research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of 3-amino-1-propyl­pyridinium bromide

aSchool of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, bCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Chennai 600 025, India, and cDepartment of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, India
*Correspondence e-mail: thamu@scbt.sastra.edu

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland (Received 14 November 2014; accepted 24 November 2014; online 29 November 2014)

The title mol­ecular salt, C8H13N2+·Br, crystallizes with two independent 3-amino­pyridinium cations and two bromide anions in the asymmetric unit (Z′ = 2). In the pyridine ring, the N atom is alkyl­ated by a propyl group. The dihedral angle between the mean planes of the pyridinium ring and the propyl group is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B. In the crystal, the anions and cations are linked via N—H⋯Br and C—H⋯Br hydrogen bonds, forming chains propagating along [100].

1. Chemical context

Amino­pyridinium and 1-alkyl-amino­pyridinium salts display a wide range of anti­microbial activity (Sundararaman et al., 2013[Sundararaman, M., Rajesh Kumar, R., Venkatesan, P. & Ilangovan, A. (2013). J. Med. Microbiol. 62, 241-248.]; Ilangovan et al., 2012[Ilangovan, A., Venkatesan, P., Sundararaman, M. & Rajesh Kumar, R. (2012). Med. Chem. Res. 21, 694-702.]). They have found many applications such as surfactants (Gama et al., 1981[Gama, Y., Suzuki, H. & Narasaki, H. (1981). Jpn Patent JP 56139463.]), ionic liquids (Muldoon et al., 2010[Muldoon, M., Brennecke, J. F., Maginn, E. J., Scriven, E. F. V., McAteer, C. H. & Murugan, R. (2010). US Patent 7687513, B1 20100330.]; Petkovic et al., 2011[Petkovic, M., Seddon, K. R., Rebelo, L. P. & Silva Pereira, C. (2011). Chem. Soc. Rev. 40, 1383-1403.]), liquid-crystal display mediums (Ezaki & Kokeguchi, 2006[Ezaki, S. & Kokeguchi, N. (2006). Jpn Patent JP 2006171518.]), ionic crystals for second-order non-linear optics (Anwar et al., 2001[Anwar, N., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn J. Appl. Phys. 40, 4213-4216.]), phase-transfer catalysts in organic transformations (Kupetis et al., 2002[Kupetis, G. K., Šaduikis, G., Nivinskienø, O. & Eicher-Lorka, O. (2002). Monatsh. Chem. 133, 313-321.]) and additives for protein refolding processes (Yamamoto et al., 2011[Yamamoto, E., Yamaguchi, S. & Nagamune, T. (2011). Appl. Biochem. Biotechnol. 164, 957-967.]). In addition, the amino group in the pyridinium ring participates through hydrogen bonds with wool proteins (Zhao & Sun, 2007[Zhao, T. & Sun, G. (2007). J. Appl. Polym. Sci. 103, 482-486.]; Calas et al., 2007[Calas, M., Ouattara, M., Piquet, G., Ziora, Z., Bordat, Y., Ancelin, M. L., Escale, R. & Vial, H. (2007). J. Med. Chem. 50, 6307-6315.]).

[Scheme 1]

2. Structural commentary

The asymmetric unit of the title salt, consists of two 3-amino­pyrdinium cations and two bromide anions, as shown in Fig. 1[link]. The geometrical parameters of the cation moiety are comparable with those of a related structure, 3-amino-1-(4-nitro­benz­yl)pyridinium bromide (Sundar et al., 2006[Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006). Acta Cryst. E62, o482-o484.]). The mol­ecular structure of the two cations are very similar with weighted and unit-weight r.m.s. fits of 0.089 and 0.081 Å, respectively, for ten fitted atoms (Fig. 2[link]). The dihedral angle between the mean planes of the pyridinium ring (N2/C1–C5) and the propyl group (N1/C6–C8) is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B.

[Figure 1]
Figure 1
The mol­ecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2]
Figure 2
Structural superimposition of the non-H atoms of the pyridinium cations (green: cation A; violet: cation B).

3. Supra­molecular features

The crystal structure of the title salt, is stabilized by a network of inter­molecular N—H⋯Br and C—H⋯Br hydrogen bonds (Table 1[link] and Fig. 3[link]). Anion Br2 is involved in five hydrogen bonds as an acceptor while anion Br1 is involved in only two hydrogen bonds. The dimerization of cation A mediates through two bromide anions with the aid of two N—H⋯Br and C—H⋯Br hydrogen bonds. As shown in Fig. 4[link], these inter­actions generate an R42(12) loop. Atom C16 (via H16A) forms a C—H⋯Bri hydrogen bond with bromide anion Br2 [symmetry code: (i) x + 1, y, z]. The same Br2 anion acts as an acceptor for an N—H⋯Br hydrogen bond with atom N4 of cation B. These inter­actions form a chain which runs parallel to the a axis (Fig. 5[link]).

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯Br2i 0.90 (2) 2.47 (2) 3.364 (3) 177 (4)
N2—H2B⋯Br2ii 0.90 (2) 2.54 (2) 3.419 (3) 168 (4)
N4—H4A⋯Br1iii 0.83 (2) 2.58 (2) 3.406 (3) 172 (3)
N4—H4B⋯Br2iv 0.87 (2) 2.57 (2) 3.434 (3) 171 (3)
C6—H6A⋯Br2 0.97 2.88 3.655 (4) 138
C6—H6B⋯Br1ii 0.97 2.84 3.775 (4) 163
C16—H16A⋯Br2v 0.97 2.91 3.866 (3) 167
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (iii) [-x+{\script{3\over 2}}, -y, z-{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (v) x+1, y, z.
[Figure 3]
Figure 3
The crystal packing of the title salt projected onto the bc plane. The N—H⋯Br and C—H⋯Br hydrogen bonds are shown as dashed lines (see Table 1[link] for details).
[Figure 4]
Figure 4
Part of the crystal structure of the title salt, showing the formation of an R24(12) ring motif (see Table 1[link] for details; only the inter­acting atoms are labelled).
[Figure 5]
Figure 5
Part of the crystal structure of the title salt, showing the formation of a hydrogen-bonded chain that runs parallel to the a axis (see Table 1[link] for details; only the inter­acting atoms are labelled).

4. Database survey

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014[Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662-671.]) for 4-amino­pyridinium halide salts gave nine hits, while a search for 3-amino­pyridinium salts yielded eight hits. They all have different substituents at the pyridine ring N position, and include for example, 2-(3-amino­pyridinium-1-yl)propano­ate hydro­bromide hemihydrate (CCDC refcode: IVAWUY; Kowalczyk et al., 2011[Kowalczyk, I., Katrusiak, A., Komasa, A. & Szafran, M. (2011). J. Mol. Struct. 994, 13-20.]), 2-(3-amino­pyridinium-1-yl)-3-carb­oxy­propano­ate monohydrate (CCDC refcode: LAQGAN; Millán Corrales et al., 2012[Millán Corrales, G., Morales-Morales, D., Hernández-Ortega, S., Campos-Gaxiola, J. J. & Cruz Enríquez, A. (2012). Acta Cryst. E68, o853.]), 3-amino-1-(carb­oxy­meth­yl)pyridinium chloride (CCDC refcode: PABTIX; Kowalczyk et al., 2010[Kowalczyk, I., Katrusiak, A. & Szafran, M. (2010). J. Mol. Struct. 979, 12-21.]) and 3-Amino-1-(4-nitro­benz­yl)pyridinium bromide (CCDC refcode: XEBFUG; Sundar et al., 2006[Sundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006). Acta Cryst. E62, o482-o484.]). The mean planes of the substituent groups at the ring N atom make dihedral angles of ca 80.3° with the 3-amino­pyridinium ring in IVAWUY and ca 86.6° in PABTIX. In LAQGAN, the propano­ate moiety is inclined at an angle of ca 86.6°, and the carb­oxy moiety by ca 68.4°, with respect to the 3-amino­pyridinium ring. In XEBFUG, the 4-nitro­benzyl ring makes a dihedral angle of ca 88.7 ° with the 3-amino­pyridinium ring.

5. Synthesis and crystallization

The title salt was prepared by dissolving 3-amino­pyridine (0.94 g, 10 mM) in dried acetone (20 ml) and adding n-propyl bromide (1.48g, 12 mM). The reaction mixture was stirred at room temperature for 8 h. The title salt precipitated as a white solid, which was filtered and washed with cold acetone and dried in vacuum to afford the stable salt. It was recrystallized from an aqueous ethanol solution giving colourless prismatic crystals.

6. Refinement

The details of crystal data, data collection and structure refinement are summarized in Table 2[link]. The N-bound H atoms were located in a difference Fourier map and freely refined. In the final cycles of refinement, the H atoms bound to atom N2 were refined with Uiso(H) = 1.1Ueq(N). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 2
Experimental details

Crystal data
Chemical formula C8H13N2+·Br
Mr 217.11
Crystal system, space group Orthorhombic, Pbca
Temperature (K) 296
a, b, c (Å) 8.2937 (1), 17.4137 (3), 26.9626 (4)
V3) 3894.05 (10)
Z 16
Radiation type Mo Kα
μ (mm−1) 4.17
Crystal size (mm) 0.12 × 0.10 × 0.10
 
Data collection
Diffractometer Bruker SMART CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.635, 0.681
No. of measured, independent and observed [I > 2σ(I)] reflections 21922, 4491, 2698
Rint 0.043
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.00
No. of reflections 4491
No. of parameters 214
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.44, −0.32
Computer programs: SMART and SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS2014 and SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Chemical context top

Amino­pyridinium and 1-alkyl-amino­pyridinium salts display a wide range of anti­microbial activity (Sundararaman et al., 2013; Ilangovan et al., 2012). They have found many applications such as surfa­cta­nts (Gama et al., 1981), ionic liquids (Muldoon et al., 2010; Petkovic et al., 2011), liquid-crystal display mediums (Ezaki & Kokeguchi, 2006), ionic crystals for second-order non-linear optics (Anwar et al., 2001), phase-transfer catalysts in organic transformations (Kupetis et al., 2002) and additives for protein refolding processes (Yamamoto et al., 2011). In addition, the amino group in the pyridinium ring participates through hydrogen bonds with wool proteins (Zhao & Sun, 2007; Calas et al., 2007).

Structural commentary top

The asymmetric unit of the title salt, consists of two 3-amino­pyrdinium cations and two bromide anions, as shown in Fig. 1. The geometrical parameters of the cation moiety are comparable with those of a related structure, 3-amino-1-(4-nitro­benzyl)­pyridinium bromide (Sundar et al., 2006). The molecular structure of both cations are very similar with weighted and unit-weight r.m.s. fits of 0.089 and 0.081 Å, respectively, for ten fitted atoms (Fig. 2). The dihedral angle between the mean planes of the pyridinium ring (N2/C1–C5) and the propyl group (N1/C6–C8) is 84.84 (2)° in cation A, whereas the corresponding angle is 89.23 (2)° in cation B.

Supra­molecular features top

The crystal structure of the title salt, is stabilized by a network of inter­molecular N—H···Br and C—H···Br hydrogen bonds (Table 1 and Fig. 3). Anion Br2 is involved in five hydrogen bonds as an acceptor while anion Br1 is involved in only two hydrogen bonds. The dimerization of cation A mediates through two bromide anions with the aid of two N—H···Br and C—H···Br hydrogen bonds. As shown in Fig. 4, these inter­actions generate an R42(12) loop. Atom C16 (via H16A) forms a C—H···Bri hydrogen bond with bromide anion Br2 [symmetry code: (i) x + 1, y, z]. The same Br2 anion acts as an acceptor for an N—H···Br hydrogen bond with atom N4 of cation B. These inter­actions form a chain which runs parallel to the a axis (Fig. 5).

Database survey top

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for 4-amino­pyridinium halide salts gave nine hits, while a search for 3-amino­pyridinium salts yielded eight hits. They all have different substituents at the pyridine ring N position, and include for example, 2-(3-amino­pyridinium-1-yl)propano­ate hydro­bromide hemihydrate (CCDC refcode: IVAWUY; Kowalczyk et al., 2011), 2-(3-amino­pyridinium-1-yl)-3-carb­oxy­propano­ate monohydrate (CCDC refcode: LAQGAN; Millán Corrales et al., 2012), 3-amino-1-(carb­oxy­methyl)­pyridinium chloride (CCDC refcode: PABTIX; Kowalczyk et al., 2010) and 3-Amino-1-(4-nitro­benzyl)­pyridinium bromide (CCDC refcode: XEBFUG; Sundar et al., 2006). The mean planes of the substituent groups at the ring N atom make dihedral angles of ca 80.3° with the 3-amino­pyridinium ring in IVAWUY and ca 86.6° in PABTIX. In LAQGAN, the propano­ate moiety is inclined at an angle of ca 86.6°, and the carb­oxy moiety by ca 68.4°, with respect to the 3-amino­pyridinium ring. In XEBFUG, the 4-nitro­benzyl ring makes a dihedral angle of ca 88.7 ° with the 3-amino­pyridinium ring.

Synthesis and crystallization top

The title salt was prepared by dissolving 3-amino­pyridine (0.94 g, 10 mM) in dried acetone (20 ml) and adding n-propyl bromide (1.48g, 12 mM). The reaction mixture was stirred at room temperature for 8 h. The title salt precipitated as a white solid, which was filtered and washed with cold acetone and dried in vacuum to afford the stable salt. It was recrystallized from an aqueous ethanol solution giving colourless prismatic crystals.

Refinement top

The details of crystal data, data collection and structure refinement are summarized in Table 2. The N-bound H atoms were located in a difference Fourier map and freely refined. In the final cycles of refinement, the H atoms bound to atom N2 were refined with Uiso(H) = 1.1Ueq(N). The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.93–0.97 Å with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Related literature top

For related literature, see: Anwar et al. (2001); Calas et al. (2007); Ezaki & Kokeguchi (2006); Gama et al. (1981); Groom & Allen (2014); Ilangovan et al. (2012); Kowalczyk et al. (2010, 2011); Kupetis et al. (2002); Millán Corrales, Morales-Morales, Hernández-Ortega, Campos-Gaxiola & Cruz Enríquez (2012); Muldoon et al. (2010); Petkovic et al. (2011); Sundar et al. (2006); Sundararaman et al. (2013); Yamamoto et al. (2011); Zhao & Sun (2007).

Computing details top

Data collection: SMART (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
The molecular structure of the title salt, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Structural superimposition of the non-H atoms of the pyridinium cations (green: cation A; violet: cation B).

The crystal packing of the title salt projected onto the bc plane. The N—H···Br and C—H···Br hydrogen bonds are shown as dashed lines (see Table 1 for details).

Part of the crystal structure of the title salt, showing the formation of an R24(12) ring motif (see Table 1 for details; only the interacting atoms are labelled).

Part of the crystal structure of the title salt, showing the formation of a hydrogen-bonded chain that runs parallel to the a axis (see Table 1 for details; only the interacting atoms are labelled).
3-Amino-1-propylpyridinium bromide top
Crystal data top
C8H13N2+·BrDx = 1.481 Mg m3
Mr = 217.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 5144 reflections
a = 8.2937 (1) Åθ = 2.8–23.4°
b = 17.4137 (3) ŵ = 4.17 mm1
c = 26.9626 (4) ÅT = 296 K
V = 3894.05 (10) Å3Prismolourec, colourless
Z = 160.12 × 0.10 × 0.10 mm
F(000) = 1760
Data collection top
Bruker SMART CCD area-detector
diffractometer
4491 independent reflections
Radiation source: sealed tube2698 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
phi and ω scansθmax = 27.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1010
Tmin = 0.635, Tmax = 0.681k = 2222
21922 measured reflectionsl = 3530
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.036 w = 1/[σ2(Fo2) + (0.0353P)2 + 1.288P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.085(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.44 e Å3
4491 reflectionsΔρmin = 0.31 e Å3
214 parametersExtinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
4 restraintsExtinction coefficient: 0.00312 (18)
Crystal data top
C8H13N2+·BrV = 3894.05 (10) Å3
Mr = 217.11Z = 16
Orthorhombic, PbcaMo Kα radiation
a = 8.2937 (1) ŵ = 4.17 mm1
b = 17.4137 (3) ÅT = 296 K
c = 26.9626 (4) Å0.12 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4491 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2698 reflections with I > 2σ(I)
Tmin = 0.635, Tmax = 0.681Rint = 0.043
21922 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0364 restraints
wR(F2) = 0.085H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.44 e Å3
4491 reflectionsΔρmin = 0.31 e Å3
214 parameters
Special details top

Experimental. The minimum and maximum absorption values stated above are those calculated in SHELXL2014/6 from the given crystal dimensions. The ratio of minimum to maximum apparent transmission was determined experimentally as 0.639091.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.82809 (4)0.05269 (2)0.70989 (2)0.06468 (14)
N10.0380 (3)0.39600 (15)0.40238 (10)0.0563 (7)
N20.3901 (4)0.3230 (2)0.46352 (12)0.0885 (10)
H2A0.472 (3)0.2941 (19)0.4526 (13)0.097*
H2B0.341 (4)0.305 (2)0.4909 (10)0.097*
C10.1328 (4)0.36563 (18)0.43751 (12)0.0566 (8)
H10.08970.35360.46840.068*
C40.2546 (4)0.4017 (2)0.34649 (13)0.0644 (9)
H40.29500.41430.31540.077*
C20.2949 (4)0.35190 (19)0.42823 (12)0.0556 (8)
C70.1580 (4)0.4864 (2)0.43960 (13)0.0626 (9)
H7A0.09590.48750.47010.075*
H7B0.11850.52720.41830.075*
C30.3540 (4)0.37094 (18)0.38170 (12)0.0601 (9)
H30.46220.36270.37440.072*
C80.3336 (4)0.5006 (2)0.45141 (14)0.0739 (10)
H8A0.34480.54940.46750.111*
H8B0.37240.46080.47300.111*
H8C0.39510.50050.42120.111*
C60.1340 (4)0.4116 (2)0.41464 (13)0.0653 (9)
H6A0.17390.37110.43600.078*
H6B0.19690.41080.38430.078*
C50.0945 (5)0.4141 (2)0.35731 (13)0.0658 (9)
H50.02600.43480.33350.079*
Br20.29379 (4)0.21682 (2)0.42595 (2)0.06172 (14)
N30.9614 (3)0.15602 (14)0.30646 (8)0.0478 (6)
N40.8705 (4)0.1118 (2)0.17923 (11)0.0678 (8)
H4A0.815 (3)0.0725 (14)0.1844 (13)0.064 (11)*
H4B0.859 (4)0.1350 (18)0.1507 (8)0.072 (11)*
C110.9112 (3)0.11840 (17)0.26620 (10)0.0455 (7)
H110.87160.06870.26940.055*
C160.9419 (4)0.1197 (2)0.35593 (10)0.0558 (8)
H16A1.02580.13790.37800.067*
H16B0.95280.06440.35280.067*
C130.9756 (4)0.22690 (19)0.21730 (12)0.0612 (9)
H130.97860.25220.18690.073*
C151.0220 (4)0.22732 (19)0.30409 (13)0.0605 (9)
H151.05910.25170.33260.073*
C120.9171 (3)0.15187 (18)0.21987 (10)0.0477 (7)
C141.0285 (4)0.26351 (19)0.25917 (14)0.0679 (9)
H141.06900.31320.25700.081*
C180.7575 (5)0.1097 (3)0.42914 (14)0.1018 (15)
H18A0.65220.12330.44110.153*
H18B0.76910.05490.42940.153*
H18C0.83790.13230.45020.153*
C170.7780 (4)0.1388 (3)0.37761 (13)0.0812 (12)
H17A0.76370.19400.37750.097*
H17B0.69490.11660.35670.097*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0623 (2)0.0678 (3)0.0640 (2)0.01030 (16)0.00528 (16)0.00851 (18)
N10.0529 (16)0.0501 (16)0.0659 (18)0.0015 (13)0.0095 (14)0.0127 (14)
N20.083 (2)0.111 (3)0.072 (2)0.037 (2)0.0128 (18)0.011 (2)
C10.061 (2)0.053 (2)0.056 (2)0.0037 (16)0.0051 (16)0.0058 (16)
C40.070 (2)0.061 (2)0.062 (2)0.0034 (19)0.0026 (19)0.0106 (18)
C20.056 (2)0.053 (2)0.058 (2)0.0156 (15)0.0041 (16)0.0062 (17)
C70.057 (2)0.063 (2)0.068 (2)0.0004 (17)0.0003 (16)0.0092 (19)
C30.056 (2)0.061 (2)0.063 (2)0.0030 (17)0.0124 (17)0.0115 (18)
C80.059 (2)0.079 (3)0.084 (3)0.0115 (19)0.0043 (18)0.002 (2)
C60.0474 (19)0.064 (2)0.085 (2)0.0005 (17)0.0056 (17)0.008 (2)
C50.080 (3)0.060 (2)0.057 (2)0.0028 (19)0.0154 (19)0.0059 (18)
Br20.0741 (3)0.0604 (2)0.0506 (2)0.01163 (16)0.00011 (15)0.00427 (16)
N30.0482 (14)0.0465 (16)0.0486 (15)0.0023 (12)0.0029 (11)0.0027 (12)
N40.087 (2)0.072 (2)0.0449 (18)0.0176 (18)0.0075 (16)0.0096 (17)
C110.0466 (17)0.0398 (17)0.0500 (17)0.0013 (13)0.0030 (14)0.0008 (15)
C160.057 (2)0.063 (2)0.0474 (17)0.0012 (16)0.0069 (15)0.0026 (16)
C130.069 (2)0.056 (2)0.058 (2)0.0019 (17)0.0035 (17)0.0141 (18)
C150.068 (2)0.049 (2)0.064 (2)0.0054 (17)0.0065 (17)0.0074 (17)
C120.0483 (17)0.0518 (19)0.0430 (18)0.0003 (14)0.0023 (14)0.0074 (15)
C140.079 (2)0.045 (2)0.080 (3)0.0076 (17)0.001 (2)0.0045 (19)
C180.086 (3)0.141 (4)0.078 (3)0.011 (3)0.015 (2)0.017 (3)
C170.066 (2)0.115 (3)0.063 (2)0.003 (2)0.0002 (18)0.022 (2)
Geometric parameters (Å, º) top
N1—C51.340 (4)N3—C111.334 (3)
N1—C11.340 (4)N3—C151.341 (4)
N1—C61.489 (4)N3—C161.485 (3)
N2—C21.336 (4)N4—C121.356 (4)
N2—H2A0.896 (18)N4—H4A0.834 (18)
N2—H2B0.897 (18)N4—H4B0.874 (18)
C1—C21.388 (4)C11—C121.379 (4)
C1—H10.9300C11—H110.9300
C4—C31.366 (4)C16—C171.517 (4)
C4—C51.377 (5)C16—H16A0.9700
C4—H40.9300C16—H16B0.9700
C2—C31.387 (4)C13—C141.369 (4)
C7—C61.479 (4)C13—C121.395 (4)
C7—C81.511 (4)C13—H130.9300
C7—H7A0.9700C15—C141.366 (4)
C7—H7B0.9700C15—H150.9300
C3—H30.9300C14—H140.9300
C8—H8A0.9600C18—C171.488 (5)
C8—H8B0.9600C18—H18A0.9600
C8—H8C0.9600C18—H18B0.9600
C6—H6A0.9700C18—H18C0.9600
C6—H6B0.9700C17—H17A0.9700
C5—H50.9300C17—H17B0.9700
C5—N1—C1121.9 (3)C11—N3—C15122.2 (3)
C5—N1—C6119.6 (3)C11—N3—C16119.2 (3)
C1—N1—C6118.5 (3)C15—N3—C16118.6 (3)
C2—N2—H2A115 (3)C12—N4—H4A116 (2)
C2—N2—H2B117 (2)C12—N4—H4B120 (2)
H2A—N2—H2B115 (4)H4A—N4—H4B118 (3)
N1—C1—C2120.6 (3)N3—C11—C12121.2 (3)
N1—C1—H1119.7N3—C11—H11119.4
C2—C1—H1119.7C12—C11—H11119.4
C3—C4—C5119.7 (3)N3—C16—C17110.5 (2)
C3—C4—H4120.1N3—C16—H16A109.6
C5—C4—H4120.1C17—C16—H16A109.6
N2—C2—C3121.7 (3)N3—C16—H16B109.6
N2—C2—C1120.6 (3)C17—C16—H16B109.6
C3—C2—C1117.7 (3)H16A—C16—H16B108.1
C6—C7—C8111.6 (3)C14—C13—C12120.4 (3)
C6—C7—H7A109.3C14—C13—H13119.8
C8—C7—H7A109.3C12—C13—H13119.8
C6—C7—H7B109.3N3—C15—C14119.0 (3)
C8—C7—H7B109.3N3—C15—H15120.5
H7A—C7—H7B108.0C14—C15—H15120.5
C4—C3—C2120.6 (3)N4—C12—C11120.3 (3)
C4—C3—H3119.7N4—C12—C13122.8 (3)
C2—C3—H3119.7C11—C12—C13116.9 (3)
C7—C8—H8A109.5C15—C14—C13120.2 (3)
C7—C8—H8B109.5C15—C14—H14119.9
H8A—C8—H8B109.5C13—C14—H14119.9
C7—C8—H8C109.5C17—C18—H18A109.5
H8A—C8—H8C109.5C17—C18—H18B109.5
H8B—C8—H8C109.5H18A—C18—H18B109.5
C7—C6—N1113.0 (3)C17—C18—H18C109.5
C7—C6—H6A109.0H18A—C18—H18C109.5
N1—C6—H6A109.0H18B—C18—H18C109.5
C7—C6—H6B109.0C18—C17—C16112.8 (3)
N1—C6—H6B109.0C18—C17—H17A109.0
H6A—C6—H6B107.8C16—C17—H17A109.0
N1—C5—C4119.6 (3)C18—C17—H17B109.0
N1—C5—H5120.2C16—C17—H17B109.0
C4—C5—H5120.2H17A—C17—H17B107.8
C5—N1—C1—C20.1 (5)C15—N3—C11—C121.1 (4)
C6—N1—C1—C2178.3 (3)C16—N3—C11—C12175.7 (3)
N1—C1—C2—N2178.7 (3)C11—N3—C16—C1788.0 (3)
N1—C1—C2—C30.2 (5)C15—N3—C16—C1788.9 (3)
C5—C4—C3—C20.1 (5)C11—N3—C15—C141.9 (5)
N2—C2—C3—C4178.8 (3)C16—N3—C15—C14174.9 (3)
C1—C2—C3—C40.3 (5)N3—C11—C12—N4177.9 (3)
C8—C7—C6—N1179.9 (3)N3—C11—C12—C130.9 (4)
C5—N1—C6—C794.3 (4)C14—C13—C12—N4176.8 (3)
C1—N1—C6—C784.2 (4)C14—C13—C12—C111.9 (4)
C1—N1—C5—C40.4 (5)N3—C15—C14—C130.8 (5)
C6—N1—C5—C4178.0 (3)C12—C13—C14—C151.1 (5)
C3—C4—C5—N10.3 (5)N3—C16—C17—C18174.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br2i0.90 (2)2.47 (2)3.364 (3)177 (4)
N2—H2B···Br2ii0.90 (2)2.54 (2)3.419 (3)168 (4)
N4—H4A···Br1iii0.83 (2)2.58 (2)3.406 (3)172 (3)
N4—H4B···Br2iv0.87 (2)2.57 (2)3.434 (3)171 (3)
C6—H6A···Br20.972.883.655 (4)138
C6—H6B···Br1ii0.972.843.775 (4)163
C16—H16A···Br2v0.972.913.866 (3)167
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y, z1/2; (iv) x+1/2, y, z+1/2; (v) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···Br2i0.896 (18)2.468 (19)3.364 (3)177 (4)
N2—H2B···Br2ii0.897 (18)2.54 (2)3.419 (3)168 (4)
N4—H4A···Br1iii0.834 (18)2.577 (19)3.406 (3)172 (3)
N4—H4B···Br2iv0.874 (18)2.568 (19)3.434 (3)171 (3)
C6—H6A···Br20.972.883.655 (4)138
C6—H6B···Br1ii0.972.843.775 (4)163
C16—H16A···Br2v0.972.913.866 (3)167
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z+1; (iii) x+3/2, y, z1/2; (iv) x+1/2, y, z+1/2; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC8H13N2+·Br
Mr217.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)8.2937 (1), 17.4137 (3), 26.9626 (4)
V3)3894.05 (10)
Z16
Radiation typeMo Kα
µ (mm1)4.17
Crystal size (mm)0.12 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.635, 0.681
No. of measured, independent and
observed [I > 2σ(I)] reflections
21922, 4491, 2698
Rint0.043
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.085, 1.00
No. of reflections4491
No. of parameters214
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.44, 0.31

Computer programs: SMART (Bruker, 2008), SAINT (Bruker, 2008), SHELXS2014 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008), SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

 

Footnotes

Additional correspondence author, e-mail: rajakannan@unom.ac.in

Acknowledgements

PV thanks the DST–FIST, New Delhi, for the NMR and XRD facilities at the School of Chemistry, Bharathidasan University, Tiruchirappalli, India. The authors thank Professor A. Ilangovan for his generous help. ST is extremely grateful to the management of SASTRA University for infrastructure and financial support (Professor TRR grant).

References

First citationAnwar, N., Kosuge, H., Okada, S., Oikawa, H. & Nakanishi, H. (2001). Jpn J. Appl. Phys. 40, 4213–4216.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCalas, M., Ouattara, M., Piquet, G., Ziora, Z., Bordat, Y., Ancelin, M. L., Escale, R. & Vial, H. (2007). J. Med. Chem. 50, 6307–6315.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEzaki, S. & Kokeguchi, N. (2006). Jpn Patent JP 2006171518.  Google Scholar
First citationGama, Y., Suzuki, H. & Narasaki, H. (1981). Jpn Patent JP 56139463.  Google Scholar
First citationGroom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.  Web of Science CrossRef CAS Google Scholar
First citationIlangovan, A., Venkatesan, P., Sundararaman, M. & Rajesh Kumar, R. (2012). Med. Chem. Res. 21, 694–702.  Web of Science CrossRef CAS Google Scholar
First citationKowalczyk, I., Katrusiak, A., Komasa, A. & Szafran, M. (2011). J. Mol. Struct. 994, 13–20.  Web of Science CSD CrossRef CAS Google Scholar
First citationKowalczyk, I., Katrusiak, A. & Szafran, M. (2010). J. Mol. Struct. 979, 12–21.  Web of Science CSD CrossRef CAS Google Scholar
First citationKupetis, G. K., Šaduikis, G., Nivinskienø, O. & Eicher-Lorka, O. (2002). Monatsh. Chem. 133, 313–321.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMillán Corrales, G., Morales-Morales, D., Hernández-Ortega, S., Campos-Gaxiola, J. J. & Cruz Enríquez, A. (2012). Acta Cryst. E68, o853.  CSD CrossRef IUCr Journals Google Scholar
First citationMuldoon, M., Brennecke, J. F., Maginn, E. J., Scriven, E. F. V., McAteer, C. H. & Murugan, R. (2010). US Patent 7687513, B1 20100330.  Google Scholar
First citationPetkovic, M., Seddon, K. R., Rebelo, L. P. & Silva Pereira, C. (2011). Chem. Soc. Rev. 40, 1383–1403.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSundar, T. V., Parthasarathi, V., Sridhar, B., Venkatesan, P. & Nallu, M. (2006). Acta Cryst. E62, o482–o484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSundararaman, M., Rajesh Kumar, R., Venkatesan, P. & Ilangovan, A. (2013). J. Med. Microbiol. 62, 241–248.  Web of Science CrossRef CAS PubMed Google Scholar
First citationYamamoto, E., Yamaguchi, S. & Nagamune, T. (2011). Appl. Biochem. Biotechnol. 164, 957–967.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhao, T. & Sun, G. (2007). J. Appl. Polym. Sci. 103, 482–486.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds