organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1293-o1294

Crystal structure of 4-amino-1-(4-methyl­benz­yl)pyridinium bromide

aDepartment of Physics, Shrimati Indira Gandhi College, Tiruchirappalli 620 002, Tamilnadu, India, bPG & Research Department of Physics, National College (Autonomous), Tiruchirappalli 620 001, Tamilnadu, India, cDepartment of Pharmaceutical Chemistry, PGP College of Pharmaceutical Science & Research Institute, Namakkal 637 207, India, dDrug Discovery and Developement Research Group, Department of Pharmaceutical Technology, Anna University Chennai, BIT Campus, Tiruchirappalli 620 024, Tamilnadu, India, and eX-ray Crystallography Division, CSIR–Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500 607, Andhra Pradesh, India
*Correspondence e-mail: 05.sharmi@gmail.com

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 November 2014; accepted 19 November 2014; online 26 November 2014)

The title mol­ecular salt, C13H15N2+·Br, crystallized with two independent ion pairs (A and B) in the asymmetric unit. In the cations, the planes of the pyridine and benzene rings are inclined to one another by 79.32 (8) and 82.30 (10)° in ion pairs A and B, respectively. In the crystal, the anions and cations are connected by N—H⋯Br hydrogen bonds, forming a centrosymmetric tetra­mer-like unit enclosing an R84(16) ring motif. These units are linked via C—H⋯Br hydrogen bonds, forming a three-dimensional network.

1. Related literature

For the solid-phase synthesis of 1,3,5-tris­ubstituted pyridinium salts, see: Lago et al. (1998[Lago, M. A., Nguyen, T. T. & Bhatnagar, P. (1998). Tetrahedron Lett. 39, 3885-3888.]). For a review on quaternary pyridinium salts, see: Madaan & Tyagi (2008[Madaan, P. & Tyagi, V. K. (2008). J. Oleo Sci. 57, 197-215.]). For anti­microbial properties of quarternary amine derivatives, see: Thorsteinsson et al. (2003[Thorsteinsson, T., Masson, M., Kristinsson, K. G., Hjalmarsdottir, M. A., Hilmarsson, H. & Loftsson, T. (2003). J. Med. Chem. 46, 4173-4181.]). For the pharmacological activity of 4-amino­pyridine compounds, see: Hansebout & Blight (1996[Hansebout, R. R. & Blight, A. R. (1996). US Patent No. 5545648. (Issued: August 13, 1996 Assignment: The SpinalResearch Organization.)]); Kumar & Rao (2005[Kumar, P. V. & Rao, V. R. (2005). Indian J. Chem. Sect. B, 44, 2120-2125.]). For the anti­microbial activity of 4-am­ino­pyridine compounds, see: Ilangovan et al. (2012[Ilangovan, A., Venkatesan, P., Sundararaman, M. & Rejesh Kumar, R. (2012). Med. Chem. Res. 21, 694-702.]); Sundararaman et al. (2013[Sundararaman, M., Rajesh Kumar, R., Venkatesan, P. & Ilangovan, A. (2013). J. Med. Microbiol. 62, 241-248.]). For the crystal structures of related compounds, see: Seethalakshmi et al. (2006[Seethalakshmi, T., Kaliannan, P., Venkatesan, P., Fronczek, F. R. & Thamotharan, S. (2006). Acta Cryst. E62, o2353-o2355.]); Sundar et al. (2006a[Sundar, T. V., Parthasarathi, V., Ravikumar, K., Venkatesan, P. & Nallu, M. (2006a). Acta Cryst. E62, o1118-o1120.],b[Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006b). Acta Cryst. E62, o74-o76.],c[Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006c). Acta Cryst. E62, o482-o484.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • C13H15N2+·Br

  • Mr = 279.18

  • Orthorhombic, P b c a

  • a = 10.5646 (6) Å

  • b = 18.7980 (11) Å

  • c = 26.9782 (16) Å

  • V = 5357.7 (5) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.05 mm−1

  • T = 294 K

  • 0.13 × 0.11 × 0.09 mm

2.2. Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.66, Tmax = 0.79

  • 59314 measured reflections

  • 6400 independent reflections

  • 4055 reflections with I > 2σ(I)

  • Rint = 0.057

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.110

  • S = 1.01

  • 6400 reflections

  • 307 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯Br2 0.80 (3) 2.58 (3) 3.367 (4) 169 (3)
N4—H1N4⋯Br2 0.87 (3) 2.52 (4) 3.375 (3) 166 (3)
N4—H2N4⋯Br1 0.80 (3) 2.57 (3) 3.363 (3) 169 (3)
N2—H2N2⋯Br1i 0.79 (3) 2.65 (3) 3.410 (4) 161 (3)
C6—H6B⋯Br1ii 0.97 2.87 3.745 (3) 151
C14—H14⋯Br1iii 0.93 2.86 3.602 (3) 138
C18—H18⋯Br2iv 0.93 2.74 3.656 (3) 169
Symmetry codes: (i) -x+1, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) -x, -y, -z+1; (iv) [x-{\script{1\over 2}}, y, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quarternary amine derivatives have been reported to possess antimicrobial properties (Thorsteinsson et al., 2003). The use of 4-aminopyridine derivatives are reported to be useful for the treatment of a peripheral nervous system demyelinating disease selected from Guillain-Barre syndrome diabetes mellitus and hereditary sensory-motor neuropathy. Literature information revealed that the use of 4-aminopyridine had reduced chronic pain and spasticity in spinal cord injured patients (Hansebout et al., 1996). The crystal structures of a large number of pyridinium derivatives have been reported (Seethalakshmi et al., 2006; Sundar et al., 2006a,b,c) and their antimicrobial activities have also been reported (Ilangovan et al., 2012; Sundararaman et al., 2013).

The molecular structure of the two independent cations and anions of the title molecular salt is illustrated in Fig. 1. In the cations, the pyridine and benzene rings are inclined to one another by 79.32 (8)° in molecule A and by 82.30 (10)° in molecule B (Fig. 2). These values are similar to those observed in the crystal structures of some related compounds (Seethalakshmi et al., 2006; Sundar et al., 2006a,b,c). The overlap of the two cations in the title compound is illustrated in Fig. 2.

In the crystal, the cations and anions are linked via N-H···Br hydrogen bonds forming a tetramer-like unit enclosing an R84(16) ring motif (Table 1 and Fig. 3). These units are linked via C-H···Br hydrogen bonds forming a three-dimensional framework (Table 1 and Fig. 4).

Related literature top

For the solid-phase synthesis of 1,3,5-trisubstituted pyridinium salts, see: Lago et al. (1998). For a review on quaternary pyridinium salts, see: Madaan & Tyagi (2008). For antimicrobial properties of quarternary amine derivatives, see: Thorsteinsson et al. (2003). For the pharmacological activity of 4-aminopyridine compounds, see: Hansebout & Blight (1996); Kumar & Rao (2005). For the antimicrobial activity of 4-aminopyridine compounds, see: Ilangovan et al. (2012); Sundararaman et al. (2013). For the crystal structures of related compounds, see: Seethalakshmi et al. (2006); Sundar et al. (2006a,b,c).

Experimental top

A mixture of 4-methylbenzylbromide (0.1 mol) and 4-aminopyridine (0.1 mol) in dry acetone (50 ml) was stirred at room temperature for 2–12 h. The pale yellow solid that separated was filtered off, washed with toluene, dried under vacuum to give the stable title molecular salt. It was recrystallized from chloroform-acetone (1:1, v/v), giving thin yellow plate-like crystals.

Refinement top

The N-bound H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.93 - 0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Figures top
The molecular structure of the two independent cations and anions of the title molecular salt, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

A view of the molecular overlay of the two independent cations (cation A blue, cation B red).

A view of the tetramer-like unit enclosing an R84(16) ring motif in the crystal structure of the title salt. The N–H···Br hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal packing of the title compound, viewed along the a axis, showing the N–H···Br and C-H···Br hydrogen bonds as dashed lines (see Table 1 for details; H atoms not involved in these interactions have been omitted for clarity).
4-Amino-1-(4-methylbenzyl)pyridinium bromide top
Crystal data top
C13H15N2+·BrDx = 1.384 Mg m3
Mr = 279.18Melting point: 495 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
a = 10.5646 (6) ÅCell parameters from 5959 reflections
b = 18.7980 (11) Åθ = 2.3–24.2°
c = 26.9782 (16) ŵ = 3.05 mm1
V = 5357.7 (5) Å3T = 294 K
Z = 16Block, yellow
F(000) = 22720.13 × 0.11 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6400 independent reflections
Radiation source: fine focus sealed tube4055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
ω scansθmax = 28.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1313
Tmin = 0.66, Tmax = 0.79k = 2424
59314 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: mixed
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0541P)2 + 1.4559P]
where P = (Fo2 + 2Fc2)/3
6400 reflections(Δ/σ)max = 0.003
307 parametersΔρmax = 0.66 e Å3
0 restraintsΔρmin = 0.36 e Å3
Crystal data top
C13H15N2+·BrV = 5357.7 (5) Å3
Mr = 279.18Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 10.5646 (6) ŵ = 3.05 mm1
b = 18.7980 (11) ÅT = 294 K
c = 26.9782 (16) Å0.13 × 0.11 × 0.09 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
6400 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
4055 reflections with I > 2σ(I)
Tmin = 0.66, Tmax = 0.79Rint = 0.057
59314 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.66 e Å3
6400 reflectionsΔρmin = 0.36 e Å3
307 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.20297 (3)0.08005 (2)0.52655 (2)0.06129 (12)
Br20.49073 (3)0.11126 (2)0.33059 (2)0.07094 (13)
N10.8934 (2)0.23701 (13)0.47182 (8)0.0526 (6)
N20.6590 (3)0.07346 (18)0.43327 (13)0.0690 (8)
N30.0725 (2)0.02494 (12)0.31892 (8)0.0527 (6)
N40.2390 (3)0.07293 (16)0.40281 (12)0.0643 (7)
C10.8056 (3)0.24614 (16)0.43621 (11)0.0545 (7)
H10.79860.29020.42080.065*
C20.7276 (3)0.19293 (15)0.42224 (10)0.0512 (7)
H20.66850.20050.39720.061*
C30.7354 (3)0.12630 (15)0.44526 (11)0.0512 (7)
C40.8294 (3)0.11806 (17)0.48171 (11)0.0579 (7)
H40.83990.07440.49740.069*
C50.9042 (3)0.17331 (16)0.49393 (11)0.0571 (7)
H50.96520.16720.51840.069*
C60.9791 (3)0.29613 (17)0.48495 (13)0.0663 (9)
H6A1.01920.28590.51650.080*
H6B0.93010.33940.48870.080*
C71.0797 (3)0.30778 (15)0.44639 (11)0.0564 (7)
C81.0930 (3)0.37270 (18)0.42366 (14)0.0748 (10)
H81.03770.40950.43140.090*
C91.1883 (4)0.3837 (2)0.38927 (15)0.0849 (11)
H91.19590.42820.37440.102*
C101.2714 (3)0.3313 (2)0.37666 (13)0.0753 (10)
C111.2567 (3)0.26595 (19)0.39924 (14)0.0767 (10)
H111.31220.22920.39140.092*
C121.1617 (3)0.25412 (17)0.43303 (13)0.0684 (9)
H121.15270.20920.44710.082*
C131.3778 (5)0.3440 (3)0.34078 (15)0.1151 (16)
H13A1.45520.35110.35880.173*
H13B1.35980.38550.32130.173*
H13C1.38660.30350.31940.173*
C140.0710 (3)0.01177 (16)0.36826 (10)0.0579 (7)
H140.14180.00890.38280.069*
C150.0289 (3)0.02757 (16)0.39685 (10)0.0580 (7)
H150.02590.01830.43070.070*
C160.1381 (3)0.05795 (14)0.37614 (10)0.0503 (7)
C170.1351 (3)0.07113 (16)0.32494 (10)0.0579 (7)
H170.20520.09110.30930.070*
C180.0305 (3)0.05486 (16)0.29817 (11)0.0576 (7)
H180.02980.06470.26440.069*
C190.1864 (3)0.00951 (18)0.28897 (12)0.0677 (9)
H19A0.17020.02270.25480.081*
H19B0.25600.03850.30090.081*
C200.2245 (3)0.06752 (17)0.29092 (11)0.0585 (8)
C210.3357 (3)0.08812 (19)0.31320 (13)0.0685 (9)
H210.38780.05420.32790.082*
C220.3705 (4)0.1588 (2)0.31388 (13)0.0787 (10)
H220.44610.17160.32910.094*
C230.2974 (4)0.2105 (2)0.29295 (15)0.0845 (11)
C240.1864 (4)0.1896 (2)0.27187 (18)0.1021 (14)
H240.13370.22390.25800.122*
C250.1498 (4)0.1197 (2)0.27045 (16)0.0883 (12)
H250.07360.10740.25550.106*
C260.3374 (5)0.2880 (2)0.29280 (19)0.1277 (19)
H26A0.40780.29440.31490.192*
H26B0.26800.31710.30360.192*
H26C0.36180.30170.25990.192*
H1N20.613 (3)0.0776 (16)0.4100 (12)0.057 (10)*
H1N40.305 (3)0.0899 (17)0.3877 (13)0.074 (11)*
H2N40.230 (3)0.0685 (15)0.4322 (13)0.055 (9)*
H2N20.674 (3)0.0357 (18)0.4451 (12)0.059 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0765 (2)0.05288 (19)0.05445 (19)0.00899 (15)0.00301 (14)0.00835 (13)
Br20.0549 (2)0.1048 (3)0.05311 (19)0.00089 (17)0.00372 (14)0.01363 (17)
N10.0399 (12)0.0587 (15)0.0591 (14)0.0007 (11)0.0039 (10)0.0095 (11)
N20.0686 (19)0.0570 (19)0.081 (2)0.0046 (15)0.0201 (17)0.0050 (16)
N30.0518 (13)0.0577 (14)0.0486 (13)0.0059 (11)0.0006 (11)0.0076 (11)
N40.073 (2)0.0718 (19)0.0485 (16)0.0098 (15)0.0005 (15)0.0026 (14)
C10.0522 (16)0.0535 (17)0.0578 (17)0.0041 (14)0.0007 (13)0.0003 (13)
C20.0463 (15)0.0568 (17)0.0506 (15)0.0048 (13)0.0067 (12)0.0039 (13)
C30.0441 (15)0.0553 (18)0.0542 (16)0.0020 (13)0.0001 (12)0.0051 (13)
C40.0562 (17)0.0577 (19)0.0596 (18)0.0088 (14)0.0068 (14)0.0011 (14)
C50.0481 (16)0.066 (2)0.0575 (17)0.0103 (15)0.0097 (13)0.0048 (15)
C60.0542 (18)0.066 (2)0.078 (2)0.0051 (15)0.0061 (15)0.0222 (17)
C70.0517 (17)0.0467 (17)0.0709 (19)0.0067 (13)0.0070 (14)0.0114 (14)
C80.072 (2)0.0532 (19)0.099 (3)0.0015 (17)0.014 (2)0.0066 (18)
C90.102 (3)0.062 (2)0.090 (3)0.025 (2)0.012 (2)0.011 (2)
C100.083 (2)0.072 (2)0.071 (2)0.026 (2)0.0015 (18)0.0113 (18)
C110.071 (2)0.063 (2)0.096 (3)0.0114 (18)0.0198 (19)0.0146 (19)
C120.070 (2)0.0451 (17)0.090 (2)0.0081 (15)0.0087 (18)0.0014 (16)
C130.126 (4)0.122 (4)0.097 (3)0.054 (3)0.029 (3)0.012 (3)
C140.0540 (17)0.0681 (19)0.0515 (16)0.0025 (15)0.0119 (14)0.0086 (14)
C150.070 (2)0.0645 (19)0.0397 (14)0.0002 (15)0.0102 (14)0.0036 (13)
C160.0550 (17)0.0477 (16)0.0481 (16)0.0051 (13)0.0061 (13)0.0061 (12)
C170.0582 (18)0.067 (2)0.0490 (16)0.0052 (15)0.0103 (14)0.0033 (14)
C180.0652 (19)0.0655 (19)0.0422 (15)0.0035 (15)0.0077 (13)0.0094 (13)
C190.0534 (17)0.083 (2)0.0666 (19)0.0043 (16)0.0105 (15)0.0140 (17)
C200.0488 (17)0.072 (2)0.0544 (17)0.0084 (14)0.0113 (13)0.0025 (14)
C210.067 (2)0.074 (2)0.065 (2)0.0093 (17)0.0011 (16)0.0046 (17)
C220.085 (2)0.080 (3)0.071 (2)0.011 (2)0.0082 (19)0.0051 (19)
C230.098 (3)0.072 (2)0.084 (3)0.006 (2)0.045 (2)0.005 (2)
C240.087 (3)0.085 (3)0.134 (4)0.029 (2)0.019 (3)0.043 (3)
C250.059 (2)0.103 (3)0.102 (3)0.010 (2)0.001 (2)0.028 (2)
C260.166 (5)0.074 (3)0.143 (4)0.007 (3)0.074 (4)0.017 (3)
Geometric parameters (Å, º) top
N1—C51.343 (4)C11—C121.374 (4)
N1—C11.346 (3)C11—H110.9300
N1—C61.477 (4)C12—H120.9300
N2—C31.320 (4)C13—H13A0.9600
N2—H1N20.80 (3)C13—H13B0.9600
N2—H2N20.79 (3)C13—H13C0.9600
N3—C181.347 (4)C14—C151.341 (4)
N3—C141.354 (3)C14—H140.9300
N3—C191.478 (4)C15—C161.403 (4)
N4—C161.316 (4)C15—H150.9300
N4—H1N40.87 (3)C16—C171.404 (4)
N4—H2N40.80 (3)C17—C181.355 (4)
C1—C21.350 (4)C17—H170.9300
C1—H10.9300C18—H180.9300
C2—C31.400 (4)C19—C201.504 (4)
C2—H20.9300C19—H19A0.9700
C3—C41.406 (4)C19—H19B0.9700
C4—C51.346 (4)C20—C211.375 (5)
C4—H40.9300C20—C251.375 (5)
C5—H50.9300C21—C221.378 (5)
C6—C71.503 (4)C21—H210.9300
C6—H6A0.9700C22—C231.363 (5)
C6—H6B0.9700C22—H220.9300
C7—C81.373 (4)C23—C241.361 (6)
C7—C121.378 (4)C23—C261.519 (6)
C8—C91.385 (5)C24—C251.370 (6)
C8—H80.9300C24—H240.9300
C9—C101.363 (5)C25—H250.9300
C9—H90.9300C26—H26A0.9600
C10—C111.380 (5)C26—H26B0.9600
C10—C131.503 (5)C26—H26C0.9600
C5—N1—C1119.3 (2)C10—C13—H13A109.5
C5—N1—C6120.8 (2)C10—C13—H13B109.5
C1—N1—C6119.8 (3)H13A—C13—H13B109.5
C3—N2—H1N2119 (2)C10—C13—H13C109.5
C3—N2—H2N2117 (2)H13A—C13—H13C109.5
H1N2—N2—H2N2122 (3)H13B—C13—H13C109.5
C18—N3—C14118.4 (2)C15—C14—N3122.3 (3)
C18—N3—C19120.8 (2)C15—C14—H14118.9
C14—N3—C19120.7 (2)N3—C14—H14118.9
C16—N4—H1N4118 (2)C14—C15—C16120.6 (3)
C16—N4—H2N4115 (2)C14—C15—H15119.7
H1N4—N4—H2N4127 (3)C16—C15—H15119.7
N1—C1—C2121.7 (3)N4—C16—C15122.4 (3)
N1—C1—H1119.2N4—C16—C17121.2 (3)
C2—C1—H1119.2C15—C16—C17116.4 (3)
C1—C2—C3120.2 (3)C18—C17—C16120.2 (3)
C1—C2—H2119.9C18—C17—H17119.9
C3—C2—H2119.9C16—C17—H17119.9
N2—C3—C2121.9 (3)N3—C18—C17122.1 (3)
N2—C3—C4121.4 (3)N3—C18—H18118.9
C2—C3—C4116.8 (3)C17—C18—H18118.9
C5—C4—C3120.1 (3)N3—C19—C20112.8 (2)
C5—C4—H4120.0N3—C19—H19A109.0
C3—C4—H4120.0C20—C19—H19A109.0
N1—C5—C4122.0 (3)N3—C19—H19B109.0
N1—C5—H5119.0C20—C19—H19B109.0
C4—C5—H5119.0H19A—C19—H19B107.8
N1—C6—C7112.2 (2)C21—C20—C25117.7 (3)
N1—C6—H6A109.2C21—C20—C19121.0 (3)
C7—C6—H6A109.2C25—C20—C19121.3 (3)
N1—C6—H6B109.2C20—C21—C22120.3 (3)
C7—C6—H6B109.2C20—C21—H21119.8
H6A—C6—H6B107.9C22—C21—H21119.8
C8—C7—C12118.0 (3)C23—C22—C21122.0 (4)
C8—C7—C6120.7 (3)C23—C22—H22119.0
C12—C7—C6121.3 (3)C21—C22—H22119.0
C7—C8—C9120.5 (3)C24—C23—C22117.1 (4)
C7—C8—H8119.8C24—C23—C26121.1 (4)
C9—C8—H8119.8C22—C23—C26121.8 (4)
C10—C9—C8121.8 (3)C23—C24—C25122.1 (4)
C10—C9—H9119.1C23—C24—H24119.0
C8—C9—H9119.1C25—C24—H24119.0
C9—C10—C11117.5 (3)C24—C25—C20120.7 (4)
C9—C10—C13121.8 (4)C24—C25—H25119.6
C11—C10—C13120.7 (4)C20—C25—H25119.6
C12—C11—C10121.3 (3)C23—C26—H26A109.5
C12—C11—H11119.4C23—C26—H26B109.5
C10—C11—H11119.4H26A—C26—H26B109.5
C11—C12—C7121.0 (3)C23—C26—H26C109.5
C11—C12—H12119.5H26A—C26—H26C109.5
C7—C12—H12119.5H26B—C26—H26C109.5
C5—N1—C1—C20.3 (4)C18—N3—C14—C150.1 (4)
C6—N1—C1—C2178.3 (3)C19—N3—C14—C15177.5 (3)
N1—C1—C2—C30.8 (4)N3—C14—C15—C160.9 (5)
C1—C2—C3—N2178.6 (3)C14—C15—C16—N4178.7 (3)
C1—C2—C3—C41.8 (4)C14—C15—C16—C170.7 (4)
N2—C3—C4—C5178.6 (3)N4—C16—C17—C18179.6 (3)
C2—C3—C4—C51.8 (4)C15—C16—C17—C180.2 (4)
C1—N1—C5—C40.3 (4)C14—N3—C18—C170.9 (4)
C6—N1—C5—C4178.2 (3)C19—N3—C18—C17178.4 (3)
C3—C4—C5—N10.8 (5)C16—C17—C18—N31.0 (5)
C5—N1—C6—C7103.4 (3)C18—N3—C19—C20123.3 (3)
C1—N1—C6—C774.6 (3)C14—N3—C19—C2059.2 (4)
N1—C6—C7—C8122.9 (3)N3—C19—C20—C21113.3 (3)
N1—C6—C7—C1257.6 (4)N3—C19—C20—C2566.9 (4)
C12—C7—C8—C91.5 (5)C25—C20—C21—C221.1 (5)
C6—C7—C8—C9178.0 (3)C19—C20—C21—C22178.8 (3)
C7—C8—C9—C100.2 (6)C20—C21—C22—C230.1 (5)
C8—C9—C10—C110.4 (6)C21—C22—C23—C241.2 (5)
C8—C9—C10—C13177.7 (4)C21—C22—C23—C26178.6 (3)
C9—C10—C11—C120.2 (5)C22—C23—C24—C251.5 (6)
C13—C10—C11—C12178.4 (4)C26—C23—C24—C25178.3 (4)
C10—C11—C12—C71.6 (5)C23—C24—C25—C200.5 (7)
C8—C7—C12—C112.2 (5)C21—C20—C25—C240.8 (6)
C6—C7—C12—C11177.3 (3)C19—C20—C25—C24179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br20.80 (3)2.58 (3)3.367 (4)169 (3)
N4—H1N4···Br20.87 (3)2.52 (4)3.375 (3)166 (3)
N4—H2N4···Br10.80 (3)2.57 (3)3.363 (3)169 (3)
N2—H2N2···Br1i0.79 (3)2.65 (3)3.410 (4)161 (3)
C6—H6B···Br1ii0.972.873.745 (3)151
C14—H14···Br1iii0.932.863.602 (3)138
C18—H18···Br2iv0.932.743.656 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1; (iv) x1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H1N2···Br20.80 (3)2.58 (3)3.367 (4)169 (3)
N4—H1N4···Br20.87 (3)2.52 (4)3.375 (3)166 (3)
N4—H2N4···Br10.80 (3)2.57 (3)3.363 (3)169 (3)
N2—H2N2···Br1i0.79 (3)2.65 (3)3.410 (4)161 (3)
C6—H6B···Br1ii0.972.873.745 (3)151
C14—H14···Br1iii0.932.863.602 (3)138
C18—H18···Br2iv0.932.743.656 (3)169
Symmetry codes: (i) x+1, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y, z+1; (iv) x1/2, y, z1/2.
 

Acknowledgements

NS thanks Dr K. Ravikumar of the Indian Institute of Chemical Technology, Hyderabad, for his kind help and useful discussions.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHansebout, R. R. & Blight, A. R. (1996). US Patent No. 5545648. (Issued: August 13, 1996 Assignment: The SpinalResearch Organization.)  Google Scholar
First citationIlangovan, A., Venkatesan, P., Sundararaman, M. & Rejesh Kumar, R. (2012). Med. Chem. Res. 21, 694–702.  Web of Science CrossRef CAS Google Scholar
First citationKumar, P. V. & Rao, V. R. (2005). Indian J. Chem. Sect. B, 44, 2120–2125.  Google Scholar
First citationLago, M. A., Nguyen, T. T. & Bhatnagar, P. (1998). Tetrahedron Lett. 39, 3885–3888.  CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMadaan, P. & Tyagi, V. K. (2008). J. Oleo Sci. 57, 197–215.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSeethalakshmi, T., Kaliannan, P., Venkatesan, P., Fronczek, F. R. & Thamotharan, S. (2006). Acta Cryst. E62, o2353–o2355.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Ravikumar, K., Venkatesan, P. & Nallu, M. (2006a). Acta Cryst. E62, o1118–o1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006b). Acta Cryst. E62, o74–o76.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006c). Acta Cryst. E62, o482–o484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSundararaman, M., Rajesh Kumar, R., Venkatesan, P. & Ilangovan, A. (2013). J. Med. Microbiol. 62, 241–248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationThorsteinsson, T., Masson, M., Kristinsson, K. G., Hjalmarsdottir, M. A., Hilmarsson, H. & Loftsson, T. (2003). J. Med. Chem. 46, 4173–4181.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages o1293-o1294
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds