research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of (1S,2R,6R,7R,8S,12S)-4,10,17-tri­phenyl-15-thia-4,10-di­aza­penta­cyclo[5.5.5.01,16.02,6.08,12]hepta­deca-13,16-diene-3,5,9,11-tetrone p-xylene hemisolvate

aDepartment of Chemistry, University of Minnesota, Minneapolis, MN 55455-0431, USA
*Correspondence e-mail: nolan001@umn.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 12 November 2014; accepted 16 November 2014; online 21 November 2014)

The title tetrone compound, C32H22N2O4S· 0.5C8H10, is the major product (50% yield) of an attempted Diels–Alder reaction of 2-(α-styr­yl)thio­phene with N-phenyl­male­imide (2 equivalents) in toluene. Recrystallization of the resulting powder from p-xylene gave the title hemisolvate; the p-xylene mol­ecule is located about an inversion center. In the crystal, the primary tetrone contacts are between a carbonyl O atom and the four flagpole H atoms of the bi­cyclo­[2.2.2]octene core, forming chains along [001].

1. Chemical context

The title compound, (3), is the first reported double-Diels–Alder adduct obtained from a one-pot reaction of a 2-vinyl­thio­phene (Fig. 1[link]). This methodology may have use in the synthesis of novel ligands, zeolites, or polyamides.

[Scheme 1]
[Figure 1]
Figure 1
The mol­ecular structure of compound (3), with atom labelling (non-labelled atoms in the p-xylene solvent mol­ecule are related to the labelled atoms by inversion symmetry). Displacement ellipsoids are drawn at the 50% probability level.

Diels–Alder methodology: Reactions between vinyl­heterocycles and dienophiles have been useful in natural product synthesis and in the development of potential medicinal compounds (Booth et al., 2005[Booth, R. J., Lee, H. H., Kraker, A., Ortwine, D. F., Palmer, B. D., Sheehan, D. J. & Toogood, P. L. (2005). US Patent 20050250836.]; Kanai et al., 2005[Kanai, F., Murakata, C., Tsujita, T., Yamashita, Y., Mizukami, T. & Akinaga, S. (2005). US Patent 20050070591 A1.]). Reported heterocycles include indole, pyrrole (Le Strat et al., 2005[Le Strat, F., Vallette, H., Toupet, L. & Maddaluno, J. (2005). Eur. J. Org. Chem. pp. 5296-5305.]; Noland et al., 2013[Noland, W. E., Lanzatella, N. P., Dickson, R. R., Messner, M. E. & Nguyen, H. H. (2013). J. Heterocycl. Chem. 50, 795-808.]), furan (Brewer et al., 1971[Brewer, J. D., Davidson, W. J., Elix, J. A. & Leppik, R. A. (1971). Aust. J. Chem. 24, 1883-1898.]; Brewer & Elix, 1975b[Brewer, J. D. & Elix, J. A. (1975b). Aust. J. Chem. 28, 1083-1096.]; Davidson & Elix, 1970[Davidson, W. J. & Elix, J. A. (1970). Aust. J. Chem. 23, 2119-2131.]), benzo­furan, and benzo­thio­phene (Marrocchi et al., 2001[Marrocchi, A., Minuti, L., Taticchi, A. & Scheeren, H. W. (2001). Tetrahedron, 57, 4959-4965.]; Pihera et al., 1999[Pihera, P., Dvořáková, H. & Svoboda, J. (1999). Collect. Czech. Chem. Commun. 64, 389-407.]). A Diels–Alder reaction was attempted between 2-(α-styr­yl)thio­phene (1) (Tasch et al., 2013[Tasch, B. O. A., Bensch, L., Antovic, D. & Müller, T. J. J. (2013). Org. Biomol. Chem. 11, 6113-6118.]) and N-phenyl­male­imide (2) in an effort to expand this methodology (Fig. 2[link]). Based on work by Watson (2012[Watson, L. J. (2012). Pericyclic Reactions of Vinyl-Heteroaromatics: Multi-Component Domino and Sequential Processes. Dissertation, Newcastle University, England.]), the expected products were adduct (4), aromatized adduct (5), or (6) via ene addition of (2) to (4). Given the scope of simpler products from these reactions, it was surprising to obtain tetrone (3) in such a high yield.

[Figure 2]
Figure 2
Synthesis of the title compound (3). Structures (4)–(6) were the expected products.

Mechanism: Mechanisms proposed for double adducts (7) (Lovely et al., 2007[Lovely, C. J., Du, H., Sivappa, R., Bhandari, M. R., He, Y. & Dias, H. V. R. (2007). J. Org. Chem. 72, 3741-3749.]) and (8) (Noland et al., 1993[Noland, W. E., Konkel, M. J., Tempesta, M. S., Cink, R. D., Powers, D. M., Schlemper, E. O. & Barnes, C. L. (1993). J. Heterocycl. Chem. 30, 183-192.]) suggest a Diels–Alder reaction (Fig. 3[link]), with loss of H2 by an unknown pathway, and then a second cyclo­addition. Noland et al. (1993[Noland, W. E., Konkel, M. J., Tempesta, M. S., Cink, R. D., Powers, D. M., Schlemper, E. O. & Barnes, C. L. (1993). J. Heterocycl. Chem. 30, 183-192.]) observed that formation of (8) was accelerated by exposure to oxygen, and aromatization to (9) was favored over (8) in acid. Brewer & Elix (1975a[Brewer, J. D. & Elix, J. A. (1975a). Aust. J. Chem. 28, 1059-1081.]) reported a double adduct (10) and a hydro­per­oxy inter­mediate thereof; they proposed loss of H2 in an autoxidation followed by elimination of H2O2, a pathway that fits both observations made by the Noland group. The crystal structures of (3) and the hydro­peroxide (11) (Noland et al., 2014[Noland, W. E., Gullickson, G. C., Dickson, R. R., Groess, L. L. & Tritch, K. J. (2014). Acta Cryst. E70, 192-195.]), and preliminary HRMS and 1H NMR evidence that (12) is an inter­mediate to (3), all support the mechanism proposed by Brewer & Elix (1975a[Brewer, J. D. & Elix, J. A. (1975a). Aust. J. Chem. 28, 1059-1081.]).

[Figure 3]
Figure 3
Contextual compounds. Double adducts (7) and (8) were previously reported. In acid, aromatized adduct (9) was favored over double addition. Double adduct (10) is the closest reported kin of (3). Recently reported (11) supports the proposed mechanism. Hydro­peroxide (12) is a likely inter­mediate to (3). Dianhydride (13) is commonly used for ligand synthesis.

Applications: Compounds related to (3) are used as bridging ligands in organometallic complexes (see: §4. Database survey), synthesis of zeolites (Cantín et al., 2006[Cantín, A., Corma, A., Diaz-Cabanas, M. J., Jordá, J. & Moliner, M. (2006). J. Am. Chem. Soc. 128, 4216-4217.]; Inagaki et al., 2013[Inagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T. & Kubota, Y. (2013). Chem. Eur. J. 19, 7780-7786.]), and polyamides (Faghihi & Shabanian, 2010[Faghihi, K. & Shabanian, M. (2010). J. Chil. Chem. Soc. 55, 491-496.]). Most examples are derived from dianhydride (13) (Hu, 2008[Hu, T. (2008). Acta Cryst. E64, o1021.]) or a similar substrate, reacting with ammonia or primary amines, limiting variability to imido substitution. Domino method­ology has been developed that could give more diverse functionality (Strübing et al., 2005[Strübing, D., von Wangelin, A. J., Neumann, H., Gördes, D., Hübner, S., Klaus, S., Spannenberg, A. & Beller, M. (2005). Eur. J. Org. Chem. pp. 107-113.]).

2. Structural commentary

In compound (3) (Fig, 1), the N-phenyl rings (C24–C29) and (C30–C35) are twisted out of the plane of their respective succinimido rings, (N4/C3/C2/C6/C5) and (N10/C9/C8/C12/C11), by 54.83 (8) and 54.97 (8)°, respectively, with the same chirality, giving helical character along the major axis (C27 to C33). Figs. 4[link] and 5[link] show a left-handed mol­ecule. The bi­cyclo­[2.2.2]octene rings have a typical boat shape. The other rings are nearly planar; the r.m.s. deviations from their respective mean planes are 0.026 and 0.030 Å for the succin­imido rings (N4/C3/C2/C6/C5) and (N10/C9/C8/C12/C11), respectively, and 0.01 Å for the 3-hydro­thieno ring (S15/C16/C1/C13/C14). The two succinimido rings are inclined to one another by 29.24 (8)° and the N-phenyl rings are inclined to one another by 54.55 (8)°. The phenyl ring (C18–23) is inclined to the the N-phenyl rings, (C24–C29) and (C30–C35), by 89.89 (8) and 64.82 (8)°, respectively. There is an intra­molecular C—H⋯O hydrogen bond present (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23⋯O9 0.95 2.59 3.435 (2) 149
C2—H2⋯O5i 1.00 2.46 3.158 (2) 126
C6—H6⋯O5i 1.00 2.56 3.206 (2) 122
C8—H8⋯O5i 1.00 2.66 3.269 (2) 131
C12—H12⋯O5i 1.00 2.47 3.182 (2) 128
C14—H14⋯O11ii 0.95 2.50 3.413 (2) 162
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z.
[Figure 4]
Figure 4
A mol­ecule of (3) viewed near [1[\overline{1}]4], normal to the pyrrolo­[3,4-g]iso­indole ring system. The styryl­thio­phene unit (C21, C18, C17, C16, S15, C14) is forward. The N-phenyl rings are twisted so C26 and C32 are forward, C29 and C35 are behind.
[Figure 5]
Figure 5
Twisting of N-phenyl rings (C27 forward, C33 behind) viewed along [514], normal to the thio­phene moiety.

3. Supra­molecular features

In the crystal of (3), the carbonyl atom O5 forms weak hydrogen bonds with the endo face of the bi­cyclo­[2.2.2]octene unit, contacting H2, H6, H8, and H12. These contacts form chains along [001] (see Figs. 6[link] and 7[link], and Table 1[link]). Weak O11⋯H14 hydrogen bonds form inversion dimers (Table 1[link]).

[Figure 6]
Figure 6
The crystal packing of compound (3) viewed along [100]. Chains of O5⋯Hendo hydrogen bonds form along [001]. p-Xylene and inversion-related pairs (O11⋯H14) of mol­ecules form a checker-board pattern.
[Figure 7]
Figure 7
A view along the c axis of the crystal packing of compound (3). p-Xylene mol­ecules and inversion-related pairs (O11⋯H14) of mol­ecules occupy alternating layers about inversion centers.

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, Update November 2013; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) was performed for meso structures derived from the parent structure (14); see Fig. 8[link]. Fifteen organometallic entries were found, including inter­penetrating nets (Zhang et al., 2011[Zhang, Z.-J., Shi, W., Niu, Z., Li, H.-H., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2011). Chem. Commun. 47, 6425-6427.]), container complexes (Liu et al., 2007[Liu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). Inorg. Chem. 46, 5814-5816.]), and other multi-metal-center complexes (Yu et al., 2012[Yu, Z.-Q., Pan, M., Jiang, J.-J., Liu, Z.-M. & Su, C.-Y. (2012). Cryst. Growth Des. 12, 2389-2396.]; Zhang, 2012[Zhang, Y. (2012). Acta Cryst. E68, m1275.]). Thirteen organic entries were found, including the aforementioned (7), (8), and (11); an ammonia derivative (15) used as a ligand for inter­penetrating nets (Song et al., 2012[Song, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877-882.]); and a coumarin-derived double-Diels–Alder adduct (16) (Nicolaides et al., 1997[Nicolaides, D. N., Bezergiannidou-Balouctsi, C., Awad, R. W., Litinas, K. E., Malamidou-Xenikaki, E., Terzis, A. & Raptopoulou, C. P. (1997). J. Org. Chem. 62, 499-502.]).

[Figure 8]
Figure 8
Selected database survey entries: substructure (14) was the basis of the survey. The di­imide (15) has been reported several times as a ligand. The coumarin-derived double adduct (16) is the only entry that is spiro-fused to a six-membered ring.

5. Synthesis and crystallization

2-(α-Styr­yl)thio­phene (200 mg, Tasch et al., 2013[Tasch, B. O. A., Bensch, L., Antovic, D. & Müller, T. J. J. (2013). Org. Biomol. Chem. 11, 6113-6118.]) and N-phenyl­male­imide (372 mg, 2 equiv.) were partially dissolved in toluene (5 mL). The resulting mixture was refluxed open to air for 100 h. Upon cooling to room temperature, the resulting suspension was separated by column chromatography (SiO2, hexa­ne:ethyl acetate, gradient from 1:0 to 1:1). The desired fraction (Rf = 0.09 in 1:1) was concentrated at reduced pressure giving compound (3) as a white powder (287 mg, 50%, m.p. 554–555 K). 1H NMR (500 MHz, CD2Cl2) δ 7.498 (dd, J = 8.0, 1.5 Hz, 2H, H19, H23), 7.388 (tt, J = 7.0, 2.5 Hz, 4H, H26, H28, H32, H34), 7.374 (td, J = 5.0, 1.5 Hz, 2H, H20, H22), 7.351 (tt, J = 7.0, 1.5 Hz, 2H, H27, H33), 7.263 (tt, J = 4.5, 1.5 Hz, 1H, H21), 6.987 (dd, J = 7.0, 1.5 Hz, 4H, H25, H29, H31, H35), 6.600 (d, J = 6.0 Hz, 1H, H14), 6.446 (d, J = 6.5 Hz, 1H, H13), 4.607 (t, J = 3.3 Hz, 1H, H7), 3.435 (d, J = 8.5 Hz, 2H, H2, H12), 3.379 (dd, J = 8.3, 3.3 Hz, 2H, H6, H8); 13C NMR (126 MHz, CD2Cl2) δ 175.04 (C5, C9), 172.73 (C3, C11), 136.98 (C18), 135.21 (C16), 132.06 (C24, C30), 129.66 (C26, C28, C32, C34), 129.42 (C27, C33), 129.34 (C20, C22), 128.42 (C21), 127.71 (C17), 126.92 (C25, C29, C31, C35), 126.71 (C14), 126.63 (C19, C23), 126.16 (C13), 62.32 (C1), 47.35 (C2, C12), 41.72 (C6, C8), 40.47 (C7); IR (KBr, cm−1) 3065 (C—H), 2926 (C—H), 2853 (C—H), 1717 (C=O), 1497 (C=C), 1379 (C=C), 1188 (C—N), 743, 727; MS (ESI, PEG, m/z) [M+H]+ calculated for C32H22N2O4S 531.1373, found 531.1383.

Recrystallization from many solvent combinations was attempted. The first good crystals were obtained from toluene:1,2-di­chloro­ethane (DCE) [ratio 19:1]. These were empirically (3)·0.5C7H8·0.5DCE, with toluene on inversion centers and DCE on twofold axes; both solvents were disordered. Recrystallization from p-xylene gave orderly crystals of (3) by suction filtration after 5 days of slow evaporation at room temperature. No conditions were found that gave neat crystals of (3).

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 2[link]. C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.0.95–0.98 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C32H22N2O4S·0.5C8H10
Mr 583.65
Crystal system, space group Monoclinic, P21/c
Temperature (K) 123
a, b, c (Å) 10.5944 (14), 26.529 (4), 10.4286 (14)
β (°) 99.675 (2)
V3) 2889.4 (7)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.16
Crystal size (mm) 0.45 × 0.22 × 0.22
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.685, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 33190, 6576, 5803
Rint 0.025
(sin θ/λ)max−1) 0.648
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.00
No. of reflections 6576
No. of parameters 388
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.38, −0.36
Computer programs: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97, SHELXL2014 and SHELXTL2008 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Chemical context top

The title compound, (3), is the first reported double-Diels–Alder adduct obtained from a one-pot reaction of a 2-vinyl­thio­phene (Fig. 1). This methodology may have use in the synthesis of novel ligands, zeolites, or polyamides.

Diels–Alder methodology: Reactions between vinyl­heterocycles and dienophiles have been useful in natural product synthesis and in the development of potential medicinal compounds (Booth et al., 2005; Kanai et al., 2005). Reported heterocycles include indole, pyrrole (Le Strat et al., 2005; Noland et al., 2013), furan (Brewer et al., 1971; Brewer & Elix, 1975b; Davidson & Elix, 1970), benzo­furan, and benzo­thio­phene (Marrocchi et al., 2001; Pihera et al., 1999). A Diels–Alder reaction was attempted between 2-(α-styryl)thio­phene (1) (Tasch et al., 2013) and N-phenyl­male­imide (2) in an effort to expand this methodology (Fig. 2). Based on work by Watson (2012), the expected products were adduct (4), aromatized adduct (5), or (6) via ene addition of (2) to (4). Given the scope of simpler products from these reactions, it was surprising to obtain tetrone (3) in such a high yield.

Mechanism: Mechanisms proposed for double adducts (7) (Lovely et al., 2007) and (8) (Noland et al., 1993) suggest a Diels–Alder reaction (Fig. 3), with loss of H2 by an unknown pathway, and then a second cyclo­addition. Noland et al. (1993) observed that formation of (8) was accelerated by exposure to oxygen, and aromatization to (9) was favored over (8) in acid. Brewer & Elix (1975a) reported a double adduct (10) and a hydro­per­oxy inter­mediate thereof; they proposed loss of H2 in an autoxidation followed by elimination of H2O2, a pathway that fits both observations made by the Noland group. The crystal structures of (3) and the hydro­peroxide (11) (Noland et al., 2014), and preliminary HRMS and 1H NMR evidence that (12) is an inter­mediate to (3), all support the mechanism proposed by Brewer & Elix (1975a).

Applications: Compounds related to (3) are used as bridging ligands in organometallic complexes (see: §4. Database survey), synthesis of zeolites (Cantín et al., 2006; Inagaki et al., 2013), and polyamides (Faghihi & Shabanian, 2010). Most examples are derived from dianhydride (13) (Hu, 2008) or a similar substrate, reacting with ammonia or primary amines, limiting variability to imido substitution. Domino methodology has been developed that could give more diverse functionality (Strübing et al., 2005).

Structural commentary top

In compound (3) (Fig, 1), the N-phenyl rings (C24–C29) and (C30–C35) are twisted out of the plane of their respective succinimido rings, (N4/C3/C2/C6/C5) and (N10/C9/C8/C12/C11), by 54.83 (8) and 54.97 (8)°, respectively, with the same chirality, giving helical character along the major axis (C27 to C33). Figs. 4 and 5 show a left-handed molecule. The bi­cyclo­[2.2.2]octene rings have a typical boat shape. The other rings are nearly planar; the r.m.s. deviations from their respective mean planes are 0.026 and 0.030 Å for the succinimido rings (N4/C3/C2/C6/C5) and (N10/C9/C8/C12/C11), respectively, and 0.01 Å for the 3-hydro­thieno ring (S15/C16/C1/C13/C14). The two succinimido rings are inclined to one another by 29.24 (8)° and the N-phenyl rings are inclined to one another by 54.55 (8)°. The phenyl ring (C18–23) is inclined to the the N-phenyl rings, (C24–C29) and (C30–C35), by 89.89 (8) and 64.82 (8)°, respectively. There is an intra­molecular C—H···O hydrogen bond present (Table 1).

Supra­molecular features top

In the crystal of (3), the carbonyl atom O5 forms weak hydrogen bonds with the endo face of the bi­cyclo­[2.2.2]octene unit, contacting H2, H6,and H12. These contacts form chains along [001] (see Figs. 6 and 7, and Table 1). Weak O11···H14 hydrogen bonds form inversion dimers (Table 1).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, Update November 2013; Groom & Allen, 2014) was performed for meso structures derived from the parent structure (14); see Fig. 8. Fifteen organometallic entries were found, including inter­penetrating nets (Zhang et al., 2011), container complexes (Liu et al., 2007), and other multi-metal-center complexes (Yu et al., 2012; Zhang, 2012). Thirteen organic entries were found, including the aforementioned (7), (8), and (11); an ammonia derivative (15) used as a ligand for inter­penetrating nets (Song et al., 2012); and a coumarin-derived double-Diels-Alder adduct (16) (Nicolaides et al., 1997).

Synthesis and crystallization top

2-(α-Styryl)thio­phene (200 mg, Tasch et al., 2013) and N-phenyl­male­imide (372 mg, 2 equiv.) were partially dissolved in toluene (5 mL). The resulting mixture was refluxed open to air for 100 h. Upon cooling to room temperature, the resulting suspension was separated by column chromatography (SiO2, hexane:ethyl acetate, gradient from 1:0 to 1:1). The desired fraction (Rf = 0.09 in 1:1) was concentrated at reduced pressure giving compound (3) as a white powder (287 mg, 50%, m.p. 554–555 K). 1H NMR (500 MHz, CD2Cl2) δ 7.498 (dd, J = 8.0, 1.5 Hz, 2H, H19, H23), 7.388 (tt, J = 7.0, 2.5 Hz, 4H, H26, H28, H32, H34), 7.374 (td, J = 5.0, 1.5 Hz, 2H, H20, H22), 7.351 (tt, J = 7.0, 1.5 Hz, 2H, H27, H33), 7.263 (tt, J = 4.5, 1.5 Hz, 1H, H21), 6.987 (dd, J = 7.0, 1.5 Hz, 4H, H25, H29, H31, H35), 6.600 (d, J = 6.0 Hz, 1H, H14), 6.446 (d, J = 6.5 Hz, 1H, H13), 4.607 (t, J = 3.3 Hz, 1H, H7), 3.435 (d, J = 8.5 Hz, 2H, H2, H12), 3.379 (dd, J = 8.3, 3.3 Hz, 2H, H6, H8); 13C NMR (126 MHz, CD2Cl2) δ 175.04 (C5, C9), 172.73 (C3, C11), 136.98 (C18), 135.21 (C16), 132.06 (C24, C30), 129.66 (C26, C28, C32, C34), 129.42 (C27, C33), 129.34 (C20, C22), 128.42 (C21), 127.71 (C17), 126.92 (C25, C29, C31, C35), 126.71 (C14), 126.63 (C19, C23), 126.16 (C13), 62.32 (C1), 47.35 (C2, C12), 41.72 (C6, C8), 40.47 (C7); IR (KBr, cm–1) 3065 (C—H), 2926 (C—H), 2853 (C—H), 1717 (CO), 1497 (C C), 1379 (CC), 1188 (C—N), 743, 727; MS (ESI, PEG, m/z) [M+H]+ calculated for C32H22N2O4S 531.1373, found 531.1383.

Recrystallization from many solvent combinations was attempted. The first good crystals were obtained from toluene:1,2-di­chloro­ethane (DCE) [ratio 19:1]. These were empirically (3)·0.5C7H8·0.5DCE, with toluene on inversion centers and DCE on twofold axes; both solvents were disordered. Recrystallization from p-xylene gave orderly crystals of (3) by suction filtration after 5 days of slow evaporation at room temperature. No conditions were found that gave neat crystals of (3).

Refinement top

Crystal data, data collection, and structure refinement details are summarized in Table 2. C-bound H atoms were placed in calculated positions and refined as riding atoms, with C—H = 0.0.95–0.98 Å and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Booth et al. (2005); Brewer & Elix (1975a, 1975b); Brewer et al. (1971); Cantín et al. (2006); Davidson & Elix (1970); Faghihi & Shabanian (2010); Groom & Allen (2014); Hu (2008); Inagaki et al. (2013); Kanai et al. (2005); Le Strat, Vallette, Toupet & Maddaluno (2005); Liu et al. (2007); Lovely et al. (2007); Nicolaides et al. (1997); Noland et al. (1993, 2013, 2014); Pihera et al. (1999); Song et al. (2012); Strübing et al. (2005); Tasch et al. (2013); Watson (2012); Zhang (2012); Zhang et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL2008 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

Figures top
The molecular structure of compound (3), with atom labelling (non-labelled atoms in the p-xylene solvent molecule are related to the labelled atoms by inversion symmetry). Displacement ellipsoids are drawn at the 50% probability level.

Synthesis of the title compound (3). Structures (4)–(6) were the expected products.

Contextual compounds. Double adducts (7) and (8) were previously reported. In acid, aromatized adduct (9) was favored over double addition. Double adduct (10) is the closest reported kin of (3). Recently reported (11) supports the proposed mechanism. Hydroperoxide (12) is a likely intermediate to (3). Dianhydride (13) is commonly used for ligand synthesis.

A molecule of (3) viewed near [114], normal to the pyrrolo[3,4-g]isoindole ring system. The styrylthiophene unit (C21, C18, C17, C16, S15, C14) is forward. The N-phenyl rings are twisted so C26 and C32 are forward, C29 and C35 are behind.

Twisting of N-phenyl rings (C27 forward, C33 behind) viewed along [514], normal to the thiophene moiety.

The crystal packing of compound (3) viewed along [100]. Chains of O5···Hendo hydrogen bonds form along [001]. p-Xylene and inversion-related pairs (O11···H14) of molecules form a checker-board pattern.

A view along the c axis of the crystal packing of compound (3). p-Xylene molecules and inversion-related pairs (O11···H14) of molecules occupy alternating layers about inversion centers.

Selected database survey entries: substructure (14) was the basis of the survey. The diimide (15) has been reported several times as a ligand. The coumarin-derived double adduct (16) is the only entry that is spiro-fused to a six-membered ring.
(1S,2R,6R,7R,8S,12S)-4,10,17-Triphenyl-15-thia-4,10-diazapentacyclo[5.5.5.01,16.02,6.08,12]heptadeca-13,16-diene-3,5,9,11-tetrone p-xylene hemisolvate top
Crystal data top
C32H22N2O4S·0.5C8H10Dx = 1.342 Mg m3
Mr = 583.65Melting point: 554 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5944 (14) ÅCell parameters from 2771 reflections
b = 26.529 (4) Åθ = 3.1–27.4°
c = 10.4286 (14) ŵ = 0.16 mm1
β = 99.675 (2)°T = 123 K
V = 2889.4 (7) Å3Plate, colourless
Z = 40.45 × 0.22 × 0.22 mm
F(000) = 1220
Data collection top
Bruker APEXII CCD
diffractometer
5803 reflections with I > 2σ(I)
Radiation source: sealed tubeRint = 0.025
ϕ and ω scansθmax = 27.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1313
Tmin = 0.685, Tmax = 0.746k = 3434
33190 measured reflectionsl = 1313
6576 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.109 w = 1/[σ2(Fo2) + (0.0547P)2 + 1.9057P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.001
6576 reflectionsΔρmax = 0.38 e Å3
388 parametersΔρmin = 0.36 e Å3
Crystal data top
C32H22N2O4S·0.5C8H10V = 2889.4 (7) Å3
Mr = 583.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.5944 (14) ŵ = 0.16 mm1
b = 26.529 (4) ÅT = 123 K
c = 10.4286 (14) Å0.45 × 0.22 × 0.22 mm
β = 99.675 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6576 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5803 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.746Rint = 0.025
33190 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.00Δρmax = 0.38 e Å3
6576 reflectionsΔρmin = 0.36 e Å3
388 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.47103 (13)0.62662 (5)0.07444 (13)0.0168 (3)
C20.56246 (13)0.67315 (5)0.10206 (13)0.0171 (3)
H20.60370.68050.02460.021*
O30.74841 (10)0.63409 (4)0.23636 (11)0.0275 (2)
C30.66409 (13)0.66474 (5)0.22147 (13)0.0188 (3)
N40.64349 (11)0.70008 (4)0.31639 (11)0.0183 (2)
O50.51276 (10)0.76804 (4)0.33509 (10)0.0237 (2)
C50.54585 (13)0.73378 (5)0.27202 (13)0.0174 (3)
C60.48591 (13)0.71923 (5)0.13506 (13)0.0168 (3)
H60.49310.74750.07330.020*
C70.34372 (13)0.70480 (5)0.13224 (13)0.0171 (3)
H70.29380.73410.15730.020*
C80.29297 (13)0.68806 (5)0.00915 (13)0.0186 (3)
H80.29800.71660.07090.022*
O90.06508 (10)0.69309 (4)0.00144 (11)0.0270 (2)
C90.15643 (13)0.66936 (5)0.02085 (13)0.0202 (3)
N100.15215 (11)0.61919 (4)0.06089 (11)0.0195 (2)
O110.28909 (10)0.56023 (4)0.12507 (11)0.0262 (2)
C110.27107 (13)0.60134 (5)0.08300 (13)0.0196 (3)
C120.36946 (13)0.64258 (5)0.04520 (13)0.0181 (3)
H120.41270.65110.12060.022*
C130.53628 (13)0.57771 (5)0.05823 (14)0.0215 (3)
H130.58450.57210.00950.026*
C140.52206 (14)0.54274 (6)0.14507 (15)0.0246 (3)
H140.55840.51010.14370.030*
S150.43063 (4)0.56125 (2)0.26360 (4)0.02309 (10)
C160.40457 (13)0.62075 (5)0.19169 (13)0.0166 (3)
C170.33937 (12)0.66069 (5)0.22472 (13)0.0168 (3)
C180.27549 (13)0.66453 (5)0.34017 (13)0.0186 (3)
C190.33888 (16)0.64756 (7)0.46108 (15)0.0296 (3)
H190.42240.63360.46830.035*
C200.28055 (19)0.65094 (8)0.57056 (17)0.0400 (4)
H200.32430.63930.65220.048*
C210.15919 (18)0.67111 (7)0.56115 (18)0.0378 (4)
H210.11910.67310.63590.045*
C220.09641 (16)0.68835 (7)0.44274 (18)0.0332 (4)
H220.01270.70210.43610.040*
C230.15467 (15)0.68579 (6)0.33309 (16)0.0262 (3)
H230.11150.69870.25260.031*
C240.71510 (13)0.70018 (6)0.44597 (13)0.0202 (3)
C250.71973 (16)0.65636 (7)0.51885 (16)0.0303 (3)
H250.67600.62690.48350.036*
C260.78922 (18)0.65597 (8)0.64436 (17)0.0413 (4)
H260.79300.62620.69530.050*
C270.85297 (16)0.69899 (8)0.69534 (16)0.0401 (5)
H270.90070.69850.78100.048*
C280.84726 (15)0.74241 (8)0.62212 (16)0.0344 (4)
H280.89050.77190.65790.041*
C290.77860 (13)0.74341 (6)0.49609 (15)0.0244 (3)
H290.77530.77320.44520.029*
C300.03938 (13)0.58848 (5)0.06870 (14)0.0201 (3)
C310.02016 (15)0.58564 (6)0.03952 (15)0.0261 (3)
H310.01200.60440.11560.031*
C320.12704 (15)0.55524 (6)0.03589 (17)0.0299 (3)
H320.16860.55310.10960.036*
C330.17302 (15)0.52803 (6)0.07528 (17)0.0284 (3)
H330.24590.50700.07760.034*
C340.11321 (15)0.53137 (6)0.18289 (16)0.0288 (3)
H340.14560.51270.25910.035*
C350.00598 (15)0.56179 (6)0.18087 (15)0.0247 (3)
H350.03520.56420.25490.030*
C360.0645 (2)0.53975 (8)0.43607 (17)0.0449 (5)
H360.10880.56750.39180.054*
C370.0665 (2)0.54081 (8)0.46333 (18)0.0451 (5)
H370.11140.56900.43750.054*
C380.1347 (2)0.50084 (8)0.52868 (17)0.0449 (5)
C390.2786 (2)0.50191 (11)0.5586 (2)0.0633 (7)
H39A0.30980.53340.52620.095*
H39B0.30670.49970.65290.095*
H39C0.31310.47330.51630.095*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S150.0287 (2)0.01758 (17)0.02321 (18)0.00367 (13)0.00515 (14)0.00323 (13)
O30.0221 (5)0.0302 (6)0.0284 (6)0.0087 (4)0.0012 (4)0.0075 (4)
O50.0243 (5)0.0242 (5)0.0216 (5)0.0044 (4)0.0006 (4)0.0065 (4)
O90.0203 (5)0.0227 (5)0.0357 (6)0.0046 (4)0.0021 (4)0.0033 (4)
O110.0239 (5)0.0247 (5)0.0301 (6)0.0002 (4)0.0047 (4)0.0097 (4)
N40.0175 (5)0.0207 (6)0.0162 (5)0.0013 (4)0.0013 (4)0.0022 (4)
N100.0186 (6)0.0191 (6)0.0198 (6)0.0000 (4)0.0000 (4)0.0019 (4)
C10.0176 (6)0.0177 (6)0.0150 (6)0.0006 (5)0.0022 (5)0.0018 (5)
C20.0174 (6)0.0183 (6)0.0159 (6)0.0003 (5)0.0034 (5)0.0014 (5)
C30.0174 (6)0.0210 (7)0.0181 (6)0.0002 (5)0.0034 (5)0.0027 (5)
C50.0164 (6)0.0186 (6)0.0173 (6)0.0013 (5)0.0026 (5)0.0002 (5)
C60.0181 (6)0.0162 (6)0.0159 (6)0.0000 (5)0.0024 (5)0.0003 (5)
C70.0169 (6)0.0164 (6)0.0170 (6)0.0015 (5)0.0003 (5)0.0004 (5)
C80.0197 (7)0.0177 (6)0.0169 (6)0.0007 (5)0.0014 (5)0.0014 (5)
C90.0208 (7)0.0199 (7)0.0177 (6)0.0017 (5)0.0031 (5)0.0010 (5)
C110.0202 (7)0.0236 (7)0.0146 (6)0.0002 (5)0.0014 (5)0.0008 (5)
C120.0205 (6)0.0193 (6)0.0141 (6)0.0002 (5)0.0016 (5)0.0008 (5)
C130.0193 (7)0.0233 (7)0.0214 (7)0.0032 (5)0.0025 (5)0.0059 (5)
C140.0254 (7)0.0206 (7)0.0268 (7)0.0061 (6)0.0013 (6)0.0054 (6)
C160.0168 (6)0.0174 (6)0.0147 (6)0.0006 (5)0.0004 (5)0.0012 (5)
C170.0151 (6)0.0187 (6)0.0161 (6)0.0007 (5)0.0011 (5)0.0001 (5)
C180.0207 (7)0.0172 (6)0.0196 (6)0.0010 (5)0.0085 (5)0.0019 (5)
C190.0259 (8)0.0418 (9)0.0214 (7)0.0042 (7)0.0052 (6)0.0001 (6)
C200.0424 (10)0.0570 (12)0.0221 (8)0.0027 (9)0.0095 (7)0.0010 (8)
C210.0425 (10)0.0432 (10)0.0336 (9)0.0048 (8)0.0231 (8)0.0092 (7)
C220.0270 (8)0.0328 (9)0.0434 (10)0.0008 (7)0.0167 (7)0.0083 (7)
C230.0234 (7)0.0256 (7)0.0306 (8)0.0031 (6)0.0076 (6)0.0033 (6)
C240.0147 (6)0.0295 (7)0.0160 (6)0.0036 (5)0.0016 (5)0.0030 (5)
C250.0306 (8)0.0330 (8)0.0261 (8)0.0064 (7)0.0014 (6)0.0023 (6)
C260.0407 (10)0.0557 (12)0.0258 (8)0.0200 (9)0.0012 (7)0.0096 (8)
C270.0257 (8)0.0732 (14)0.0190 (7)0.0187 (8)0.0037 (6)0.0078 (8)
C280.0160 (7)0.0587 (11)0.0277 (8)0.0028 (7)0.0009 (6)0.0198 (8)
C290.0161 (6)0.0345 (8)0.0232 (7)0.0002 (6)0.0044 (5)0.0076 (6)
C300.0173 (6)0.0183 (6)0.0234 (7)0.0013 (5)0.0006 (5)0.0011 (5)
C310.0245 (7)0.0279 (8)0.0256 (7)0.0005 (6)0.0036 (6)0.0059 (6)
C320.0253 (8)0.0324 (8)0.0339 (8)0.0010 (6)0.0103 (6)0.0038 (7)
C330.0202 (7)0.0230 (7)0.0416 (9)0.0018 (6)0.0037 (6)0.0036 (6)
C340.0266 (8)0.0259 (8)0.0316 (8)0.0029 (6)0.0017 (6)0.0077 (6)
C350.0259 (7)0.0253 (7)0.0219 (7)0.0006 (6)0.0012 (6)0.0033 (6)
C360.0680 (14)0.0399 (10)0.0260 (8)0.0267 (10)0.0057 (8)0.0051 (7)
C370.0680 (14)0.0381 (10)0.0294 (9)0.0164 (9)0.0082 (9)0.0007 (8)
C380.0593 (12)0.0504 (11)0.0240 (8)0.0221 (10)0.0037 (8)0.0016 (8)
C390.0584 (14)0.0869 (19)0.0425 (12)0.0185 (13)0.0027 (10)0.0007 (12)
Geometric parameters (Å, º) top
S15—C141.7635 (16)C20—C211.381 (3)
S15—C161.7495 (14)C20—H200.9500
O3—C31.1986 (17)C21—C221.379 (3)
O5—C51.2081 (17)C21—H210.9500
O9—C91.2094 (18)C22—C231.389 (2)
O11—C111.2028 (17)C22—H220.9500
N4—C31.4069 (17)C23—H230.9500
N4—C51.3865 (17)C24—C251.385 (2)
N4—C241.4342 (17)C24—C291.387 (2)
N10—C91.3934 (18)C25—C261.390 (2)
N10—C111.4008 (18)C25—H250.9500
N10—C301.4370 (18)C26—C271.386 (3)
C1—C21.5655 (18)C26—H260.9500
C1—C121.5629 (18)C27—C281.378 (3)
C1—C131.4930 (19)C27—H270.9500
C1—C161.5181 (18)C28—C291.391 (2)
C2—C31.5196 (18)C28—H280.9500
C2—C61.5377 (18)C29—H290.9500
C2—H21.0000C30—C311.384 (2)
C5—C61.5124 (18)C30—C351.383 (2)
C6—C71.5498 (18)C31—C321.386 (2)
C6—H61.0000C31—H310.9500
C7—C81.5472 (18)C32—C331.383 (2)
C7—C171.5220 (18)C32—H320.9500
C7—H71.0000C33—C341.381 (2)
C8—C91.5147 (19)C33—H330.9500
C8—C121.5351 (19)C34—C351.391 (2)
C8—H81.0000C34—H340.9500
C11—C121.5167 (19)C35—H350.9500
C12—H121.0000C36—C371.370 (3)
C13—C141.323 (2)C36—C38i1.393 (3)
C13—H130.9500C36—H360.9500
C14—H140.9500C37—C381.395 (3)
C16—C171.3410 (19)C37—H370.9500
C17—C181.4805 (18)C38—C391.504 (3)
C18—C191.400 (2)C39—H39A0.9800
C18—C231.389 (2)C39—H39B0.9800
C19—C201.390 (2)C39—H39C0.9800
C19—H190.9500
C14—S15—C1690.95 (7)C17—C18—C23121.85 (13)
C3—N4—C5112.96 (11)C19—C18—C23118.48 (13)
C3—N4—C24122.96 (11)C18—C19—C20120.47 (15)
C5—N4—C24124.07 (11)C18—C19—H19119.8
C9—N10—C11112.78 (12)C20—C19—H19119.8
C9—N10—C30122.91 (12)C19—C20—C21120.27 (17)
C11—N10—C30124.15 (12)C19—C20—H20119.9
C2—C1—C12104.78 (10)C21—C20—H20119.9
C2—C1—C13114.97 (11)C20—C21—C22119.70 (15)
C2—C1—C16106.80 (10)C20—C21—H21120.1
C12—C1—C13114.50 (11)C22—C21—H21120.1
C12—C1—C16108.69 (11)C21—C22—C23120.46 (16)
C13—C1—C16106.76 (11)C21—C22—H22119.8
C1—C2—C3111.49 (11)C23—C22—H22119.8
C1—C2—C6109.56 (11)C18—C23—C22120.58 (15)
C3—C2—C6105.13 (10)C18—C23—H23119.7
C1—C2—H2110.2C22—C23—H23119.7
C3—C2—H2110.2N4—C24—C25118.68 (13)
C6—C2—H2110.2N4—C24—C29120.19 (13)
O3—C3—N4124.15 (13)C25—C24—C29121.13 (14)
O3—C3—C2128.01 (13)C24—C25—C26119.17 (17)
N4—C3—C2107.84 (11)C24—C25—H25120.4
O5—C5—N4124.88 (12)C26—C25—H25120.4
O5—C5—C6126.30 (12)C25—C26—C27120.14 (18)
N4—C5—C6108.79 (11)C25—C26—H26119.9
C2—C6—C5105.11 (11)C27—C26—H26119.9
C2—C6—C7110.30 (11)C26—C27—C28120.18 (15)
C5—C6—C7109.48 (11)C26—C27—H27119.9
C2—C6—H6110.6C28—C27—H27119.9
C5—C6—H6110.6C27—C28—C29120.45 (17)
C7—C6—H6110.6C27—C28—H28119.8
C6—C7—C8105.66 (11)C29—C28—H28119.8
C6—C7—C17108.10 (10)C24—C29—C28118.93 (16)
C8—C7—C17109.92 (11)C24—C29—H29120.5
C6—C7—H7111.0C28—C29—H29120.5
C8—C7—H7111.0N10—C30—C31118.24 (12)
C17—C7—H7111.0N10—C30—C35120.38 (13)
C7—C8—C9110.18 (11)C35—C30—C31121.37 (14)
C7—C8—C12110.23 (11)C30—C31—C32119.45 (14)
C9—C8—C12105.01 (11)C30—C31—H31120.3
C7—C8—H8110.4C32—C31—H31120.3
C9—C8—H8110.4C31—C32—C32119.85 (15)
C12—C8—H8110.4C31—C32—H32120.1
O9—C9—N10124.61 (13)C33—C32—H32120.1
O9—C9—C8126.75 (13)C32—C33—C34120.17 (14)
N10—C9—C8108.64 (12)C32—C33—H33119.9
O11—C11—N10124.66 (13)C34—C33—H33119.9
O11—C11—C12127.20 (13)C33—C34—C35120.67 (14)
N10—C11—C12108.14 (11)C33—C34—H34119.7
C1—C12—C8109.78 (10)C35—C34—H34119.7
C1—C12—C11111.29 (11)C30—C35—C34118.48 (14)
C8—C12—C11105.22 (11)C30—C35—H35120.8
C1—C12—H12110.1C34—C35—H35120.8
C8—C12—H12110.1C37—C36—C38i121.92 (18)
C11—C12—H12110.1C37—C36—H36119.0
C1—C13—C14115.08 (13)C38i—C36—H36119.0
C1—C13—H13122.5C36—C37—C38120.6 (2)
C14—C13—H13122.5C36—C37—H37119.7
S15—C14—C13115.07 (11)C38—C37—H37119.7
S15—C14—H14122.5C36i—C38—C37117.4 (2)
C13—C14—H14122.5C36i—C38—C39121.83 (19)
S15—C16—C1112.12 (9)C37—C38—C39120.7 (2)
S15—C16—C17130.82 (11)C38—C39—H39A109.5
C1—C16—C17117.04 (12)C38—C39—H39B109.5
C7—C17—C16111.89 (12)C38—C39—H39C109.5
C7—C17—C18121.95 (12)H39A—C39—H39B109.5
C16—C17—C18126.07 (12)H39A—C39—H39C109.5
C17—C18—C19119.66 (13)H39B—C39—H39C109.5
S15—C14—C13—C10.77 (17)C5—C6—C7—C1759.61 (13)
S15—C16—C1—C2122.42 (10)C6—C2—C1—C1261.10 (13)
S15—C16—C1—C12125.04 (10)C6—C2—C1—C13172.32 (11)
S15—C16—C1—C131.04 (13)C6—C2—C1—C1654.10 (13)
S15—C16—C17—C7179.78 (10)C6—C5—N4—C24175.22 (12)
S15—C16—C17—C183.1 (2)C6—C7—C8—C9175.86 (11)
O3—C3—N4—C5175.46 (14)C6—C7—C8—C1260.43 (14)
O3—C3—N4—C245.7 (2)C6—C7—C17—C1658.81 (14)
O3—C3—C2—C164.82 (19)C6—C7—C17—C18118.02 (13)
O3—C3—C2—C6176.55 (15)C7—C8—C12—C11121.82 (12)
O5—C5—N4—C3178.39 (13)C7—C17—C18—C19132.20 (14)
O5—C5—N4—C242.8 (2)C7—C17—C18—C2346.14 (19)
O5—C5—C6—C2179.22 (13)C8—C7—C17—C1656.06 (15)
O5—C5—C6—C760.75 (18)C8—C7—C17—C18127.11 (13)
O9—C9—N10—C11178.47 (14)C8—C9—N10—C112.16 (15)
O9—C9—N10—C305.9 (2)C8—C9—N10—C30173.45 (12)
O9—C9—C8—C759.85 (18)C8—C12—C1—C13170.30 (12)
O9—C9—C8—C12178.53 (14)C8—C12—C1—C1651.04 (14)
O11—C11—N10—C9175.58 (14)C9—N10—C11—C124.28 (15)
O11—C11—N10—C308.9 (2)C9—N10—C30—C3152.23 (19)
O11—C11—C12—C165.82 (18)C9—N10—C30—C35129.14 (15)
O11—C11—C12—C8175.34 (14)C9—C8—C12—C113.17 (13)
N4—C3—C2—C1115.29 (12)C9—C8—C7—C1759.45 (14)
N4—C3—C2—C63.34 (14)C11—N10—C30—C31122.88 (15)
N4—C5—C6—C21.26 (14)C11—N10—C30—C3555.75 (19)
N4—C5—C6—C7117.21 (12)C11—C12—C1—C1354.22 (15)
N4—C24—C25—C26179.77 (14)C11—C12—C1—C1665.04 (14)
N4—C24—C29—C28179.97 (13)C12—C1—C13—C14120.51 (14)
N10—C9—C8—C7119.51 (12)C12—C1—C16—C1756.16 (15)
N10—C9—C8—C120.83 (14)C12—C11—N10—C30171.27 (12)
N10—C11—C12—C1114.33 (12)C12—C8—C7—C1755.98 (14)
N10—C11—C12—C84.51 (14)C13—C1—C16—C17179.84 (12)
N10—C30—C31—C32178.26 (14)C13—C14—S15—C161.19 (13)
N10—C30—C35—C34178.12 (13)C14—S15—C16—C17179.83 (14)
C1—C2—C6—C5118.66 (11)C14—C13—C1—C160.18 (17)
C1—C2—C6—C70.75 (14)C16—C17—C18—C1944.2 (2)
C1—C12—C8—C71.97 (15)C16—C17—C18—C23137.49 (15)
C1—C12—C8—C9116.67 (12)C17—C18—C19—C20179.87 (16)
C1—C16—S15—C141.25 (10)C17—C18—C23—C22179.23 (14)
C1—C16—C17—C71.26 (17)C18—C19—C20—C210.0 (3)
C1—C16—C17—C18175.42 (12)C18—C23—C22—C211.9 (2)
C2—C1—C13—C14118.06 (14)C19—C18—C23—C222.4 (2)
C2—C1—C16—C1756.38 (15)C19—C20—C21—C220.6 (3)
C2—C1—C12—C862.83 (13)C20—C19—C18—C231.5 (2)
C2—C1—C12—C11178.92 (11)C20—C21—C22—C230.3 (3)
C2—C3—N4—C54.44 (15)C24—C25—C26—C270.1 (3)
C2—C3—N4—C24174.41 (12)C24—C29—C28—C270.6 (2)
C2—C6—C7—C862.06 (13)C25—C24—C29—C280.4 (2)
C2—C6—C7—C1755.57 (14)C25—C26—C27—C280.3 (3)
C3—N4—C5—C63.62 (15)C26—C25—C24—C290.1 (2)
C3—N4—C24—C2554.29 (19)C26—C27—C28—C290.6 (2)
C3—N4—C24—C29125.40 (15)C30—C31—C32—C330.1 (2)
C3—C2—C1—C12177.05 (11)C30—C35—C34—C330.1 (2)
C3—C2—C1—C1356.37 (15)C31—C30—C35—C340.5 (2)
C3—C2—C1—C1661.85 (13)C31—C32—C33—C340.4 (2)
C3—C2—C6—C51.26 (13)C32—C31—C30—C350.4 (2)
C3—C2—C6—C7119.17 (11)C32—C33—C34—C350.3 (2)
C5—N4—C24—C25124.43 (15)C36—C37—C38—C36i0.3 (3)
C5—N4—C24—C2955.88 (19)C36—C37—C38—C39179.96 (19)
C5—C6—C7—C8177.24 (11)C38i—C36—C37—C380.3 (3)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O90.952.593.435 (2)149
C2—H2···O5ii1.002.463.158 (2)126
C6—H6···O5ii1.002.563.206 (2)122
C8—H8···O5ii1.002.663.269 (2)131
C12—H12···O5ii1.002.473.182 (2)128
C14—H14···O11iii0.952.503.413 (2)162
Symmetry codes: (ii) x, y+3/2, z1/2; (iii) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C23—H23···O90.952.593.435 (2)149
C2—H2···O5i1.002.463.158 (2)126
C6—H6···O5i1.002.563.206 (2)122
C8—H8···O5i1.002.663.269 (2)131
C12—H12···O5i1.002.473.182 (2)128
C14—H14···O11ii0.952.503.413 (2)162
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC32H22N2O4S·0.5C8H10
Mr583.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)123
a, b, c (Å)10.5944 (14), 26.529 (4), 10.4286 (14)
β (°) 99.675 (2)
V3)2889.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.16
Crystal size (mm)0.45 × 0.22 × 0.22
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.685, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
33190, 6576, 5803
Rint0.025
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.00
No. of reflections6576
No. of parameters388
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.36

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), Mercury (Macrae et al., 2008), SHELXTL2008 (Sheldrick, 2008), enCIFer (Allen et al., 2004) and publCIF (Westrip, 2010).

 

Acknowledgements

The authors thank Victor G. Young Jr (X-Ray Crystallographic Laboratory, University of Minnesota) for assistance with the crystal structure and helpful consultation, and the Wayland E. Noland Research Fellowship Fund at the University of Minnesota Foundation for generous financial support of this project.

References

First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBooth, R. J., Lee, H. H., Kraker, A., Ortwine, D. F., Palmer, B. D., Sheehan, D. J. & Toogood, P. L. (2005). US Patent 20050250836.  Google Scholar
First citationBrewer, J. D., Davidson, W. J., Elix, J. A. & Leppik, R. A. (1971). Aust. J. Chem. 24, 1883–1898.  CrossRef CAS Google Scholar
First citationBrewer, J. D. & Elix, J. A. (1975a). Aust. J. Chem. 28, 1059–1081.  CrossRef CAS Google Scholar
First citationBrewer, J. D. & Elix, J. A. (1975b). Aust. J. Chem. 28, 1083–1096.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCantín, A., Corma, A., Diaz-Cabanas, M. J., Jordá, J. & Moliner, M. (2006). J. Am. Chem. Soc. 128, 4216–4217.  PubMed Google Scholar
First citationDavidson, W. J. & Elix, J. A. (1970). Aust. J. Chem. 23, 2119–2131.  CrossRef CAS Google Scholar
First citationFaghihi, K. & Shabanian, M. (2010). J. Chil. Chem. Soc. 55, 491–496.  CrossRef CAS Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationHu, T. (2008). Acta Cryst. E64, o1021.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationInagaki, S., Tsuboi, Y., Nishita, Y., Syahylah, T., Wakihara, T. & Kubota, Y. (2013). Chem. Eur. J. 19, 7780–7786.  Web of Science CrossRef CAS PubMed Google Scholar
First citationKanai, F., Murakata, C., Tsujita, T., Yamashita, Y., Mizukami, T. & Akinaga, S. (2005). US Patent 20050070591 A1.  Google Scholar
First citationLe Strat, F., Vallette, H., Toupet, L. & Maddaluno, J. (2005). Eur. J. Org. Chem. pp. 5296–5305.  Web of Science CSD CrossRef Google Scholar
First citationLiu, Z.-M., Liu, Y., Zheng, S.-R., Yu, Z.-Q., Pan, M. & Su, C.-Y. (2007). Inorg. Chem. 46, 5814–5816.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLovely, C. J., Du, H., Sivappa, R., Bhandari, M. R., He, Y. & Dias, H. V. R. (2007). J. Org. Chem. 72, 3741–3749.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarrocchi, A., Minuti, L., Taticchi, A. & Scheeren, H. W. (2001). Tetrahedron, 57, 4959–4965.  Web of Science CrossRef CAS Google Scholar
First citationNicolaides, D. N., Bezergiannidou-Balouctsi, C., Awad, R. W., Litinas, K. E., Malamidou-Xenikaki, E., Terzis, A. & Raptopoulou, C. P. (1997). J. Org. Chem. 62, 499–502.  CSD CrossRef PubMed CAS Web of Science Google Scholar
First citationNoland, W. E., Gullickson, G. C., Dickson, R. R., Groess, L. L. & Tritch, K. J. (2014). Acta Cryst. E70, 192–195.  CSD CrossRef IUCr Journals Google Scholar
First citationNoland, W. E., Konkel, M. J., Tempesta, M. S., Cink, R. D., Powers, D. M., Schlemper, E. O. & Barnes, C. L. (1993). J. Heterocycl. Chem. 30, 183–192.  CrossRef CAS Google Scholar
First citationNoland, W. E., Lanzatella, N. P., Dickson, R. R., Messner, M. E. & Nguyen, H. H. (2013). J. Heterocycl. Chem. 50, 795–808.  Web of Science CrossRef CAS Google Scholar
First citationPihera, P., Dvořáková, H. & Svoboda, J. (1999). Collect. Czech. Chem. Commun. 64, 389–407.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, X.-Z., Qin, C., Guan, W., Song, S.-Y. & Zhang, H.-J. (2012). New J. Chem. 36, 877–882.  Web of Science CSD CrossRef CAS Google Scholar
First citationStrübing, D., von Wangelin, A. J., Neumann, H., Gördes, D., Hübner, S., Klaus, S., Spannenberg, A. & Beller, M. (2005). Eur. J. Org. Chem. pp. 107–113.  Google Scholar
First citationTasch, B. O. A., Bensch, L., Antovic, D. & Müller, T. J. J. (2013). Org. Biomol. Chem. 11, 6113–6118.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWatson, L. J. (2012). Pericyclic Reactions of Vinyl-Heteroaromatics: Multi-Component Domino and Sequential Processes. Dissertation, Newcastle University, England.  Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYu, Z.-Q., Pan, M., Jiang, J.-J., Liu, Z.-M. & Su, C.-Y. (2012). Cryst. Growth Des. 12, 2389–2396.  Web of Science CSD CrossRef CAS Google Scholar
First citationZhang, Y. (2012). Acta Cryst. E68, m1275.  CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Z.-J., Shi, W., Niu, Z., Li, H.-H., Zhao, B., Cheng, P., Liao, D.-Z. & Yan, S.-P. (2011). Chem. Commun. 47, 6425–6427.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds