research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of piperidinium 4-nitro­phenolate

aDepartment of Applied Physics, Sri Venkateswara College of Engineering, Chennai 602 117, India, bDepartment of Physics, Presidency College, Chennai 600 005, India, and cDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India
*Correspondence e-mail: chakkaravarthi_2005@yahoo.com,mohan66@hotmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 13 November 2014; accepted 18 November 2014; online 21 November 2014)

In the title mol­ecular salt, C5H12N+·C6H4NO3, the piperidine ring adopts a chair conformation and the cation is protonated at the N atom. In the anion, the nitro group is twisted at an angle of 10.30 (11)° with respect to the attached benzene ring. In the crystal, N—H⋯O hydrogen bonds link adjacent anions and cations into infinite chains propagating along [100]. The chains are linked by C—H⋯π inter­actions, forming sheets lying parallel to (001).

1. Chemical context

Piperidine derivatives exhibit a broad-spectrum of biological activities such as anti-bacterial and anti-cancer (Parthiban et al., 2005[Parthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523-538.]). Nitro-aromatics are widely used either as materials or as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141-148.]). We report herein on the synthesis and crystal structure of the title mol­ecular salt, prepared by mixing piperidine with 4-nitro­phenol.

[Scheme 1]

2. Structural commentary

The mol­ecular structure of the title compound is illustrated in Fig. 1[link]. The geometric parameters are close to those reported for similar structures viz. 1-acetyl-c-3,t-3-dimethyl-r-2,c-6-di­phenyl­piperidin-4-one (Aravindhan et al., 2009[Aravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974.]), 4-nitro­phenol-piperazine (2/1) (Nagapandiselvi et al., 2013[Nagapandiselvi, P., Muralidharan, S., Srinivasan, T., Goplalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o1044.]) and 2-carboxyl­atopyridinium-4-nitro­phenol (1/1) (Sankar et al., 2014[Sankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o450.]). The piperidine ring (C8–C11/N2/C12) adopts a chair conformation with puckering parameters of Q = 0.5601 (17) Å, θ = 1.80 (17) and φ = 19 (10)°. The nitro group (N1/O2/O3) is twisted at an angle of 10.30 (11)° with respect to the attached benzene ring (C1–C6).

[Figure 1]
Figure 1
The mol­ecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

3. Supra­molecular features

In the crystal, adjacent cations and anions are linked by the N—H⋯O hydrogen bonds, which generate infinite chains along [100] (see Table 1[link] and Fig. 2[link]). The chains are linked by C—H⋯π inter­actions, forming sheets lying parallel to the ab plane (Table 1[link]).

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.90 1.92 2.788 (2) 161
N2—H2B⋯O1ii 0.90 1.80 2.6985 (15) 175
C6—H6⋯Cg1iii 0.93 2.75 3.428 (3) 130
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z].
[Figure 2]
Figure 2
The crystal packing of the title salt, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1[link] for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

4. Synthesis and crystallization

Piperidine (0.85 g) and 4-nitro­phenol (1.39) in an equimolar (1:1) ratio were added to methanol as solvent and the mixture was stirred for 2 h, giving a clear solution. The solution was filtered into a beaker and sealed with parafilm and kept at room temperature for one week. Colourless crystals suitable for X-ray diffraction analysis were obtained after one week.

5. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. The N-bound and C-bound H atoms were positioned geometrically and refined using a riding model: N—H = 0.90, C—H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, and with Uiso(H) = 1.2Ueq(N,C).

Table 2
Experimental details

Crystal data
Chemical formula C5H12N+·C6H4NO3
Mr 224.26
Crystal system, space group Orthorhombic, P212121
Temperature (K) 295
a, b, c (Å) 6.867 (5), 10.121 (4), 16.497 (6)
V3) 1146.6 (10)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.26 × 0.22 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.])
Tmin, Tmax 0.976, 0.981
No. of measured, independent and observed [I > 2σ(I)] reflections 6505, 2908, 2612
Rint 0.017
(sin θ/λ)max−1) 0.673
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections 2908
No. of parameters 146
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.13, −0.16
Computer programs: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Piperidine derivatives exhibit a broad-spectrum of biological activities such as anti-bacterial and anti-cancer (Parthiban et al., 2005). Nitro-aromatics are widely used either as materials or as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006). We report herein on the synthesis and crystal structure of the title molecular salt, prepared by mixing piperidine with 4-nitro­phenol.

Structural commentary top

\ The molecular structure of the title compound is illustrated in Fig. 1. The geometric parameters are close to those reported for similar structures viz. 1-acetyl-c-3,t-3-di­methyl-r-2,c-6-\ di­phenyl­piperidin-4-one (Aravindhan et al., 2009), 4-nitro­phenol-piperazine (2/1) (Nagapandiselvi et al., 2013) and 2-carboxyl­atopyridinium-4-nitro­phenol (1/1) (Sankar et al., 2014). The piperidine ring (C8–C11/N2/C12) adopts a chair conformation with puckering parameters of Q = 0.5601 (17) Å, θ = 1.80 (17) and ϕ = 19 (10)°. The nitro group (N1/O2/O3) is twisted at an angle of 10.30 (11)° with respect to the attached benzene ring (C1–C6).

Supra­molecular features top

In the crystal, adjacent cations and anions are linked by the N—H···O hydrogen bonds, which generate infinite chains along [100] (see Table 1 and Fig. 2). The chains are linked by C—H···π inter­actions, forming sheets lying parallel to the ab plane (Table 1).

Synthesis and crystallization top

Piperidine (0.85 g) and 4-nitro­phenol (1.39) in an equimolar (1:1) ratio were added to methanol as solvent and the mixture was stirred for 2 h, giving a clear solution. The solution was filtered into a beaker and sealed with parafilm and kept at room temperature for one week. Colourless crystals suitable for X-ray diffraction analysis were obtained after one week.

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 2. The N-bound and C-bound H-atoms were positioned geometrically and refined using a riding model: N—H = 0.90, C—H = 0.93 and 0.97 Å for CH and CH2 H atoms, respectively, and with Uiso(H) = 1.2Ueq(N,C).

Related literature top

For related literature, see: Aravindhan et al. (2009); Nagapandiselvi et al. (2013); Parthiban et al. (2005); Sankar et al. (2014); Yan et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

The crystal packing of the title salt, viewed along the b axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).
Piperidinium 4-nitrophenolate top
Crystal data top
C5H12N+·C6H4NO3F(000) = 480
Mr = 224.26Dx = 1.299 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 658 reflections
a = 6.867 (5) Åθ = 2.4–28.6°
b = 10.121 (4) ŵ = 0.10 mm1
c = 16.497 (6) ÅT = 295 K
V = 1146.6 (10) Å3Block, colourless
Z = 40.26 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2908 independent reflections
Radiation source: fine-focus sealed tube2612 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω and ϕ scanθmax = 28.6°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 69
Tmin = 0.976, Tmax = 0.981k = 1113
6505 measured reflectionsl = 2210
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.1138P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2908 reflectionsΔρmax = 0.13 e Å3
146 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.119 (6)
Crystal data top
C5H12N+·C6H4NO3V = 1146.6 (10) Å3
Mr = 224.26Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.867 (5) ŵ = 0.10 mm1
b = 10.121 (4) ÅT = 295 K
c = 16.497 (6) Å0.26 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2908 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2612 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.981Rint = 0.017
6505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.13 e Å3
2908 reflectionsΔρmin = 0.16 e Å3
146 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.08265 (18)0.22326 (12)0.09031 (7)0.0380 (3)
C20.0102 (2)0.31257 (12)0.14583 (7)0.0404 (3)
H20.02200.28480.19790.049*
C30.0144 (2)0.44223 (12)0.12419 (7)0.0403 (3)
H30.06380.50140.16210.048*
C40.03355 (18)0.48874 (11)0.04556 (7)0.0373 (3)
C50.1115 (2)0.39408 (13)0.00839 (8)0.0474 (3)
H50.14910.42110.06000.057*
C60.1336 (2)0.26352 (13)0.01258 (8)0.0465 (3)
H60.18200.20290.02470.056*
C80.6387 (2)0.21154 (17)0.33603 (10)0.0570 (4)
H8A0.70570.27490.37020.068*
H8B0.73480.15030.31490.068*
C90.5422 (3)0.28329 (19)0.26652 (10)0.0626 (4)
H9A0.63860.33420.23710.075*
H9B0.48540.21970.22940.075*
C100.3854 (3)0.37423 (16)0.29817 (10)0.0545 (4)
H10A0.44420.44280.33120.065*
H10B0.31990.41640.25300.065*
C110.2391 (2)0.29893 (14)0.34801 (9)0.0480 (3)
H11A0.14440.36010.37030.058*
H11B0.17030.23700.31350.058*
C120.4907 (2)0.13639 (13)0.38617 (9)0.0488 (3)
H12A0.43410.06630.35370.059*
H12B0.55490.09630.43240.059*
N10.10251 (18)0.08685 (11)0.11247 (8)0.0487 (3)
N20.33415 (17)0.22610 (10)0.41493 (6)0.0405 (3)
H2A0.24380.17840.44150.049*
H2B0.38510.28450.45020.049*
O10.00554 (15)0.61052 (8)0.02564 (6)0.0458 (2)
O20.1387 (2)0.00445 (11)0.06015 (8)0.0730 (4)
O30.0795 (2)0.05548 (12)0.18390 (7)0.0771 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0355 (6)0.0359 (5)0.0427 (6)0.0007 (5)0.0004 (5)0.0057 (5)
C20.0423 (6)0.0453 (6)0.0337 (5)0.0013 (6)0.0019 (5)0.0049 (5)
C30.0434 (7)0.0414 (6)0.0361 (6)0.0028 (5)0.0005 (5)0.0033 (5)
C40.0324 (6)0.0364 (6)0.0431 (6)0.0006 (5)0.0018 (5)0.0030 (5)
C50.0545 (8)0.0445 (7)0.0432 (7)0.0065 (6)0.0179 (6)0.0089 (5)
C60.0517 (8)0.0412 (6)0.0466 (7)0.0096 (6)0.0155 (6)0.0019 (5)
C80.0425 (7)0.0574 (8)0.0710 (10)0.0055 (7)0.0071 (7)0.0019 (7)
C90.0635 (10)0.0723 (10)0.0520 (8)0.0044 (9)0.0162 (8)0.0073 (8)
C100.0568 (9)0.0489 (8)0.0577 (8)0.0017 (7)0.0023 (7)0.0146 (7)
C110.0388 (7)0.0459 (7)0.0594 (8)0.0031 (6)0.0029 (6)0.0053 (6)
C120.0495 (8)0.0408 (6)0.0559 (7)0.0053 (6)0.0015 (7)0.0016 (6)
N10.0516 (7)0.0396 (6)0.0547 (7)0.0015 (5)0.0013 (6)0.0090 (5)
N20.0433 (6)0.0377 (5)0.0406 (5)0.0053 (4)0.0014 (4)0.0029 (4)
O10.0494 (5)0.0346 (4)0.0535 (5)0.0023 (4)0.0079 (5)0.0061 (4)
O20.1004 (10)0.0403 (5)0.0782 (8)0.0118 (6)0.0251 (7)0.0021 (5)
O30.1256 (13)0.0504 (6)0.0554 (6)0.0028 (7)0.0012 (7)0.0188 (5)
Geometric parameters (Å, º) top
C1—C21.3798 (18)C9—C101.510 (2)
C1—C61.3902 (18)C9—H9A0.9700
C1—N11.4347 (17)C9—H9B0.9700
C2—C31.3703 (18)C10—C111.506 (2)
C2—H20.9300C10—H10A0.9700
C3—C41.4187 (17)C10—H10B0.9700
C3—H30.9300C11—N21.4793 (18)
C4—O11.2900 (15)C11—H11A0.9700
C4—C51.4129 (18)C11—H11B0.9700
C5—C61.374 (2)C12—N21.4848 (19)
C5—H50.9300C12—H12A0.9700
C6—H60.9300C12—H12B0.9700
C8—C91.511 (2)N1—O21.2257 (17)
C8—C121.516 (2)N1—O31.2306 (16)
C8—H8A0.9700N2—H2A0.9000
C8—H8B0.9700N2—H2B0.9000
C2—C1—C6120.73 (12)H9A—C9—H9B108.2
C2—C1—N1119.70 (11)C11—C10—C9110.87 (13)
C6—C1—N1119.55 (12)C11—C10—H10A109.5
C3—C2—C1119.92 (11)C9—C10—H10A109.5
C3—C2—H2120.0C11—C10—H10B109.5
C1—C2—H2120.0C9—C10—H10B109.5
C2—C3—C4121.83 (12)H10A—C10—H10B108.1
C2—C3—H3119.1N2—C11—C10111.42 (13)
C4—C3—H3119.1N2—C11—H11A109.3
O1—C4—C5122.95 (11)C10—C11—H11A109.3
O1—C4—C3121.02 (11)N2—C11—H11B109.3
C5—C4—C3116.03 (11)C10—C11—H11B109.3
C6—C5—C4122.36 (12)H11A—C11—H11B108.0
C6—C5—H5118.8N2—C12—C8110.68 (12)
C4—C5—H5118.8N2—C12—H12A109.5
C5—C6—C1119.09 (12)C8—C12—H12A109.5
C5—C6—H6120.5N2—C12—H12B109.5
C1—C6—H6120.5C8—C12—H12B109.5
C9—C8—C12111.16 (14)H12A—C12—H12B108.1
C9—C8—H8A109.4O2—N1—O3121.66 (13)
C12—C8—H8A109.4O2—N1—C1119.64 (12)
C9—C8—H8B109.4O3—N1—C1118.70 (12)
C12—C8—H8B109.4C11—N2—C12112.69 (11)
H8A—C8—H8B108.0C11—N2—H2A109.1
C10—C9—C8110.09 (13)C12—N2—H2A109.1
C10—C9—H9A109.6C11—N2—H2B109.1
C8—C9—H9A109.6C12—N2—H2B109.1
C10—C9—H9B109.6H2A—N2—H2B107.8
C8—C9—H9B109.6
C6—C1—C2—C30.8 (2)C12—C8—C9—C1056.35 (18)
N1—C1—C2—C3178.12 (12)C8—C9—C10—C1156.27 (19)
C1—C2—C3—C40.2 (2)C9—C10—C11—N255.67 (18)
C2—C3—C4—O1178.45 (13)C9—C8—C12—N255.31 (17)
C2—C3—C4—C51.21 (19)C2—C1—N1—O2169.09 (14)
O1—C4—C5—C6177.44 (14)C6—C1—N1—O29.8 (2)
C3—C4—C5—C62.2 (2)C2—C1—N1—O39.8 (2)
C4—C5—C6—C11.8 (2)C6—C1—N1—O3171.33 (14)
C2—C1—C6—C50.2 (2)C10—C11—N2—C1255.30 (16)
N1—C1—C6—C5179.09 (14)C8—C12—N2—C1154.81 (16)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.901.922.788 (2)161
N2—H2B···O1ii0.901.802.6985 (15)175
C6—H6···Cg1iii0.932.753.428 (3)130
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.901.922.788 (2)161
N2—H2B···O1ii0.901.802.6985 (15)175
C6—H6···Cg1iii0.932.753.428 (3)130
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1/2, y+1, z+1/2; (iii) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC5H12N+·C6H4NO3
Mr224.26
Crystal system, space groupOrthorhombic, P212121
Temperature (K)295
a, b, c (Å)6.867 (5), 10.121 (4), 16.497 (6)
V3)1146.6 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.26 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.976, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
6505, 2908, 2612
Rint0.017
(sin θ/λ)max1)0.673
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.091, 1.04
No. of reflections2908
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.13, 0.16

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Acknowledgements

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

References

First citationAravindhan, S., Ponnuswamy, S., Jamesh, M., Ramesh, P. & Ponnuswamy, M. N. (2009). Acta Cryst. E65, o1974.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationNagapandiselvi, P., Muralidharan, S., Srinivasan, T., Goplalakrishnan, R. & Velmurugan, D. (2013). Acta Cryst. E69, o1044.  CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Balasubramanian, S., Aridoss, G. & Kabilan, S. (2005). Med. Chem. Res. 14, 523–538.  Web of Science CrossRef CAS Google Scholar
First citationSankar, A., Ambalatharasu, S., Peramaiyan, G., Chakkaravarthi, G. & Kanagadurai, R. (2014). Acta Cryst. E70, o450.  CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. Theochem, 764, 141–148.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds