research communications
of 3-amino-1-propylpyridinium bromide
aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600 025, India, and cDepartment of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: thamu@scbt.sastra.edu
The title molecular salt, C8H13N2+·Br−, crystallizes with two independent 3-aminopyridinium cations and two bromide anions in the (Z′ = 2). In the pyridine ring, the N atom is alkylated by a propyl group. The dihedral angle between the mean planes of the pyridinium ring and the propyl group is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B. In the crystal, the anions and cations are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming chains propagating along [100].
Keywords: crystal structure; molecular salt; pyridinium salt; N—H⋯Br hydrogen bonds; C—H⋯Br hydrogen bonds.
CCDC reference: 1035511
1. Chemical context
Aminopyridinium and 1-alkyl-aminopyridinium salts display a wide range of antimicrobial activity (Sundararaman et al., 2013; Ilangovan et al., 2012). They have found many applications such as surfactants (Gama et al., 1981), ionic liquids (Muldoon et al., 2010; Petkovic et al., 2011), liquid-crystal display mediums (Ezaki & Kokeguchi, 2006), ionic crystals for second-order non-linear optics (Anwar et al., 2001), phase-transfer catalysts in organic transformations (Kupetis et al., 2002) and additives for protein refolding processes (Yamamoto et al., 2011). In addition, the amino group in the pyridinium ring participates through hydrogen bonds with wool proteins (Zhao & Sun, 2007; Calas et al., 2007).
2. Structural commentary
The . The geometrical parameters of the cation moiety are comparable with those of a related structure, 3-amino-1-(4-nitrobenzyl)pyridinium bromide (Sundar et al., 2006). The molecular structure of the two cations are very similar with weighted and unit-weight r.m.s. fits of 0.089 and 0.081 Å, respectively, for ten fitted atoms (Fig. 2). The dihedral angle between the mean planes of the pyridinium ring (N2/C1–C5) and the propyl group (N1/C6–C8) is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B.
of the title salt, consists of two 3-aminopyrdinium cations and two bromide anions, as shown in Fig. 13. Supramolecular features
The and Fig. 3). Anion Br2 is involved in five hydrogen bonds as an acceptor while anion Br1 is involved in only two hydrogen bonds. The dimerization of cation A mediates through two bromide anions with the aid of two N—H⋯Br and C—H⋯Br hydrogen bonds. As shown in Fig. 4, these interactions generate an R42(12) loop. Atom C16 (via H16A) forms a C—H⋯Bri hydrogen bond with bromide anion Br2 [symmetry code: (i) x + 1, y, z]. The same Br2 anion acts as an acceptor for an N—H⋯Br hydrogen bond with atom N4 of cation B. These interactions form a chain which runs parallel to the a axis (Fig. 5).
of the title salt, is stabilized by a network of intermolecular N—H⋯Br and C—H⋯Br hydrogen bonds (Table 14. Database survey
A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for 4-aminopyridinium halide salts gave nine hits, while a search for 3-aminopyridinium salts yielded eight hits. They all have different substituents at the pyridine ring N position, and include for example, 2-(3-aminopyridinium-1-yl)propanoate hydrobromide hemihydrate (CCDC refcode: IVAWUY; Kowalczyk et al., 2011), 2-(3-aminopyridinium-1-yl)-3-carboxypropanoate monohydrate (CCDC refcode: LAQGAN; Millán Corrales et al., 2012), 3-amino-1-(carboxymethyl)pyridinium chloride (CCDC refcode: PABTIX; Kowalczyk et al., 2010) and 3-Amino-1-(4-nitrobenzyl)pyridinium bromide (CCDC refcode: XEBFUG; Sundar et al., 2006). The mean planes of the substituent groups at the ring N atom make dihedral angles of ca 80.3° with the 3-aminopyridinium ring in IVAWUY and ca 86.6° in PABTIX. In LAQGAN, the propanoate moiety is inclined at an angle of ca 86.6°, and the carboxy moiety by ca 68.4°, with respect to the 3-aminopyridinium ring. In XEBFUG, the 4-nitrobenzyl ring makes a dihedral angle of ca 88.7 ° with the 3-aminopyridinium ring.
5. Synthesis and crystallization
The title salt was prepared by dissolving 3-aminopyridine (0.94 g, 10 mM) in dried acetone (20 ml) and adding n-propyl bromide (1.48g, 12 mM). The reaction mixture was stirred at room temperature for 8 h. The title salt precipitated as a white solid, which was filtered and washed with cold acetone and dried in vacuum to afford the stable salt. It was recrystallized from an aqueous ethanol solution giving colourless prismatic crystals.
6. Refinement
The details of crystal data, data collection and structure . The N-bound H atoms were located in a difference Fourier map and freely refined. In the final cycles of the H atoms bound to atom N2 were refined with Uiso(H) = 1.1Ueq(N). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.
are summarized in Table 2
|
Supporting information
CCDC reference: 1035511
10.1107/S1600536814025665/su5025sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814025665/su5025Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814025665/su5025Isup3.cml
Aminopyridinium and 1-alkyl-aminopyridinium salts display a wide range of antimicrobial activity (Sundararaman et al., 2013; Ilangovan et al., 2012). They have found many applications such as surfactants (Gama et al., 1981), ionic liquids (Muldoon et al., 2010; Petkovic et al., 2011), liquid-crystal display mediums (Ezaki & Kokeguchi, 2006), ionic crystals for second-order non-linear optics (Anwar et al., 2001), phase-transfer catalysts in organic transformations (Kupetis et al., 2002) and additives for protein refolding processes (Yamamoto et al., 2011). In addition, the amino group in the pyridinium ring participates through hydrogen bonds with wool proteins (Zhao & Sun, 2007; Calas et al., 2007).
The
of the title salt, consists of two 3-aminopyrdinium cations and two bromide anions, as shown in Fig. 1. The geometrical parameters of the cation moiety are comparable with those of a related structure, 3-amino-1-(4-nitrobenzyl)pyridinium bromide (Sundar et al., 2006). The molecular structure of both cations are very similar with weighted and unit-weight r.m.s. fits of 0.089 and 0.081 Å, respectively, for ten fitted atoms (Fig. 2). The dihedral angle between the mean planes of the pyridinium ring (N2/C1–C5) and the propyl group (N1/C6–C8) is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B.The
of the title salt, is stabilized by a network of intermolecular N—H···Br and C—H···Br hydrogen bonds (Table 1 and Fig. 3). Anion Br2 is involved in five hydrogen bonds as an acceptor while anion Br1 is involved in only two hydrogen bonds. The dimerization of cation A mediates through two bromide anions with the aid of two N—H···Br and C—H···Br hydrogen bonds. As shown in Fig. 4, these interactions generate an R42(12) loop. Atom C16 (via H16A) forms a C—H···Bri hydrogen bond with bromide anion Br2 [symmetry code: (i) x + 1, y, z]. The same Br2 anion acts as an acceptor for an N—H···Br hydrogen bond with atom N4 of cation B. These interactions form a chain which runs parallel to the a axis (Fig. 5).A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for 4-aminopyridinium halide salts gave nine hits, while a search for 3-aminopyridinium salts yielded eight hits. They all have different substituents at the pyridine ring N position, and include for example, 2-(3-aminopyridinium-1-yl)propanoate hydrobromide hemihydrate (CCDC refcode: IVAWUY; Kowalczyk et al., 2011), 2-(3-aminopyridinium-1-yl)-3-carboxypropanoate monohydrate (CCDC refcode: LAQGAN; Millán Corrales et al., 2012), 3-amino-1-(carboxymethyl)pyridinium chloride (CCDC refcode: PABTIX; Kowalczyk et al., 2010) and 3-Amino-1-(4-nitrobenzyl)pyridinium bromide (CCDC refcode: XEBFUG; Sundar et al., 2006). The mean planes of the substituent groups at the ring N atom make dihedral angles of ca 80.3° with the 3-aminopyridinium ring in IVAWUY and ca 86.6° in PABTIX. In LAQGAN, the propanoate moiety is inclined at an angle of ca 86.6°, and the carboxy moiety by ca 68.4°, with respect to the 3-aminopyridinium ring. In XEBFUG, the 4-nitrobenzyl ring makes a dihedral angle of ca 88.7 ° with the 3-aminopyridinium ring.
The title salt was prepared by dissolving 3-aminopyridine (0.94 g, 10 mM) in dried acetone (20 ml) and adding n-propyl bromide (1.48g, 12 mM). The reaction mixture was stirred at room temperature for 8 h. The title salt precipitated as a white solid, which was filtered and washed with cold acetone and dried in vacuum to afford the stable salt. It was recrystallized from an aqueous ethanol solution giving colourless prismatic crystals.
The details of crystal data, data collection and structure
are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and freely refined. In the final cycles of the H atoms bound to atom N2 were refined with Uiso(H) = 1.1Ueq(N). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.Data collection: SMART (Bruker, 2008); cell
SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).The molecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Structural superimposition of the non-H atoms of the pyridinium cations (green: cation A; violet: cation B). The crystal packing of the title salt projected onto the bc plane. The N—H···Br and C—H···Br hydrogen bonds are shown as dashed lines (see Table 1 for details). Part of the of the title salt, showing the formation of an R24(12) ring motif (see Table 1 for details; only the interacting atoms are labelled). Part of the of the title salt, showing the formation of a hydrogen-bonded chain that runs parallel to the a axis (see Table 1 for details; only the interacting atoms are labelled). |
C8H13N2+·Br− | Dx = 1.481 Mg m−3 |
Mr = 217.11 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 5144 reflections |
a = 8.2937 (1) Å | θ = 2.8–23.4° |
b = 17.4137 (3) Å | µ = 4.17 mm−1 |
c = 26.9626 (4) Å | T = 296 K |
V = 3894.05 (10) Å3 | Prismolourec, colourless |
Z = 16 | 0.12 × 0.10 × 0.10 mm |
F(000) = 1760 |
Bruker SMART CCD area-detector diffractometer | 4491 independent reflections |
Radiation source: sealed tube | 2698 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.043 |
phi and ω scans | θmax = 27.6°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | h = −10→10 |
Tmin = 0.635, Tmax = 0.681 | k = −22→22 |
21922 measured reflections | l = −35→30 |
Refinement on F2 | Hydrogen site location: mixed |
Least-squares matrix: full | H atoms treated by a mixture of independent and constrained refinement |
R[F2 > 2σ(F2)] = 0.036 | w = 1/[σ2(Fo2) + (0.0353P)2 + 1.288P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max < 0.001 |
S = 1.00 | Δρmax = 0.44 e Å−3 |
4491 reflections | Δρmin = −0.31 e Å−3 |
214 parameters | Extinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
4 restraints | Extinction coefficient: 0.00312 (18) |
C8H13N2+·Br− | V = 3894.05 (10) Å3 |
Mr = 217.11 | Z = 16 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 8.2937 (1) Å | µ = 4.17 mm−1 |
b = 17.4137 (3) Å | T = 296 K |
c = 26.9626 (4) Å | 0.12 × 0.10 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 4491 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2008) | 2698 reflections with I > 2σ(I) |
Tmin = 0.635, Tmax = 0.681 | Rint = 0.043 |
21922 measured reflections |
R[F2 > 2σ(F2)] = 0.036 | 4 restraints |
wR(F2) = 0.085 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.44 e Å−3 |
4491 reflections | Δρmin = −0.31 e Å−3 |
214 parameters |
Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL2014/6 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.639091. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.82809 (4) | 0.05269 (2) | 0.70989 (2) | 0.06468 (14) | |
N1 | −0.0380 (3) | 0.39600 (15) | 0.40238 (10) | 0.0563 (7) | |
N2 | −0.3901 (4) | 0.3230 (2) | 0.46352 (12) | 0.0885 (10) | |
H2A | −0.472 (3) | 0.2941 (19) | 0.4526 (13) | 0.097* | |
H2B | −0.341 (4) | 0.305 (2) | 0.4909 (10) | 0.097* | |
C1 | −0.1328 (4) | 0.36563 (18) | 0.43751 (12) | 0.0566 (8) | |
H1 | −0.0897 | 0.3536 | 0.4684 | 0.068* | |
C4 | −0.2546 (4) | 0.4017 (2) | 0.34649 (13) | 0.0644 (9) | |
H4 | −0.2950 | 0.4143 | 0.3154 | 0.077* | |
C2 | −0.2949 (4) | 0.35190 (19) | 0.42823 (12) | 0.0556 (8) | |
C7 | 0.1580 (4) | 0.4864 (2) | 0.43960 (13) | 0.0626 (9) | |
H7A | 0.0959 | 0.4875 | 0.4701 | 0.075* | |
H7B | 0.1185 | 0.5272 | 0.4183 | 0.075* | |
C3 | −0.3540 (4) | 0.37094 (18) | 0.38170 (12) | 0.0601 (9) | |
H3 | −0.4622 | 0.3627 | 0.3744 | 0.072* | |
C8 | 0.3336 (4) | 0.5006 (2) | 0.45141 (14) | 0.0739 (10) | |
H8A | 0.3448 | 0.5494 | 0.4675 | 0.111* | |
H8B | 0.3724 | 0.4608 | 0.4730 | 0.111* | |
H8C | 0.3951 | 0.5005 | 0.4212 | 0.111* | |
C6 | 0.1340 (4) | 0.4116 (2) | 0.41464 (13) | 0.0653 (9) | |
H6A | 0.1739 | 0.3711 | 0.4360 | 0.078* | |
H6B | 0.1969 | 0.4108 | 0.3843 | 0.078* | |
C5 | −0.0945 (5) | 0.4141 (2) | 0.35731 (13) | 0.0658 (9) | |
H5 | −0.0260 | 0.4348 | 0.3335 | 0.079* | |
Br2 | 0.29379 (4) | 0.21682 (2) | 0.42595 (2) | 0.06172 (14) | |
N3 | 0.9614 (3) | 0.15602 (14) | 0.30646 (8) | 0.0478 (6) | |
N4 | 0.8705 (4) | 0.1118 (2) | 0.17923 (11) | 0.0678 (8) | |
H4A | 0.815 (3) | 0.0725 (14) | 0.1844 (13) | 0.064 (11)* | |
H4B | 0.859 (4) | 0.1350 (18) | 0.1507 (8) | 0.072 (11)* | |
C11 | 0.9112 (3) | 0.11840 (17) | 0.26620 (10) | 0.0455 (7) | |
H11 | 0.8716 | 0.0687 | 0.2694 | 0.055* | |
C16 | 0.9419 (4) | 0.1197 (2) | 0.35593 (10) | 0.0558 (8) | |
H16A | 1.0258 | 0.1379 | 0.3780 | 0.067* | |
H16B | 0.9528 | 0.0644 | 0.3528 | 0.067* | |
C13 | 0.9756 (4) | 0.22690 (19) | 0.21730 (12) | 0.0612 (9) | |
H13 | 0.9786 | 0.2522 | 0.1869 | 0.073* | |
C15 | 1.0220 (4) | 0.22732 (19) | 0.30409 (13) | 0.0605 (9) | |
H15 | 1.0591 | 0.2517 | 0.3326 | 0.073* | |
C12 | 0.9171 (3) | 0.15187 (18) | 0.21987 (10) | 0.0477 (7) | |
C14 | 1.0285 (4) | 0.26351 (19) | 0.25917 (14) | 0.0679 (9) | |
H14 | 1.0690 | 0.3132 | 0.2570 | 0.081* | |
C18 | 0.7575 (5) | 0.1097 (3) | 0.42914 (14) | 0.1018 (15) | |
H18A | 0.6522 | 0.1233 | 0.4411 | 0.153* | |
H18B | 0.7691 | 0.0549 | 0.4294 | 0.153* | |
H18C | 0.8379 | 0.1323 | 0.4502 | 0.153* | |
C17 | 0.7780 (4) | 0.1388 (3) | 0.37761 (13) | 0.0812 (12) | |
H17A | 0.7637 | 0.1940 | 0.3775 | 0.097* | |
H17B | 0.6949 | 0.1166 | 0.3567 | 0.097* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.0623 (2) | 0.0678 (3) | 0.0640 (2) | −0.01030 (16) | 0.00528 (16) | −0.00851 (18) |
N1 | 0.0529 (16) | 0.0501 (16) | 0.0659 (18) | −0.0015 (13) | 0.0095 (14) | −0.0127 (14) |
N2 | 0.083 (2) | 0.111 (3) | 0.072 (2) | −0.037 (2) | −0.0128 (18) | 0.011 (2) |
C1 | 0.061 (2) | 0.053 (2) | 0.056 (2) | −0.0037 (16) | −0.0051 (16) | −0.0058 (16) |
C4 | 0.070 (2) | 0.061 (2) | 0.062 (2) | −0.0034 (19) | 0.0026 (19) | −0.0106 (18) |
C2 | 0.056 (2) | 0.053 (2) | 0.058 (2) | −0.0156 (15) | 0.0041 (16) | −0.0062 (17) |
C7 | 0.057 (2) | 0.063 (2) | 0.068 (2) | 0.0004 (17) | 0.0003 (16) | −0.0092 (19) |
C3 | 0.056 (2) | 0.061 (2) | 0.063 (2) | −0.0030 (17) | −0.0124 (17) | −0.0115 (18) |
C8 | 0.059 (2) | 0.079 (3) | 0.084 (3) | −0.0115 (19) | −0.0043 (18) | 0.002 (2) |
C6 | 0.0474 (19) | 0.064 (2) | 0.085 (2) | −0.0005 (17) | 0.0056 (17) | −0.008 (2) |
C5 | 0.080 (3) | 0.060 (2) | 0.057 (2) | −0.0028 (19) | 0.0154 (19) | −0.0059 (18) |
Br2 | 0.0741 (3) | 0.0604 (2) | 0.0506 (2) | −0.01163 (16) | 0.00011 (15) | −0.00427 (16) |
N3 | 0.0482 (14) | 0.0465 (16) | 0.0486 (15) | 0.0023 (12) | −0.0029 (11) | 0.0027 (12) |
N4 | 0.087 (2) | 0.072 (2) | 0.0449 (18) | −0.0176 (18) | −0.0075 (16) | 0.0096 (17) |
C11 | 0.0466 (17) | 0.0398 (17) | 0.0500 (17) | −0.0013 (13) | −0.0030 (14) | 0.0008 (15) |
C16 | 0.057 (2) | 0.063 (2) | 0.0474 (17) | −0.0012 (16) | −0.0069 (15) | 0.0026 (16) |
C13 | 0.069 (2) | 0.056 (2) | 0.058 (2) | −0.0019 (17) | 0.0035 (17) | 0.0141 (18) |
C15 | 0.068 (2) | 0.049 (2) | 0.064 (2) | −0.0054 (17) | −0.0065 (17) | −0.0074 (17) |
C12 | 0.0483 (17) | 0.0518 (19) | 0.0430 (18) | −0.0003 (14) | −0.0023 (14) | 0.0074 (15) |
C14 | 0.079 (2) | 0.045 (2) | 0.080 (3) | −0.0076 (17) | −0.001 (2) | 0.0045 (19) |
C18 | 0.086 (3) | 0.141 (4) | 0.078 (3) | 0.011 (3) | 0.015 (2) | 0.017 (3) |
C17 | 0.066 (2) | 0.115 (3) | 0.063 (2) | 0.003 (2) | 0.0002 (18) | 0.022 (2) |
N1—C5 | 1.340 (4) | N3—C11 | 1.334 (3) |
N1—C1 | 1.340 (4) | N3—C15 | 1.341 (4) |
N1—C6 | 1.489 (4) | N3—C16 | 1.485 (3) |
N2—C2 | 1.336 (4) | N4—C12 | 1.356 (4) |
N2—H2A | 0.896 (18) | N4—H4A | 0.834 (18) |
N2—H2B | 0.897 (18) | N4—H4B | 0.874 (18) |
C1—C2 | 1.388 (4) | C11—C12 | 1.379 (4) |
C1—H1 | 0.9300 | C11—H11 | 0.9300 |
C4—C3 | 1.366 (4) | C16—C17 | 1.517 (4) |
C4—C5 | 1.377 (5) | C16—H16A | 0.9700 |
C4—H4 | 0.9300 | C16—H16B | 0.9700 |
C2—C3 | 1.387 (4) | C13—C14 | 1.369 (4) |
C7—C6 | 1.479 (4) | C13—C12 | 1.395 (4) |
C7—C8 | 1.511 (4) | C13—H13 | 0.9300 |
C7—H7A | 0.9700 | C15—C14 | 1.366 (4) |
C7—H7B | 0.9700 | C15—H15 | 0.9300 |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C8—H8A | 0.9600 | C18—C17 | 1.488 (5) |
C8—H8B | 0.9600 | C18—H18A | 0.9600 |
C8—H8C | 0.9600 | C18—H18B | 0.9600 |
C6—H6A | 0.9700 | C18—H18C | 0.9600 |
C6—H6B | 0.9700 | C17—H17A | 0.9700 |
C5—H5 | 0.9300 | C17—H17B | 0.9700 |
C5—N1—C1 | 121.9 (3) | C11—N3—C15 | 122.2 (3) |
C5—N1—C6 | 119.6 (3) | C11—N3—C16 | 119.2 (3) |
C1—N1—C6 | 118.5 (3) | C15—N3—C16 | 118.6 (3) |
C2—N2—H2A | 115 (3) | C12—N4—H4A | 116 (2) |
C2—N2—H2B | 117 (2) | C12—N4—H4B | 120 (2) |
H2A—N2—H2B | 115 (4) | H4A—N4—H4B | 118 (3) |
N1—C1—C2 | 120.6 (3) | N3—C11—C12 | 121.2 (3) |
N1—C1—H1 | 119.7 | N3—C11—H11 | 119.4 |
C2—C1—H1 | 119.7 | C12—C11—H11 | 119.4 |
C3—C4—C5 | 119.7 (3) | N3—C16—C17 | 110.5 (2) |
C3—C4—H4 | 120.1 | N3—C16—H16A | 109.6 |
C5—C4—H4 | 120.1 | C17—C16—H16A | 109.6 |
N2—C2—C3 | 121.7 (3) | N3—C16—H16B | 109.6 |
N2—C2—C1 | 120.6 (3) | C17—C16—H16B | 109.6 |
C3—C2—C1 | 117.7 (3) | H16A—C16—H16B | 108.1 |
C6—C7—C8 | 111.6 (3) | C14—C13—C12 | 120.4 (3) |
C6—C7—H7A | 109.3 | C14—C13—H13 | 119.8 |
C8—C7—H7A | 109.3 | C12—C13—H13 | 119.8 |
C6—C7—H7B | 109.3 | N3—C15—C14 | 119.0 (3) |
C8—C7—H7B | 109.3 | N3—C15—H15 | 120.5 |
H7A—C7—H7B | 108.0 | C14—C15—H15 | 120.5 |
C4—C3—C2 | 120.6 (3) | N4—C12—C11 | 120.3 (3) |
C4—C3—H3 | 119.7 | N4—C12—C13 | 122.8 (3) |
C2—C3—H3 | 119.7 | C11—C12—C13 | 116.9 (3) |
C7—C8—H8A | 109.5 | C15—C14—C13 | 120.2 (3) |
C7—C8—H8B | 109.5 | C15—C14—H14 | 119.9 |
H8A—C8—H8B | 109.5 | C13—C14—H14 | 119.9 |
C7—C8—H8C | 109.5 | C17—C18—H18A | 109.5 |
H8A—C8—H8C | 109.5 | C17—C18—H18B | 109.5 |
H8B—C8—H8C | 109.5 | H18A—C18—H18B | 109.5 |
C7—C6—N1 | 113.0 (3) | C17—C18—H18C | 109.5 |
C7—C6—H6A | 109.0 | H18A—C18—H18C | 109.5 |
N1—C6—H6A | 109.0 | H18B—C18—H18C | 109.5 |
C7—C6—H6B | 109.0 | C18—C17—C16 | 112.8 (3) |
N1—C6—H6B | 109.0 | C18—C17—H17A | 109.0 |
H6A—C6—H6B | 107.8 | C16—C17—H17A | 109.0 |
N1—C5—C4 | 119.6 (3) | C18—C17—H17B | 109.0 |
N1—C5—H5 | 120.2 | C16—C17—H17B | 109.0 |
C4—C5—H5 | 120.2 | H17A—C17—H17B | 107.8 |
C5—N1—C1—C2 | −0.1 (5) | C15—N3—C11—C12 | −1.1 (4) |
C6—N1—C1—C2 | 178.3 (3) | C16—N3—C11—C12 | 175.7 (3) |
N1—C1—C2—N2 | −178.7 (3) | C11—N3—C16—C17 | −88.0 (3) |
N1—C1—C2—C3 | −0.2 (5) | C15—N3—C16—C17 | 88.9 (3) |
C5—C4—C3—C2 | −0.1 (5) | C11—N3—C15—C14 | 1.9 (5) |
N2—C2—C3—C4 | 178.8 (3) | C16—N3—C15—C14 | −174.9 (3) |
C1—C2—C3—C4 | 0.3 (5) | N3—C11—C12—N4 | 177.9 (3) |
C8—C7—C6—N1 | −179.9 (3) | N3—C11—C12—C13 | −0.9 (4) |
C5—N1—C6—C7 | 94.3 (4) | C14—C13—C12—N4 | −176.8 (3) |
C1—N1—C6—C7 | −84.2 (4) | C14—C13—C12—C11 | 1.9 (4) |
C1—N1—C5—C4 | 0.4 (5) | N3—C15—C14—C13 | −0.8 (5) |
C6—N1—C5—C4 | −178.0 (3) | C12—C13—C14—C15 | −1.1 (5) |
C3—C4—C5—N1 | −0.3 (5) | N3—C16—C17—C18 | −174.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br2i | 0.90 (2) | 2.47 (2) | 3.364 (3) | 177 (4) |
N2—H2B···Br2ii | 0.90 (2) | 2.54 (2) | 3.419 (3) | 168 (4) |
N4—H4A···Br1iii | 0.83 (2) | 2.58 (2) | 3.406 (3) | 172 (3) |
N4—H4B···Br2iv | 0.87 (2) | 2.57 (2) | 3.434 (3) | 171 (3) |
C6—H6A···Br2 | 0.97 | 2.88 | 3.655 (4) | 138 |
C6—H6B···Br1ii | 0.97 | 2.84 | 3.775 (4) | 163 |
C16—H16A···Br2v | 0.97 | 2.91 | 3.866 (3) | 167 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, −y, z−1/2; (iv) x+1/2, y, −z+1/2; (v) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···Br2i | 0.896 (18) | 2.468 (19) | 3.364 (3) | 177 (4) |
N2—H2B···Br2ii | 0.897 (18) | 2.54 (2) | 3.419 (3) | 168 (4) |
N4—H4A···Br1iii | 0.834 (18) | 2.577 (19) | 3.406 (3) | 172 (3) |
N4—H4B···Br2iv | 0.874 (18) | 2.568 (19) | 3.434 (3) | 171 (3) |
C6—H6A···Br2 | 0.97 | 2.88 | 3.655 (4) | 138 |
C6—H6B···Br1ii | 0.97 | 2.84 | 3.775 (4) | 163 |
C16—H16A···Br2v | 0.97 | 2.91 | 3.866 (3) | 167 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, −z+1; (iii) −x+3/2, −y, z−1/2; (iv) x+1/2, y, −z+1/2; (v) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C8H13N2+·Br− |
Mr | 217.11 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 296 |
a, b, c (Å) | 8.2937 (1), 17.4137 (3), 26.9626 (4) |
V (Å3) | 3894.05 (10) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 4.17 |
Crystal size (mm) | 0.12 × 0.10 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2008) |
Tmin, Tmax | 0.635, 0.681 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21922, 4491, 2698 |
Rint | 0.043 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.085, 1.00 |
No. of reflections | 4491 |
No. of parameters | 214 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.44, −0.31 |
Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2014 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).
Footnotes
‡Additional correspondence author, e-mail: rajakannan@unom.ac.in
Acknowledgements
PV thanks the DST–FIST, New Delhi, for the NMR and XRD facilities at the School of Chemistry, Bharathidasan University, Tiruchirappalli, India. The authors thank Professor A. Ilangovan for his generous help. ST is extremely grateful to the management of SASTRA University for infrastructure and financial support (Professor TRR grant).
References
Anwar, N., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn J. Appl. Phys. 40, 4213–4216. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Calas, M., Ouattara, M., Piquet, G., Ziora, Z., Bordat, Y., Ancelin, M. L., Escale, R. & Vial, H. (2007). J. Med. Chem. 50, 6307–6315. Web of Science CrossRef PubMed CAS Google Scholar
Ezaki, S. & Kokeguchi, N. (2006). Jpn Patent JP 2006171518. Google Scholar
Gama, Y., Suzuki, H. & Narasaki, H. (1981). Jpn Patent JP 56139463. Google Scholar
Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. Web of Science CrossRef CAS Google Scholar
Ilangovan, A., Venkatesan, P., Sundararaman, M. & Rajesh Kumar, R. (2012). Med. Chem. Res. 21, 694–702. Web of Science CrossRef CAS Google Scholar
Kowalczyk, I., Katrusiak, A., Komasa, A. & Szafran, M. (2011). J. Mol. Struct. 994, 13–20. Web of Science CSD CrossRef CAS Google Scholar
Kowalczyk, I., Katrusiak, A. & Szafran, M. (2010). J. Mol. Struct. 979, 12–21. Web of Science CSD CrossRef CAS Google Scholar
Kupetis, G. K., Šaduikis, G., Nivinskienø, O. & Eicher-Lorka, O. (2002). Monatsh. Chem. 133, 313–321. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Millán Corrales, G., Morales-Morales, D., Hernández-Ortega, S., Campos-Gaxiola, J. J. & Cruz Enríquez, A. (2012). Acta Cryst. E68, o853. CSD CrossRef IUCr Journals Google Scholar
Muldoon, M., Brennecke, J. F., Maginn, E. J., Scriven, E. F. V., McAteer, C. H. & Murugan, R. (2010). US Patent 7687513, B1 20100330. Google Scholar
Petkovic, M., Seddon, K. R., Rebelo, L. P. & Silva Pereira, C. (2011). Chem. Soc. Rev. 40, 1383–1403. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006). Acta Cryst. E62, o482–o484. Web of Science CSD CrossRef IUCr Journals Google Scholar
Sundararaman, M., Rajesh Kumar, R., Venkatesan, P. & Ilangovan, A. (2013). J. Med. Microbiol. 62, 241–248. Web of Science CrossRef CAS PubMed Google Scholar
Yamamoto, E., Yamaguchi, S. & Nagamune, T. (2011). Appl. Biochem. Biotechnol. 164, 957–967. Web of Science CrossRef CAS PubMed Google Scholar
Zhao, T. & Sun, G. (2007). J. Appl. Polym. Sci. 103, 482–486. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.