashed lines and non-associative H-atoms have been omitted [for symmetry codes see Tables 1[link] and 2[link]].

In the crystal of (III)[link], centrosymmetric inter-ion R42(8) rings are formed between two ammonium cations and two O13 carboxyl O-atom acceptors and are bridged by a third ammonium H donor through O13iii, extending the structure down b (Table 3[link] and Fig. 5[link]). The fourth H atom gives extension along a through N1—H12⋯O14ii forming an enlarged conjoined R44(12) ring, which is bridged by the water mol­ecule of solvation lying on the twofold rotation axis, through O1W—H11W⋯O14 hydrogen bonds. This link effectively generates two separate R43(10) ring motifs, extending the structure along a and giving the overall two-dimensional layers lying parallel to (100) (Fig. 6[link]). In (III)[link], no three-centre R12(4) or R12(5) motifs to carboxyl (O,O′) or carboxyl-phen­oxy (O,O1) acceptors such as are present in (I)[link] and (II)[link] are found. The structure of (III)[link] is essentially isostructural with that of ammonium (2,4-di­chloro­phen­oxy)acetate hemihydrate (Liu et al., 2009[Liu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905.]), with isomorphous crystals [a = 37.338 (8), b = 4.388 (9), c = 12.900 (3) Å, β = 103.82 (3)°, V = 2074.7 (8) Å3, Z = 8, space group C2/c].

Table 3
Hydrogen-bond geometry (Å, °) for (III)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11⋯O13i 0.82 2.21 2.998 (4) 161
N1—H12⋯O14ii 0.82 2.09 2.886 (4) 166
N1—H13⋯O13iii 0.84 2.04 2.877 (4) 173
N1—H14⋯O13 0.82 2.00 2.798 (4) 163
O1W—H11W⋯O14 0.88 1.95 2.809 (4) 165
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [x, -y+2, z-{\script{1\over 2}}]; (iii) x, y-1, z.
[Figure 5]
Figure 5
A partial extension of the basic cation–anion hydrogen-bonding associations in the structure of (III)[link], showing conjoined cyclic R44(12), R43(10) and R42(8) ring motifs. [Symmetry code: (iv) −x + 1, y, −z + [{3\over 2}]. For other codes, see Table 3[link]].
[Figure 6]
Figure 6
The two-dimensional hydrogen-bonded network structure of (III)[link] in the unit cell, viewed along b.

No ππ inter­actions are found in any of the structures reported here [minimum ring centroid separation = 4.8849 (16) (I)[link], 4.8919 (15) (II)[link] and 4.456 (5) Å (III)[link] (the b unit-cell parameter)].

4. Synthesis and crystallization

The title compounds were prepared by the addition of excess 5 M aqueous ammonia solution to 1 mmol of either phen­oxy­acetic acid [150 mg for (I)], (4-fluoro­phen­oxy)acetic acid [170 mg for (II)] or (4-chloro-2-methyl­phen­oxy)acetic acid [200 mg for (III)] in 10 mL of 10% ethanol–water. Room-temperature evaporation of the solvent gave colourless plate-like crystals of (I)[link], (II)[link] and (III)[link] from which specimens were cleaved for the X-ray analyses.

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 4[link]. Hydrogen atoms potentially involved in hydrogen-bonding inter­actions were located in difference Fourier maps but were subsequently included in the refinements with positional parameters fixed and with Uiso(H) = 1.2Ueq(N) or = 1.5Ueq(O). Other H atoms were included at calculated positions [C—H(aromatic) = 0.95, C—H(methyl­ene) = 0.98, C—H(meth­yl) = 0.97 Å] and also treated as riding, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. In (III)[link], the methyl group was found to be rotationally disordered, with the H atoms distributed over six equivalent half-sites, and was treated accordingly.

Table 4
Experimental details

  (I) (II) (III)
Crystal data
Chemical formula NH4+·C8H7O3 NH4+·C8H6FO3 NH4+·C9H8ClNO3·0.5H2O
Mr 169.17 187.17 226.65
Crystal system, space group Monoclinic, P21/c Monoclinic, P21/c Monoclinic, C2/c
Temperature (K) 200 200 200
a, b, c (Å) 17.824 (2), 7.1453 (6), 6.7243 (7) 18.386 (2), 7.1223 (6), 6.7609 (6) 38.0396 (9), 4.4560 (8), 12.944 (5)
β (°) 90.321 (9) 93.399 (8) 104.575 (5)
V3) 856.38 (15) 883.79 (14) 2123.5 (9)
Z 4 4 8
Radiation type Mo Kα Mo Kα Mo Kα
μ (mm−1) 0.10 0.12 0.35
Crystal size (mm) 0.35 × 0.25 × 0.10 0.26 × 0.20 × 0.05 0.35 × 0.35 × 0.10
 
Data collection
Diffractometer Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector Oxford Diffraction Gemini-S CCD detector
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.])
Tmin, Tmax 0.920, 0.980 0.960, 0.980 0.913, 0.980
No. of measured, independent and observed [I > 2σ(I)] reflections 5450, 1686, 1218 5619, 1738, 1304 6215, 2087, 1771
Rint 0.052 0.033 0.030
(sin θ/λ)max−1) 0.617 0.617 0.617
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.163, 1.10 0.053, 0.116, 1.10 0.036, 0.091, 1.03
No. of reflections 1686 1738 2087
No. of parameters 109 118 132
H-atom treatment H-atom parameters constrained H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.29, −0.24 0.16, −0.22 0.32, −0.28
Computer programs: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]), SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) within WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

The crystal structures of the ammonium salts of carb­oxy­lic acids are, despite their simple formulae, characterized by the presence of a complex array of hydrogen-bonding inter­actions. From a study of the packing motifs of the these ammonium carboxyl­ate salts from examples in the Cambridge Structural Database (Groom & Allen, 2014), Odendal et al. (2010) found that two-dimensional hydrogen-bonded nets, ladders or cubane-type structures could be predicted on the basis of the size and conformation of the anions. These structures are often stabilized by ππ aromatic ring inter­actions. With the benzoic acid analogues, two-dimensional sheet structures are common with inter­actions involving the ammonium cations and the carboxyl­ate anions in N—H···O hydrogen bonding, forming core layer structures, with the aromatic rings occupying the inter­stitial cell regions, e.g. with benzoic acid (Odendal et al., 2010), 3-nitro­benzoic acid (Eppel & Bernstein, 2009) and 2,4-di­chloro­benzoic acid (Smith, 2014). Three-dimensional structures are usually only formed when inter­active substituent groups are present on the benzoate rings, inter­linking the layers e.g. with 3,5-di­nitro­benzoic acid (Smith, 2014). The presence of water molecules of solvation may also produce a similar effect, although these are usually confined to the primary cation–anion layers.

With the phen­oxy­acetic acid analogues, which comprise a number of herbicidally active commercial herbicides (Zumdahl, 2010), this should also be the case. In the only reported structure of an ammonium salt of a phen­oxy­acetic acid [with the commercially important herbicide, the 2,4-di­chloro-substituted analogue (2,4-D) (a hemihydrate) (Liu et al., 2009)], the expected two-dimensional layered structure is found. Herein are reported the preparation and structures of the anhydrous ammonium salts of the parent phen­oxy­acetic acid, NH4+ · C8H6O3- (I) and (4-fluoro­phen­oxy)­acetic acid, NH4+ · C8H5FO3- (II) and the hemihydrate salt of the herbicidally active (4-chloro-2-methyl­phen­oxy)­acetic acid (MCPA), NH4+ · C9H8ClO3- · 0.5(H2O) (III). The structure of a hydrated chloro­methyl­ammonium salt of MCPA is known (Pernak et al., 2011).

Structural commentary top

In the structures of the isomorphous ammonium phen­oxy­acetate (I) and (4-fluoro­phen­oxy)­acetate (II) (Figs. 1 and 2, respectively), the anionic species are essentially planar; the comparative defining torsion angles in the phen­oxy­acetate side chain (C2—C1—O11—C12, C1—O11—C12—C13 and O11—C12—C13—O14) are 178.93 (19), -177.48 (18) and -173.58 (18)°, respectively, for (I) and -179.05 (18), -178.98 (17) and -174.13 (17)°, respectively, for (II). This planarity is also found in the MCPA anion in (III) (Fig. 3) where the corresponding torsion angles are -179.13 (15), -173.34 (14) and -178.71 (15)° and is also the case with the parent acids [for (I): Kennard et al. (1982), for (II): Smith et al. (1992) and for (III): Smith & Kennard (1981); Sieron et al. (2011)]. In (III), the water molecule of solvation lies on a crystallographic twofold rotation axis.

Supra­molecular features top

In the crystals of (I) and (II), two H atoms of the ammonium group give cyclic asymmetric three-centre (bifurcated) N—H···(O,O) hydrogen-bonding inter­actions with the anion (Tables 1 and 2, respectively). One of these is with two O-atom acceptors of the carboxyl group (O13, O14) [graph set R12(4)], the other is with the carboxyl and phen­oxy O-atom acceptors (O13ii, O11ii) of an inversion-related anion [graph set R12(5)]. These, together with a third N1—H13···O13ii hydrogen bond give a cyclic R42(8) ring motif, forming a series of conjoined rings which extend the structures along c. The other H atom gives structure extension through an N—H···O hydrogen bond to a carboxyl O atom (O14iii), forming a two-dimensional sheet-like structure which lies parallel to (100). Present in the crystal are short inversion-related inter­molecular F4···F4iv contacts of 2.793 (2) Å [symmetry code: (iv) -x + 2, -y + 1, -z -1]. The crystal packing and hydrogen-bonding in (I) is identical to that in isostructural (II), as shown in Fig. 4.

In the crystal of (III), centrosymmetric inter-ion R42(8) rings are formed between two ammonium cations and two O13 carboxyl O-atom acceptors and are bridged by a third ammonium H donor through O13iii, extending the structure down b (Table 3 and Fig. 5). The fourth H atom gives extension along a through N1—H12···O14ii forming an enlarged conjoined R44(12) ring, which is bridged by the water molecule of solvation lying on the twofold rotation axis, through O1W—H11W···O14 hydrogen bonds. This link effectively generates two separate R43(10) ring motifs, extending the structure along a and giving the overall two-dimensional layers lying parallel to (100) (Fig. 6). In (III), no three-centre R12(4) or R12(5) motifs to carboxyl (O,O') or carboxyl-phen­oxy (O,O1) acceptors such as are present in (I) and (II) are found. The structure of (III) is essentially isostructural with that of ammonium (2,4-di­chloro­phen­oxy)­acetate hemihydrate (Liu et al., 2009), with isomorphous crystals [a = 37.338 (8), b = 4.388 (9), c = 12.900 (3) Å, β = 103.82 (3)°, V = 2074.7 (8) Å3, Z = 8, space group C2/c].

No ππ inter­actions are found in any of the structures reported here [minimum ring centroid separation = 4.8849 (16) (I), 4.8919 (15) (II) and 4.456 (5) Å (III) (the b unit-cell parameter)].

Synthesis and crystallization top

The title compounds were prepared by the addition of excess 5 M aqueous ammonia solution to 1 mmol of either phen­oxy­acetic acid [150 mg for (I)], (4-fluoro­phen­oxy)­acetic acid [170 mg for (II)] or (4-chloro-2-methyl­phen­oxy)­acetic acid [200 mg for (III)] in 10 mL of 10% ethanol–water. Room-temperature evaporation of the solvent gave colourless plate-like crystals of (I), (II) and (III) from which specimens were cleaved for the X-ray analyses.

Refinement details top

Crystal data, data collection and structure refinement details are summarized in Table 4. Hydrogen atoms potentially involved in hydrogen-bonding inter­actions were located in difference Fourier maps but were subsequently included in the refinements with positional parameters fixed and with Uiso(H) = 1.2Ueq(N) or = 1.5Ueq(O). Other H atoms were included at calculated positions [C—H(aromatic) = 0.95, C—H(methyl­ene) = 0.98, C—H(methyl) = 0.97 Å] and also treated as riding, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms. In (III), the methyl group was found to be rotationally disordered, with the H atoms distributed over six equivalent half-sites, and was treated accordingly.

Related literature top

For related literature, see: Eppel & Bernstein (2009); Kennard et al. (1982); Liu et al. (2009); Pernak et al. (2011); Sieron et al. (2011); Smith (2014); Smith & Kennard (1981); Smith et al. (1992); Zumdahl (2010).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013). Program(s) used to solve structure: SIR92 (Altomare et al., 1993) for (I); SHELXS97 (Sheldrick, 2008) for (II), (III). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
Molecular conformation and atom labelling for (I), with inter-species hydrogen bonds shown as a dashed lines (see Table 1 for details). Non-H atoms are shown as 40% probability displacement ellipsoids.

Molecular conformation and atom labelling for (II), with inter-species hydrogen bonds shown as dashed lines (see Table 2 for details). Non-H atoms are shown as 40% probability displacement ellipsoids.

Molecular conformation and atom labelling for (III), with inter-species hydrogen bonds shown as dashed lines (see Table 3 for details). Non-H atoms are shown as 40% probability displacement ellipsoids.

The two-dimensional hydrogen-bonded network structure of (I), which is equivalent to that of the isomorphous (II). Hydrogen bonds are shown as dashed lines and non-associative H-atoms have been omitted [for symmetry codes see Tables 1 and 2].

A partial extension of the basic cation–anion hydrogen-bonding associations in the structure of (III), showing conjoined cyclic R44(12), R43(10) and R42(8) ring motifs. [Symmetry code: (iv) -x + 1, y, -z + 3/2. For other codes, see Table 3].

The two-dimensional hydrogen-bonded network structure of (III) in the unit cell, viewed along b.
(I) Ammonium phenoxyacetate top
Crystal data top
NH4+·C8H7O3F(000) = 360
Mr = 169.17Dx = 1.312 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1041 reflections
a = 17.824 (2) Åθ = 3.4–25.5°
b = 7.1453 (6) ŵ = 0.10 mm1
c = 6.7243 (7) ÅT = 200 K
β = 90.321 (9)°Plate, colourless
V = 856.38 (15) Å30.35 × 0.25 × 0.10 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1686 independent reflections
Radiation source: Enhance (Mo) X-ray source1218 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.4°
ω scansh = 2121
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 88
Tmin = 0.920, Tmax = 0.980l = 88
5450 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0706P)2 + 0.1562P]
where P = (Fo2 + 2Fc2)/3
1686 reflections(Δ/σ)max < 0.001
109 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
NH4+·C8H7O3V = 856.38 (15) Å3
Mr = 169.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.824 (2) ŵ = 0.10 mm1
b = 7.1453 (6) ÅT = 200 K
c = 6.7243 (7) Å0.35 × 0.25 × 0.10 mm
β = 90.321 (9)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1686 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1218 reflections with I > 2σ(I)
Tmin = 0.920, Tmax = 0.980Rint = 0.052
5450 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.10Δρmax = 0.29 e Å3
1686 reflectionsΔρmin = 0.24 e Å3
109 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O110.71681 (10)0.4894 (2)0.0073 (2)0.0357 (6)
O130.58441 (10)0.4403 (2)0.1635 (3)0.0393 (6)
O140.60999 (11)0.6471 (2)0.4025 (3)0.0444 (7)
C10.78672 (14)0.4998 (3)0.0880 (4)0.0317 (8)
C20.79737 (16)0.4028 (3)0.2662 (4)0.0373 (9)
C30.86706 (17)0.3999 (4)0.3531 (4)0.0436 (10)
C40.92709 (16)0.4938 (4)0.2672 (4)0.0429 (9)
C50.91570 (16)0.5934 (3)0.0933 (4)0.0404 (9)
C60.84634 (14)0.5982 (3)0.0039 (4)0.0358 (9)
C120.70534 (14)0.5849 (3)0.1764 (3)0.0329 (8)
C130.62684 (15)0.5544 (3)0.2524 (3)0.0331 (8)
N10.43517 (12)0.5486 (3)0.2601 (3)0.0355 (7)
H20.756500.339000.327100.0450*
H30.874100.332800.473500.0530*
H40.975300.489900.326700.0520*
H50.956400.659600.034700.0480*
H60.839300.668300.114600.0430*
H1210.714100.720500.157200.0390*
H1220.742000.539000.276300.0390*
H110.488200.532800.242600.0430*
H120.432200.663000.292200.0430*
H130.405800.526300.153700.0430*
H140.422300.487200.361100.0430*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O110.0366 (11)0.0331 (10)0.0373 (10)0.0020 (7)0.0004 (8)0.0089 (7)
O130.0446 (12)0.0323 (9)0.0409 (10)0.0068 (8)0.0011 (8)0.0014 (8)
O140.0571 (13)0.0391 (11)0.0370 (10)0.0059 (9)0.0093 (9)0.0052 (8)
C10.0372 (15)0.0228 (12)0.0350 (13)0.0037 (10)0.0040 (11)0.0015 (10)
C20.0495 (17)0.0276 (13)0.0348 (14)0.0010 (11)0.0030 (11)0.0032 (10)
C30.057 (2)0.0359 (14)0.0380 (15)0.0056 (13)0.0059 (13)0.0035 (11)
C40.0421 (18)0.0421 (16)0.0446 (15)0.0049 (12)0.0084 (12)0.0030 (12)
C50.0405 (17)0.0339 (14)0.0468 (16)0.0016 (11)0.0018 (12)0.0002 (11)
C60.0424 (17)0.0296 (13)0.0355 (14)0.0025 (10)0.0024 (11)0.0042 (10)
C120.0410 (16)0.0279 (12)0.0299 (13)0.0008 (10)0.0024 (11)0.0049 (10)
C130.0496 (17)0.0224 (12)0.0273 (12)0.0001 (11)0.0025 (11)0.0039 (10)
N10.0434 (14)0.0305 (11)0.0325 (11)0.0006 (9)0.0014 (9)0.0023 (9)
Geometric parameters (Å, º) top
O11—C11.364 (3)C3—C41.386 (4)
O11—C121.427 (2)C4—C51.385 (4)
O13—C131.261 (3)C5—C61.378 (4)
O14—C131.245 (3)C12—C131.508 (4)
N1—H120.8500C2—H20.9500
N1—H130.9000C3—H30.9500
N1—H140.8400C4—H40.9500
N1—H110.9600C5—H50.9500
C1—C61.392 (3)C6—H60.9500
C1—C21.398 (4)C12—H1210.9900
C2—C31.376 (4)C12—H1220.9900
C1—O11—C12117.00 (18)O13—C13—O14125.6 (2)
H12—N1—H14106.00O13—C13—C12119.21 (19)
H13—N1—H14113.00C3—C2—H2120.00
H11—N1—H12102.00C1—C2—H2120.00
H11—N1—H13117.00C2—C3—H3120.00
H11—N1—H14108.00C4—C3—H3120.00
H12—N1—H13110.00C5—C4—H4121.00
O11—C1—C6124.3 (2)C3—C4—H4121.00
C2—C1—C6119.5 (2)C6—C5—H5119.00
O11—C1—C2116.3 (2)C4—C5—H5119.00
C1—C2—C3119.9 (2)C1—C6—H6120.00
C2—C3—C4120.8 (3)C5—C6—H6120.00
C3—C4—C5119.0 (3)H121—C12—H122108.00
C4—C5—C6121.2 (2)O11—C12—H121109.00
C1—C6—C5119.7 (2)O11—C12—H122109.00
O11—C12—C13111.22 (18)C13—C12—H121109.00
O14—C13—C12115.2 (2)C13—C12—H122109.00
C12—O11—C1—C2178.93 (19)C1—C2—C3—C40.7 (4)
C12—O11—C1—C60.7 (3)C2—C3—C4—C50.9 (4)
C1—O11—C12—C13177.48 (18)C3—C4—C5—C60.9 (4)
O11—C1—C2—C3177.4 (2)C4—C5—C6—C10.7 (4)
C6—C1—C2—C32.3 (4)O11—C12—C13—O136.7 (3)
O11—C1—C6—C5177.3 (2)O11—C12—C13—O14173.58 (18)
C2—C1—C6—C52.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O130.961.922.849 (3)163
N1—H11···O140.962.553.330 (3)138
N1—H12···O13i0.852.032.867 (3)172
N1—H13···O11ii0.902.393.202 (3)150
N1—H13···O13ii0.902.152.869 (3)136
N1—H14···O14iii0.841.952.788 (3)178
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
(II) Ammonium (4-fluorophenoxy)acetate top
Crystal data top
NH4+·C8H6FO3F(000) = 392
Mr = 187.17Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1311 reflections
a = 18.386 (2) Åθ = 3.3–28.0°
b = 7.1223 (6) ŵ = 0.12 mm1
c = 6.7609 (6) ÅT = 200 K
β = 93.399 (8)°Plate, colourless
V = 883.79 (14) Å30.26 × 0.20 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1738 independent reflections
Radiation source: Enhance (Mo) X-ray source1304 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.1°
ω scansh = 2220
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 88
Tmin = 0.960, Tmax = 0.980l = 78
5619 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0377P)2 + 0.2467P]
where P = (Fo2 + 2Fc2)/3
1738 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
NH4+·C8H6FO3V = 883.79 (14) Å3
Mr = 187.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.386 (2) ŵ = 0.12 mm1
b = 7.1223 (6) ÅT = 200 K
c = 6.7609 (6) Å0.26 × 0.20 × 0.05 mm
β = 93.399 (8)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
1738 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1304 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.980Rint = 0.033
5619 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 1.10Δρmax = 0.16 e Å3
1738 reflectionsΔρmin = 0.22 e Å3
118 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F40.97409 (8)0.4959 (2)0.3100 (2)0.0761 (6)
O110.70924 (8)0.4850 (2)0.0189 (2)0.0451 (5)
O130.58131 (8)0.4391 (2)0.1749 (2)0.0439 (5)
O140.60820 (8)0.6448 (2)0.4167 (2)0.0504 (6)
C10.77687 (12)0.4984 (3)0.0575 (3)0.0409 (8)
C20.78437 (13)0.4048 (3)0.2361 (3)0.0487 (8)
C30.85114 (14)0.4052 (4)0.3198 (3)0.0548 (9)
C40.90870 (13)0.4967 (4)0.2263 (4)0.0529 (9)
C50.90226 (13)0.5918 (4)0.0520 (3)0.0520 (9)
C60.83562 (12)0.5925 (3)0.0333 (3)0.0463 (8)
C120.69955 (11)0.5819 (3)0.2002 (3)0.0411 (7)
C130.62335 (12)0.5521 (3)0.2684 (3)0.0382 (7)
N10.43689 (9)0.5487 (3)0.2527 (2)0.0417 (6)
H20.744000.341400.299700.0580*
H30.857000.342100.441600.0660*
H50.942800.656200.009300.0620*
H60.830200.657600.154200.0560*
H1210.708100.717800.181300.0490*
H1220.735700.536000.303400.0490*
H110.482100.509700.229900.0500*
H120.428700.678500.286700.0500*
H130.409600.511400.133300.0500*
H140.420100.481000.350300.0500*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F40.0554 (10)0.1149 (13)0.0604 (10)0.0161 (9)0.0230 (8)0.0035 (9)
O110.0373 (9)0.0661 (11)0.0316 (8)0.0035 (7)0.0001 (6)0.0140 (7)
O130.0428 (9)0.0527 (9)0.0362 (9)0.0041 (7)0.0034 (7)0.0052 (7)
O140.0585 (11)0.0630 (10)0.0308 (9)0.0037 (8)0.0115 (7)0.0097 (8)
C10.0382 (13)0.0554 (14)0.0291 (12)0.0110 (10)0.0012 (9)0.0016 (10)
C20.0517 (15)0.0630 (16)0.0312 (12)0.0072 (12)0.0009 (10)0.0062 (11)
C30.0636 (17)0.0717 (17)0.0298 (12)0.0147 (14)0.0085 (11)0.0051 (12)
C40.0437 (15)0.0744 (17)0.0416 (14)0.0159 (13)0.0114 (11)0.0054 (12)
C50.0397 (14)0.0719 (17)0.0441 (14)0.0070 (12)0.0002 (11)0.0013 (12)
C60.0398 (13)0.0651 (16)0.0338 (12)0.0072 (11)0.0006 (10)0.0073 (11)
C120.0409 (13)0.0565 (14)0.0253 (11)0.0054 (11)0.0033 (9)0.0088 (10)
C130.0432 (13)0.0445 (12)0.0263 (11)0.0034 (10)0.0019 (9)0.0032 (10)
N10.0438 (11)0.0555 (12)0.0257 (9)0.0053 (9)0.0024 (8)0.0060 (8)
Geometric parameters (Å, º) top
F4—C41.359 (3)C2—C31.382 (3)
O11—C11.378 (3)C3—C41.366 (4)
O11—C121.427 (2)C4—C51.370 (4)
O13—C131.260 (3)C5—C61.385 (3)
O14—C131.246 (2)C12—C131.516 (3)
N1—H130.9600C2—H20.9500
N1—H140.8900C3—H30.9500
N1—H110.9000C5—H50.9500
N1—H120.9700C6—H60.9500
C1—C61.384 (3)C12—H1210.9900
C1—C21.393 (3)C12—H1220.9900
C1—O11—C12116.74 (16)O11—C12—C13111.00 (16)
H12—N1—H14106.00O13—C13—O14125.6 (2)
H13—N1—H14107.00O14—C13—C12115.18 (18)
H11—N1—H12120.00O13—C13—C12119.18 (18)
H11—N1—H13102.00C1—C2—H2120.00
H11—N1—H14109.00C3—C2—H2120.00
H12—N1—H13113.00C4—C3—H3120.00
O11—C1—C6124.43 (18)C2—C3—H3120.00
C2—C1—C6120.1 (2)C6—C5—H5121.00
O11—C1—C2115.45 (19)C4—C5—H5121.00
C1—C2—C3119.3 (2)C1—C6—H6120.00
C2—C3—C4119.6 (2)C5—C6—H6120.00
C3—C4—C5122.0 (2)H121—C12—H122108.00
F4—C4—C3119.1 (2)O11—C12—H121109.00
F4—C4—C5118.9 (2)O11—C12—H122109.00
C4—C5—C6118.9 (2)C13—C12—H121109.00
C1—C6—C5120.0 (2)C13—C12—H122109.00
C12—O11—C1—C2179.05 (18)C2—C3—C4—F4179.9 (2)
C12—O11—C1—C62.5 (3)C2—C3—C4—C51.1 (4)
C1—O11—C12—C13178.98 (17)F4—C4—C5—C6180.0 (2)
O11—C1—C2—C3177.7 (2)C3—C4—C5—C61.0 (4)
C6—C1—C2—C30.8 (3)C4—C5—C6—C10.1 (4)
O11—C1—C6—C5177.5 (2)O11—C12—C13—O136.0 (3)
C2—C1—C6—C50.8 (3)O11—C12—C13—O14174.13 (17)
C1—C2—C3—C40.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O130.901.952.847 (2)177
N1—H11···O140.902.553.347 (2)135
N1—H12···O13i0.971.882.847 (3)173
N1—H13···O11ii0.962.363.172 (2)142
N1—H13···O13ii0.962.132.892 (2)135
N1—H14···O14iii0.891.912.793 (2)173
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
(III) Ammonium (4-chloro-2-methylphenoxy)acetate hemihydrate top
Crystal data top
NH4+·C9H8ClNO3·0.5H2OF(000) = 952
Mr = 226.65Dx = 1.418 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1819 reflections
a = 38.0396 (9) Åθ = 4.4–28.1°
b = 4.4560 (8) ŵ = 0.35 mm1
c = 12.944 (5) ÅT = 200 K
β = 104.575 (5)°Plate, colourless
V = 2123.5 (9) Å30.35 × 0.35 × 0.10 mm
Z = 8
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2087 independent reflections
Radiation source: Enhance (Mo) X-ray source1771 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.2°
ω scansh = 4646
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 55
Tmin = 0.913, Tmax = 0.980l = 1515
6215 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0409P)2 + 1.4504P]
where P = (Fo2 + 2Fc2)/3
2087 reflections(Δ/σ)max < 0.001
132 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
NH4+·C9H8ClNO3·0.5H2OV = 2123.5 (9) Å3
Mr = 226.65Z = 8
Monoclinic, C2/cMo Kα radiation
a = 38.0396 (9) ŵ = 0.35 mm1
b = 4.4560 (8) ÅT = 200 K
c = 12.944 (5) Å0.35 × 0.35 × 0.10 mm
β = 104.575 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2087 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1771 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.980Rint = 0.030
6215 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.03Δρmax = 0.32 e Å3
2087 reflectionsΔρmin = 0.28 e Å3
132 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl40.24818 (1)0.32330 (12)0.36021 (4)0.0372 (2)
O110.39197 (3)0.8996 (3)0.46961 (9)0.0262 (4)
O130.45425 (3)1.2161 (3)0.49906 (10)0.0296 (4)
O140.44789 (4)1.4021 (3)0.65332 (10)0.0339 (4)
C10.35808 (5)0.7686 (4)0.44981 (13)0.0224 (5)
C20.34876 (5)0.5869 (4)0.35836 (13)0.0246 (5)
C30.31491 (5)0.4496 (4)0.33324 (14)0.0269 (5)
C40.29091 (5)0.4918 (4)0.39679 (14)0.0264 (5)
C50.30027 (5)0.6675 (4)0.48684 (14)0.0275 (6)
C60.33390 (5)0.8070 (4)0.51321 (14)0.0258 (5)
C120.40205 (5)1.0812 (4)0.56298 (14)0.0242 (5)
C130.43762 (5)1.2444 (4)0.57156 (14)0.0234 (5)
C210.37517 (5)0.5430 (5)0.29002 (15)0.0370 (6)
O1W0.500001.8306 (4)0.750000.0464 (7)
N10.46781 (3)0.7274 (3)0.37900 (10)0.0156 (4)
H30.308200.328000.273100.0320*
H50.284200.692600.529600.0330*
H60.340300.927100.573800.0310*
H1210.404200.955500.625500.0290*
H1220.383001.227200.561900.0290*
H2110.397000.654500.319800.0550*0.500
H2120.364400.613000.218900.0550*0.500
H2130.380900.333800.287900.0550*0.500
H2140.364600.413000.231300.0550*0.500
H2150.397100.454500.332100.0550*0.500
H2160.380600.733700.263200.0550*0.500
H11W0.483901.712600.708600.0700*
H110.490100.738700.398100.0190*
H120.459700.714700.314500.0190*
H130.462500.573600.409500.0190*
H140.459300.866700.406800.0190*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl40.0264 (3)0.0466 (3)0.0378 (3)0.0121 (2)0.0064 (2)0.0044 (2)
O110.0233 (7)0.0335 (7)0.0230 (6)0.0071 (5)0.0083 (5)0.0075 (5)
O130.0293 (7)0.0279 (6)0.0355 (7)0.0036 (6)0.0155 (6)0.0015 (6)
O140.0340 (8)0.0378 (7)0.0268 (7)0.0094 (6)0.0020 (6)0.0054 (6)
C10.0215 (9)0.0222 (8)0.0224 (9)0.0010 (7)0.0037 (7)0.0028 (7)
C20.0253 (9)0.0277 (9)0.0198 (8)0.0005 (7)0.0041 (7)0.0002 (7)
C30.0278 (10)0.0287 (9)0.0223 (9)0.0021 (8)0.0027 (8)0.0023 (8)
C40.0217 (9)0.0277 (9)0.0277 (9)0.0031 (7)0.0023 (8)0.0037 (8)
C50.0230 (10)0.0332 (10)0.0282 (9)0.0003 (8)0.0099 (8)0.0017 (8)
C60.0259 (10)0.0281 (9)0.0234 (9)0.0011 (8)0.0062 (7)0.0022 (8)
C120.0244 (9)0.0276 (9)0.0208 (8)0.0026 (7)0.0059 (7)0.0033 (7)
C130.0247 (9)0.0215 (8)0.0232 (9)0.0029 (7)0.0045 (7)0.0042 (7)
C210.0331 (11)0.0520 (12)0.0278 (10)0.0083 (10)0.0114 (9)0.0126 (9)
O1W0.0421 (13)0.0259 (10)0.0667 (15)0.00000.0053 (11)0.0000
N10.0141 (7)0.0159 (6)0.0179 (6)0.0006 (5)0.0060 (5)0.0004 (5)
Geometric parameters (Å, º) top
Cl4—C41.744 (3)C3—C41.387 (3)
O11—C11.379 (3)C4—C51.375 (3)
O11—C121.425 (3)C5—C61.386 (3)
O13—C131.263 (3)C12—C131.515 (3)
O14—C131.248 (3)C3—H30.9300
O1W—H11W0.8800C5—H50.9300
O1W—H11Wi0.8800C6—H60.9300
N1—H120.8200C12—H1210.9700
N1—H110.8200C12—H1220.9700
N1—H130.8400C21—H2160.9600
N1—H140.8200C21—H2110.9600
C1—C21.404 (3)C21—H2120.9600
C1—C61.389 (3)C21—H2130.9600
C2—C211.509 (3)C21—H2140.9600
C2—C31.388 (3)C21—H2150.9600
C1—O11—C12115.95 (13)C2—C3—H3120.00
H11W—O1W—H11Wi107.00C4—C3—H3120.00
H12—N1—H14114.00C4—C5—H5120.00
H13—N1—H14104.00C6—C5—H5120.00
H11—N1—H12114.00C5—C6—H6120.00
H11—N1—H13105.00C1—C6—H6120.00
H11—N1—H14108.00C13—C12—H122109.00
H12—N1—H13111.00C13—C12—H121109.00
O11—C1—C2115.26 (16)O11—C12—H121109.00
O11—C1—C6124.41 (15)O11—C12—H122109.00
C2—C1—C6120.33 (17)H121—C12—H122108.00
C1—C2—C21120.32 (17)C2—C21—H211109.00
C1—C2—C3118.30 (17)C2—C21—H212109.00
C3—C2—C21121.37 (16)C2—C21—H213109.00
C2—C3—C4120.77 (16)C2—C21—H214110.00
C3—C4—C5120.76 (18)C2—C21—H215109.00
Cl4—C4—C3119.22 (14)C2—C21—H216109.00
Cl4—C4—C5120.01 (15)H214—C21—H215109.00
C4—C5—C6119.37 (17)H214—C21—H216109.00
C1—C6—C5120.46 (16)H215—C21—H216110.00
O11—C12—C13112.31 (15)H211—C21—H212109.00
O13—C13—O14125.29 (18)H211—C21—H213110.00
O13—C13—C12120.17 (16)H212—C21—H213109.00
O14—C13—C12114.55 (16)
C12—O11—C1—C2179.13 (15)C1—C2—C3—C40.2 (3)
C12—O11—C1—C61.0 (2)C21—C2—C3—C4179.98 (17)
C1—O11—C12—C13173.34 (14)C2—C3—C4—Cl4178.25 (14)
O11—C1—C2—C3179.57 (15)C2—C3—C4—C50.8 (3)
O11—C1—C2—C210.6 (2)Cl4—C4—C5—C6178.13 (14)
C6—C1—C2—C30.3 (3)C3—C4—C5—C60.9 (3)
C6—C1—C2—C21179.46 (17)C4—C5—C6—C10.4 (3)
O11—C1—C6—C5179.67 (16)O11—C12—C13—O131.7 (2)
C2—C1—C6—C50.2 (3)O11—C12—C13—O14178.71 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O13ii0.822.212.998 (4)161
N1—H12···O14iii0.822.092.886 (4)166
N1—H13···O13iv0.842.042.877 (4)173
N1—H14···O130.822.002.798 (4)163
O1W—H11W···O140.881.952.809 (4)165
Symmetry codes: (ii) x+1, y+2, z+1; (iii) x, y+2, z1/2; (iv) x, y1, z.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O130.961.922.849 (3)163
N1—H11···O140.962.553.330 (3)138
N1—H12···O13i0.852.032.867 (3)172
N1—H13···O11ii0.902.393.202 (3)150
N1—H13···O13ii0.902.152.869 (3)136
N1—H14···O14iii0.841.952.788 (3)178
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O130.901.952.847 (2)177
N1—H11···O140.902.553.347 (2)135
N1—H12···O13i0.971.882.847 (3)173
N1—H13···O11ii0.962.363.172 (2)142
N1—H13···O13ii0.962.132.892 (2)135
N1—H14···O14iii0.891.912.793 (2)173
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H11···O13i0.822.212.998 (4)161
N1—H12···O14ii0.822.092.886 (4)166
N1—H13···O13iii0.842.042.877 (4)173
N1—H14···O130.822.002.798 (4)163
O1W—H11W···O140.881.952.809 (4)165
Symmetry codes: (i) x+1, y+2, z+1; (ii) x, y+2, z1/2; (iii) x, y1, z.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaNH4+·C8H7O3NH4+·C8H6FO3NH4+·C9H8ClNO3·0.5H2O
Mr169.17187.17226.65
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)200200200
a, b, c (Å)17.824 (2), 7.1453 (6), 6.7243 (7)18.386 (2), 7.1223 (6), 6.7609 (6)38.0396 (9), 4.4560 (8), 12.944 (5)
β (°) 90.321 (9) 93.399 (8) 104.575 (5)
V3)856.38 (15)883.79 (14)2123.5 (9)
Z448
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.120.35
Crystal size (mm)0.35 × 0.25 × 0.100.26 × 0.20 × 0.050.35 × 0.35 × 0.10
Data collection
DiffractometerOxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Oxford Diffraction Gemini-S CCD-detector
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Multi-scan
(CrysAlis PRO; Agilent, 2013)
Tmin, Tmax0.920, 0.9800.960, 0.9800.913, 0.980
No. of measured, independent and
observed [I > 2σ(I)] reflections
5450, 1686, 1218 5619, 1738, 1304 6215, 2087, 1771
Rint0.0520.0330.030
(sin θ/λ)max1)0.6170.6170.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.163, 1.10 0.053, 0.116, 1.10 0.036, 0.091, 1.03
No. of reflections168617382087
No. of parameters109118132
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.240.16, 0.220.32, 0.28

Computer programs: CrysAlis PRO (Agilent, 2013), SIR92 (Altomare et al., 1993), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012), PLATON (Spek, 2009).

 

Acknowledgements

The author acknowledges financial support from the Science and Engineering Faculty, Queensland University of Technology.

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationEppel, S. & Bernstein, J. (2009). Cryst. Growth Des. 9, 1683–1691.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationKennard, C. H. L., Smith, G. & White, A. H. (1982). Acta Cryst. B38, 868–875.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationLiu, H.-L., Guo, S.-H., Li, Y.-Y. & Jian, F.-F. (2009). Acta Cryst. E65, o1905.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOdendal, J. A., Bruce, J. C., Koch, K. R. & Haynes, D. A. (2010). CrystEngComm, 12, 2398–2408.  Web of Science CSD CrossRef CAS Google Scholar
First citationPernak, J., Syguda, A., Janiszewska, D., Materna, K. & Praczyk, T. (2011). Tetrahedron, 67, 4838–4844.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieron, L., Kobylecka, J. & Turek, A. (2011). Organic Chemistry International, Volume 2011, Article ID 608165, 5 pages. doi: 10.1155/2011/608165.  Google Scholar
First citationSmith, G. (2014). Acta Cryst. C70, 315–319.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G. & Kennard, C. H. L. (1981). Cryst. Struct. Commun. 10, 295–299.  CAS Google Scholar
First citationSmith, G., Lynch, D. E., Sagatys, D. S., Kennard, C. H. L. & Katekar, G. F. (1992). Aust. J. Chem. 45, 1101–1108.  CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZumdahl, R. L. (2010). In A History of Weed Science in the United States. New York: Elsevier.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds