organic compounds
H-pyrazolo[3,4-d]pyrimidine
of 1-methyl-4-methylsulfanyl-1aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétences Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, bMedicinal Chemistry Laboratory, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco, and cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: elfal_mohammed@yahoo.fr
In the title compound, C7H8N4S, the non-H atoms of the pyrazolo[3,4-d]pyrimidine ring system and the methylsulfanyl group lie on a crystallographic mirror plane. In the crystal, molecules are linked via a number of π–π interactions [centroid–centroid distances vary from 3.452 (7) to 3.6062 (8) Å], forming a three-dimensional structure.
Keywords: crystal structure; 1H-pyrazolo[3,4-d]pyrimidine; pharmacological and biochemical properties; π–π interactions.
CCDC reference: 1034638
1. Related literature
For similar compounds, see: El Fal et al. (2013, 2014a,b); Ouzidan et al. (2011). For pharmacological and biochemical properties of pyrazolo[3,4-d]pyrimidine-4(5H)-thione derivatives, see: Chauhan & Kumar (2013); Venkatesan et al. (2014); Rashad et al. (2011).
2. Experimental
2.1. Crystal data
|
2.3. Refinement
|
Data collection: APEX2 (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Supporting information
CCDC reference: 1034638
10.1107/S1600536814025239/tk5348sup1.cif
contains datablock I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536814025239/tk5348Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814025239/tk5348Isup3.cml
Synthesis of 1H-pyrazolo [3,4-d] pyrimidine-4-thiol derivatives has received considerable attention due to their biological activity especially as antimicrobial (Chauhan et al., 2013), antitubercular (Venkatesan et al., 2014) and anticancer (Rashad et al., 2011) agents. During the search for new antibacterial agents synthesis, some 1H-pyrazolo[3,4-d] pyrimidine-4-thiol derivatives were prepared (El Fal et al., 2013, 2014a, 2014b; Ouzidan et al., 2011). These compounds are currently under investigation for possible biological activity.
The molecule of the title compound is build up from two fused five- and six-membered rings linked to methylsulfanyl group. All non hydrogen atoms of the molecule are coplanar as shown in Fig. 1. In the crystal, the molecules are linked together by a number of π–π interactions [centroid–centroid distances vary from 3.452 (7) to 3.6062 (8) Å], forming a three-dimensional structure.
To a solution of 1H-pyrazolo [3,4-d] pyrimidine-4-thiol (0.5 g, 3.28 mmol) dissolved in DMF (20 ml) was added iodomethane (0.43 ml, 6.62 mmol), potassium carbonate (0.93 g, 7.1 mmol) and a catalytic amount of tetra-n-butylammonium bromide (0.1 g, 0.4 mmol). The mixture was stirred for 48 h and monitored by thin layer
The mixture was filtered and the solvent was removed in vacuo. The solid obtained was crystallized from ethanol to give the title compound as orange crystals (yield: 65%).Data collection: APEX2 (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009) and publCIF (Westrip, 2010).Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles. |
C7H8N4S | F(000) = 376 |
Mr = 180.23 | Dx = 1.466 Mg m−3 |
Orthorhombic, Pbcm | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2c 2b | Cell parameters from 1227 reflections |
a = 7.9309 (14) Å | θ = 2.6–29.6° |
b = 15.335 (3) Å | µ = 0.34 mm−1 |
c = 6.7158 (12) Å | T = 296 K |
V = 816.8 (3) Å3 | Block, orange |
Z = 4 | 0.37 × 0.28 × 0.19 mm |
Bruker X8 APEX diffractometer | 1227 independent reflections |
Radiation source: fine-focus sealed tube | 1017 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ϕ and ω scans | θmax = 29.6°, θmin = 2.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −10→4 |
Tmin = 0.637, Tmax = 0.746 | k = −21→19 |
2970 measured reflections | l = −3→9 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0694P)2 + 0.3181P] where P = (Fo2 + 2Fc2)/3 |
1227 reflections | (Δ/σ)max < 0.001 |
73 parameters | Δρmax = 0.44 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
C7H8N4S | V = 816.8 (3) Å3 |
Mr = 180.23 | Z = 4 |
Orthorhombic, Pbcm | Mo Kα radiation |
a = 7.9309 (14) Å | µ = 0.34 mm−1 |
b = 15.335 (3) Å | T = 296 K |
c = 6.7158 (12) Å | 0.37 × 0.28 × 0.19 mm |
Bruker X8 APEX diffractometer | 1227 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 1017 reflections with I > 2σ(I) |
Tmin = 0.637, Tmax = 0.746 | Rint = 0.017 |
2970 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.129 | H-atom parameters constrained |
S = 1.09 | Δρmax = 0.44 e Å−3 |
1227 reflections | Δρmin = −0.29 e Å−3 |
73 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.5519 (3) | 0.06804 (13) | 0.2500 | 0.0393 (5) | |
H1 | 0.4928 | 0.0156 | 0.2500 | 0.047* | |
C2 | 0.5516 (3) | 0.21199 (12) | 0.2500 | 0.0279 (4) | |
C3 | 0.7675 (3) | 0.30515 (13) | 0.2500 | 0.0322 (4) | |
H3 | 0.8763 | 0.3277 | 0.2500 | 0.039* | |
C4 | 0.7284 (2) | 0.21512 (11) | 0.2500 | 0.0264 (4) | |
C5 | 0.8115 (3) | 0.13396 (11) | 0.2500 | 0.0285 (4) | |
C6 | 0.3247 (3) | 0.32714 (15) | 0.2500 | 0.0450 (6) | |
H6A | 0.3121 | 0.3658 | 0.1386 | 0.068* | |
H6B | 0.2414 | 0.2818 | 0.2500 | 0.068* | |
C7 | 1.0858 (3) | 0.02097 (16) | 0.2500 | 0.0483 (6) | |
H7A | 0.9865 | −0.0148 | 0.2500 | 0.072* | |
H7B | 1.1499 | 0.0095 | 0.1316 | 0.072* | |
N1 | 0.7221 (2) | 0.06053 (10) | 0.2500 | 0.0348 (4) | |
N2 | 0.4577 (2) | 0.13910 (11) | 0.2500 | 0.0369 (4) | |
N3 | 0.4970 (2) | 0.29563 (11) | 0.2500 | 0.0323 (4) | |
N4 | 0.6289 (3) | 0.35277 (10) | 0.2500 | 0.0349 (4) | |
S1 | 1.03110 (7) | 0.13414 (4) | 0.2500 | 0.0447 (2) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0316 (10) | 0.0218 (9) | 0.0644 (15) | −0.0024 (7) | 0.000 | 0.000 |
C2 | 0.0294 (9) | 0.0221 (8) | 0.0321 (9) | 0.0016 (7) | 0.000 | 0.000 |
C3 | 0.0301 (10) | 0.0230 (8) | 0.0434 (11) | −0.0032 (7) | 0.000 | 0.000 |
C4 | 0.0280 (9) | 0.0216 (8) | 0.0295 (9) | −0.0008 (6) | 0.000 | 0.000 |
C5 | 0.0295 (9) | 0.0232 (9) | 0.0329 (9) | 0.0005 (7) | 0.000 | 0.000 |
C6 | 0.0329 (11) | 0.0330 (11) | 0.0692 (16) | 0.0095 (9) | 0.000 | 0.000 |
C7 | 0.0376 (12) | 0.0393 (12) | 0.0680 (17) | 0.0119 (10) | 0.000 | 0.000 |
N1 | 0.0307 (9) | 0.0199 (7) | 0.0536 (11) | 0.0005 (6) | 0.000 | 0.000 |
N2 | 0.0290 (9) | 0.0250 (9) | 0.0568 (12) | −0.0015 (6) | 0.000 | 0.000 |
N3 | 0.0318 (8) | 0.0221 (7) | 0.0429 (9) | 0.0024 (6) | 0.000 | 0.000 |
N4 | 0.0399 (10) | 0.0211 (7) | 0.0439 (10) | −0.0021 (6) | 0.000 | 0.000 |
S1 | 0.0264 (3) | 0.0316 (3) | 0.0761 (5) | 0.00110 (18) | 0.000 | 0.000 |
C1—N2 | 1.321 (3) | C5—N1 | 1.331 (2) |
C1—N1 | 1.355 (3) | C5—S1 | 1.741 (2) |
C1—H1 | 0.9300 | C6—N3 | 1.449 (3) |
C2—N2 | 1.343 (3) | C6—H6A | 0.9598 |
C2—N3 | 1.354 (2) | C6—H6B | 0.9599 |
C2—C4 | 1.403 (3) | C7—S1 | 1.789 (3) |
C3—N4 | 1.319 (3) | C7—H7A | 0.9600 |
C3—C4 | 1.415 (2) | C7—H7B | 0.9599 |
C3—H3 | 0.9300 | N3—N4 | 1.365 (3) |
C4—C5 | 1.408 (2) | ||
N2—C1—N1 | 129.3 (2) | C4—C5—S1 | 117.82 (14) |
N2—C1—H1 | 115.3 | N3—C6—H6A | 107.7 |
N1—C1—H1 | 115.3 | N3—C6—H6B | 114.1 |
N2—C2—N3 | 127.68 (18) | H6A—C6—H6B | 112.1 |
N2—C2—C4 | 125.63 (18) | S1—C7—H7A | 110.8 |
N3—C2—C4 | 106.69 (17) | S1—C7—H7B | 107.8 |
N4—C3—C4 | 110.97 (17) | H7A—C7—H7B | 109.3 |
N4—C3—H3 | 124.5 | C5—N1—C1 | 117.33 (17) |
C4—C3—H3 | 124.5 | C1—N2—C2 | 111.89 (18) |
C2—C4—C5 | 115.96 (17) | C2—N3—N4 | 111.29 (17) |
C2—C4—C3 | 104.60 (16) | C2—N3—C6 | 128.13 (19) |
C5—C4—C3 | 139.45 (19) | N4—N3—C6 | 120.59 (17) |
N1—C5—C4 | 119.88 (19) | C3—N4—N3 | 106.45 (16) |
N1—C5—S1 | 122.30 (14) | C5—S1—C7 | 103.95 (11) |
Experimental details
Crystal data | |
Chemical formula | C7H8N4S |
Mr | 180.23 |
Crystal system, space group | Orthorhombic, Pbcm |
Temperature (K) | 296 |
a, b, c (Å) | 7.9309 (14), 15.335 (3), 6.7158 (12) |
V (Å3) | 816.8 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.34 |
Crystal size (mm) | 0.37 × 0.28 × 0.19 |
Data collection | |
Diffractometer | Bruker X8 APEX diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.637, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2970, 1227, 1017 |
Rint | 0.017 |
(sin θ/λ)max (Å−1) | 0.694 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.129, 1.09 |
No. of reflections | 1227 |
No. of parameters | 73 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.44, −0.29 |
Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), PLATON (Spek, 2009) and publCIF (Westrip, 2010).
Acknowledgements
The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements.
References
Bruker (2009). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chauhan, M. & Kumar, R. (2013). Bioorg. Med. Chem. 21, 5657–5668. Web of Science CrossRef CAS PubMed Google Scholar
El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2013). Acta Cryst. E69, o1650. CSD CrossRef IUCr Journals Google Scholar
El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, o1005–o1006. CSD CrossRef IUCr Journals Google Scholar
El Fal, M., Ramli, Y., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, o1038. CSD CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ouzidan, Y., Essassi, E. M., Luis, S. V., Bolte, M. & El Ammari, L. (2011). Acta Cryst. E67, o1822. Web of Science CSD CrossRef IUCr Journals Google Scholar
Rashad, A. E., Mahmoud, A. E. & Ali, M. M. (2011). Eur. J. Med. Chem. 46, 1019–1026. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Venkatesan, G., Paira, P., Cheong, S. L., Vamsikrishna, K., Federico, S., Klotz, K., Spalluto, G. & Pastorin, G. (2014). Bioorg. Med. Chem. 22, 1751–1765. Web of Science CSD CrossRef CAS PubMed Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.