research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structure of tetra­aqua­(5,5′-di­methyl-2,2′-bi­pyridyl-κ2N,N′)iron(II) sulfate

aLaboratoire de Chimie, Ingénierie Moléculaire et Nanostructures (LCIMN), Université Ferhat Abbas Sétif 1, Sétif 19000, Algeria, bVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, cDépartement de Technologie, Faculté de Technologie, Université 20 Août 1955-Skikda, BP 26, Route d'El-Hadaiek, Skikda 21000, Algeria, and dUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale (CHEMS), Université Constantine 1, Constantine 25000, Algeria
*Correspondence e-mail: setifi_zouaoui@yahoo.fr

Edited by A. Van der Lee, Université de Montpellier II, France (Received 31 October 2014; accepted 13 November 2014; online 21 November 2014)

In the title compound, [Fe(C12H12N2)(H2O)4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bi­pyridine ligand and four water O atoms in a distorted octa­hedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3) to 2.110 (3) Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3) and 2.177 (3) Å]. The chelating N—Fe—N angle of 75.6 (1)° shows the largest deviation from an ideal octa­hedral geometry; the other coordination angles deviate from ideal values by 0.1 (1) to 9.1 (1)°. O—H⋯O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further inter­act by means of C—H⋯O and ππ inter­actions involving the laterally positioned bi­pyridine rings. The perpen­dicular distance between ππ inter­acting rings is 3.365 (2) Å, with a centroid–centroid distance of 3.702 (3) Å.

1. Chemical context

Coordination compounds containing polynitrile anions as ligands are of current inter­est for their magnetic properties and their rich architectures and topologies (Setifi et al., 2003[Setifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309-316.]; Gaamoune et al., 2010[Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044-m1045.]; Váhovská & Potočňák, 2012[Váhovská, L. & Potočňák, I. (2012). Acta Cryst. E68, m1524-m1525.]; Setifi, Setifi et al., 2013[Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12-m13.]; Setifi, Domasevitsch et al., 2013[Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351-1356.]; Potočňák et al., 2014[Potočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432-436.]). Given the crucial role of these anionic ligands, we are inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the large field of mol­ecular materials exhibiting the spin crossover (SCO) phenomenon. In an attempt to prepare such a complex, we obtained the title compound, [Fe(dmbpy)(H2O)4]SO4, (I)[link], where dmbpy is 5,5′-dimethyl-2,2′-bipyridyl.

[Scheme 1]

The crystal structures of several complexes with general formula [M(bpy)(H2O)4]2+ comprising bipyridine derivatives as ligands have been reported previously (Boonlue et al., 2012[Boonlue, S., Theppitak, C. & Chainok, K. (2012). Acta Cryst. E68, m908.]; Harvey et al., 1999[Harvey, M., Baggio, S., Baggio, R. & Mombrú, A. (1999). Acta Cryst. C55, 1457-1460.]; Kwak et al., 2007[Kwak, O. K., Min, K. S. & Kim, B. G. (2007). Acta Cryst. E63, m17-m19.]; Suarez et al., 2013[Suarez, S., Doctorovich, F., Harvey, M. A. & Baggio, R. (2013). Acta Cryst. C69, 351-355.]; Xiao et al., 2003[Xiao, H.-P., Shi, Z., Zhu, L.-G., Xu, R.-R. & Pang, W.-Q. (2003). Acta Cryst. C59, m82-m83.]; Yang, 2009[Yang, H. (2009). Acta Cryst. E65, m1207.]; Yu et al., 2007[Yu, M., Liu, S.-X., Xie, L.-H., Cao, R.-G. & Ren, Y.-H. (2007). Acta Cryst. E63, m2110.]; Zhang et al., 2008[Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m1003-m1004.]; Zhao & Bai, 2009[Zhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866.]). This is the first complex of this type with FeII as the central ion.

2. Structural commentary

A mol­ecular view of complex (I)[link], together with the atom-numbering scheme is given in Fig. 1[link]. The crystal structure of (I)[link] consists of the cationic complex [Fe(dmbpy)(H2O)4]2+ and a free [SO4]2− counter-ion. The FeII atom is in a distorted octa­hedral coordination environment and the equatorial plane of the octa­hedron is formed by a pair of nitro­gen donors from the 5,5′-dimethyl-2,2′-bipyridyl ligand and two mol­ecules of water, while the axial sites are occupied by two other water mol­ecules. The equatorial donor atoms are nearly coplanar (r.m.s. deviation = 0.0062 Å), while the deviation of the Fe atom from the least-squares plane is somewhat larger [0.021 (2) Å]. The bi­pyridine chelating angle N1—Fe—N2 of 75.6 (1)° shows the most significant deviation from an ideal octa­hedral geometry. The other angular distortions from an ideal octa­hedral geometry are in the range 0.1 (1) to 9.1 (1)°. The S—O bond lengths [1.466 (3)–1.480 (3) Å] and O—S—O angles [108.8 (2)–109.9 (2)°] indicate a nearly ideal tetra­hedral geometry for the anion.

[Figure 1]
Figure 1
The mol­ecular structure of (I)[link], with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are indicated by dashed lines.

3. Supra­molecular features

Within the crystal packing, the charged components are connected by an extensive hydrogen-bonding network (Table 1[link]). Each of the [Fe(dmbpy)(H2O)4]2+ cations engages all four coordinating water mol­ecules in hydrogen bonding to four [SO4]2− anions (Fig. 2[link]a). The anions surrounding the cationic unit are positioned at similar Fe⋯S distance of [\simeq]4.9 Å. On the other hand, each of the [SO4]2− anions appears surrounded with four cationic units, where its four O atoms engage as acceptors in bifurcated O—H⋯O hydrogen bonds towards neighbouring cations (Fig. 2[link]a). Such a mutual arrangement leads to the formation of a two-dimensional hydrogen-bonded network parallel to the ab plane (Fig. 2[link]b). Laterally arranged aromatic rings of the 5,5′-dimethyl-2,2′-bi­pyridine ligand in neighbouring layers inter­act by means of weak C—H⋯O and ππ inter­actions, forming the three-dimensional crystal packing (Table 1[link] and Fig. 3[link]). The centroid–centroid distance for the latter inter­action is 3.702 (3) Å.

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H1O5⋯O4i 0.83 1.92 2.734 (4) 165
O5—H2O5⋯O2ii 0.96 1.94 2.794 (4) 147
O6—H1O6⋯O1 0.94 1.90 2.820 (4) 167
O6—H2O6⋯O3iii 0.83 1.95 2.765 (4) 165
O7—H1O7⋯O4ii 0.83 1.89 2.722 (4) 175
O7—H2O7⋯O2 0.82 1.89 2.697 (4) 167
O8—H1O8⋯O1iii 0.77 1.95 2.719 (4) 175
O8—H2O8⋯O3i 0.89 1.91 2.792 (5) 174
C4—H4⋯O4iv 0.93 2.54 3.232 (5) 132
Symmetry codes: (i) x, y+1, z; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [x, -y-{\script{1\over 2}}, z+{\script{1\over 2}}].
[Figure 2]
Figure 2
(a) O—H⋯O inter­actions (dashed lines) connect the cations and anions into layers parallel to the ab plane. (b) View of a single layer down the a axis.
[Figure 3]
Figure 3
(a) The bipyridine rings from neighbouring layers inter­act via C—H⋯O and ππ inter­actions. (b) Orthogonal projection of the central fragment.

4. Synthesis and crystallization

The title compound, (I)[link], was synthesized hydro­thermally from a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), 5,5′-dimethyl-2,2′-bipyridyl (18 mg, 0.1 mmol) and potassium tri­cyano­methanide KC(CN)3 (26 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 410 K for 3 d. The autoclave was then allowed to cool to ambient temperature. Red crystals of (I)[link] were collected by filtration, washed with water and dried in air (yield 35%).

5. Refinement details

Crystal data, data collection and structure refinement details are summarized in Table 2[link]. H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed at 0.93 and 0.96 Å from aromatic and methyl C atoms, respectively. The Uiso(H) values were equal to 1.2 and 1.5 times Ueq of the corresponding C(sp2) and C(sp3) atoms. The H atoms of the four water mol­ecules were initially located in a difference Fourier map. During the refinement, these H atoms were allowed to ride on their parent O atoms and also to rotate about the corresponding Fe—O bonds. The Uiso(H) values were set equal to 1.2 times Ueq of the parent O atom. The reflections (100) and (002) were excluded from the refinement because they were nearly completely obscured by the beamstop.

Table 2
Experimental details

Crystal data
Chemical formula [Fe(C12H12N2)(H2O)4]SO4
Mr 408.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c (Å) 9.5790 (7), 9.6190 (9), 18.5500 (12)
β (°) 101.527 (5)
V3) 1674.7 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.07
Crystal size (mm) 0.28 × 0.14 × 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.792, 0.881
No. of measured, independent and observed [I > 2σ(I)] reflections 14477, 4868, 3305
Rint 0.117
(sin θ/λ)max−1) 0.706
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.196, 1.08
No. of reflections 4867
No. of parameters 223
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.84, −1.33
Computer programs: APEX2 and SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), SHELXL2014 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]).

Supporting information


Chemical context top

Coordination compounds containing polynitrile anions as ligands are of current inter­est for their magnetic properties and their rich architectures and topologies (Setifi et al., 2003; Gaamoune et al., 2010; Váhovská & Potočňák, 2012; Setifi, Setifi et al., 2013; Setifi, Domasevitsch et al., 2013; Potočňák et al., 2014). Given the crucial role of these anionic ligands, we are inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the large field of molecular materials exhibiting the spin crossover (SCO) phenomenon. In an attempt to prepare such a complex, we obtained the title compound, [Fe(dmbpy)(H2O)4]SO4, (I), where dmbpy is 5,5'-di­methyl-2,2'-bi­pyridyl. The crystal structures of several complexes with general formula [M(bpy)(H2O)4]2+ comprising bypiridine derivatives as ligands have been reported previously (Boonlue et al., 2012; Harvey et al., 1999; Kwak et al., 2007; Suarez et al., 2013; Xiao et al., 2003; Yang, 2009; Yu et al., 2007; Zhang et al., 2008; Zhao & Bai, 2009). This is the first complex of this type with FeII as the central ion.

Structural commentary top

A molecular view of complex (I), together with the atom-numbering scheme is given in Fig. 1. The crystal structure of (I) consists of the cationic complex [Fe(dmbpy)(H2O)4]2+ and a free [SO4]2- counter-ion. The FeII atom is in a distorted o­cta­hedral coordination environment and the equatorial plane of the o­cta­hedron is formed by a pair of nitro­gen donors from the 5,5'-di­methyl-2,2'-bi­pyridyl ligand and two molecules of water, while the axial sites are occupied by two other water molecules. The equatorial donor atoms are nearly co-planar (r.m.s. deviation = 0.0062 Å), while the deviation of the Fe atom from the least-squares plane is somewhat larger [0.021 (2) Å]. The bi­pyridine chelating angle N1—Fe—N2 of 75.6 (1)° shows the most significant deviation from an ideal o­cta­hedral geometry. The other angular distortions from an ideal o­cta­hedral geometry are in the range 0.1 (1) to 9.1 (1)°. The S—O bond lengths [1.466 (3)–1.480 (3) Å] and O—S—O angles [108.8 (2)–109.9 (2)°] indicate a nearly ideal tetra­hedral geometry for the anion.

Supra­molecular features top

Within the crystal packing, the charged components are connected by an extensive hydrogen-bonding network (Table 1). Each of the [Fe(dmbpy)(H2O)4]2+ cations engages all four coordinating water molecules in hydrogen bonding to four [SO4]2- anions (Fig. 2a). The anions surrounding cationic unit are positioned at similar Fe···S distance of 4.9?? (su?) Å. On the other hand, each of the [SO4]2- anions appears surrounded with four cationic units, where its four O atoms engage as acceptors in bifurcated O—H···O hydrogen bonds towards neighbouring cations (Fig. 2a). Such a mutual arrangement leads to the formation of a two-dimensional hydrogen-bonded network parallel to the ab plane (Fig. 2b). Laterally arranged aromatic rings of the 5,5'-di­methyl-2,2'-bi­pyridine ligand in neighbouring layers inter­act by means of weak C—H···O and ππ inter­actions, forming the three-dimensional crystal packing (Table 1, Fig. 3). The centroid–centroid distance for the latter inter­action is 3.702 (3) Å.

Synthesis and crystallization top

The title compound, (I), was synthesized hydro­thermally from a mixture of iron(II) sulfate heptahydrate (28 mg, 0.1 mmol), 5,5'-di­methyl-2,2'-bi­pyridyl (18 mg, 0.1 mmol) and potassium tri­cyano­methanide KC(CN)3 (26 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 410 K for 3 d. The autoclave was then allowed to cool to ambient temperature. Red crystals of (I) were collected by filtration, washed with water and dried in air (yield 35%).

Refinement details top

H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed at 0.93 and 0.96 Å from aromatic and methyl C atoms, respectively. The Uiso(H) values were equal to 1.2 and 1.5 times Ueq of the corresponding C(sp2) and C(sp3) atoms. The H atoms of the four water molecules were initially located in a difference Fourier map. During the refinement, these H atoms were allowed to ride on their parent O atoms and also to rotate about the corresponding Fe—O bonds. The Uiso(H) values were set equal to 1.2 times Ueq of the parent O atom. The reflections (100) and (002) were excluded from the refinement because they were nearly completely obscured by the beamstop.

Related literature top

For related literature, see: Boonlue et al. (2012); Gaamoune et al. (2010); Harvey et al. (1999); Kwak et al. (2007); Potočňák et al. (2014); Setifi et al. (2003); Setifi, Domasevitch, Setifi, Mach, Ng, Petříček & Dušek (2013); Setifi, Setifi, Ng, Oudahmane, El–Ghozzi & Avignant (2013); Suarez et al. (2013); Váhovská & Potočňák (2012); Xiao, –P, Shi, Zhu, –G, Xu, –R, Pang & –Q (2003); Yang (2009); Yu et al. (2007); Zhang, –Y, Nie, –J, Xu & –J (2008); Zhao, –L, Bai & –F (2009).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CALC-OH (Nardelli, 1999).

Figures top
The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

(a) O—H···O interactions (dashed lines) connect the cations and anions into layers parallel to the ab plane. (b) View of a single layer down the a axis.

(a) The bypyridine rings from neighbouring layers interact via C—H···O and ππ interactions. (b) Orthogonal projection of the central fragment.
Tetraaqua(5,5'-dimethyl-2,2'-bipyridyl-κ2N,N')iron(II) sulfate top
Crystal data top
[Fe(C12H12N2)(H2O)4]SO4F(000) = 848
Mr = 408.21Dx = 1.619 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4857 reflections
a = 9.5790 (7) Åθ = 2.2–29.9°
b = 9.6190 (9) ŵ = 1.07 mm1
c = 18.5500 (12) ÅT = 293 K
β = 101.527 (5)°Block, red
V = 1674.7 (2) Å30.28 × 0.14 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4868 independent reflections
Radiation source: fine-focus sealed tube3305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.117
ω–2θ scansθmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1313
Tmin = 0.792, Tmax = 0.881k = 1313
14477 measured reflectionsl = 2626
Refinement top
Refinement on F2223 parameters
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0821P)2 + 2.0315P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.196(Δ/σ)max = 0.002
S = 1.08Δρmax = 0.84 e Å3
4867 reflectionsΔρmin = 1.33 e Å3
Crystal data top
[Fe(C12H12N2)(H2O)4]SO4V = 1674.7 (2) Å3
Mr = 408.21Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5790 (7) ŵ = 1.07 mm1
b = 9.6190 (9) ÅT = 293 K
c = 18.5500 (12) Å0.28 × 0.14 × 0.09 mm
β = 101.527 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
4868 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3305 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.881Rint = 0.117
14477 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.065223 parameters
wR(F2) = 0.196H-atom parameters constrained
S = 1.08Δρmax = 0.84 e Å3
4867 reflectionsΔρmin = 1.33 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.77171 (5)0.13308 (6)0.80535 (3)0.02534 (17)
S10.75114 (9)0.36313 (10)0.75262 (5)0.0251 (2)
O30.6693 (3)0.4269 (3)0.80282 (17)0.0376 (7)
O10.6620 (3)0.2600 (3)0.70522 (17)0.0364 (7)
O20.8783 (3)0.2931 (3)0.79546 (16)0.0338 (6)
O40.7980 (3)0.4722 (3)0.70641 (16)0.0347 (6)
O50.8418 (3)0.2477 (3)0.72229 (16)0.0361 (7)
H1O50.81290.32960.71710.043*
H2O50.91940.20650.70430.043*
O60.6213 (3)0.0261 (3)0.72705 (17)0.0399 (7)
H1O60.63890.06520.71300.048*
H2O60.53780.05560.71950.048*
O70.9191 (3)0.0166 (3)0.7871 (2)0.0489 (9)
H1O71.00460.00160.78630.059*
H2O70.89290.09810.78790.059*
O80.6224 (3)0.2876 (4)0.8109 (2)0.0619 (11)
H1O80.54220.27010.80530.074*
H2O80.63330.37930.81070.074*
N10.7224 (4)0.0244 (4)0.90015 (19)0.0340 (8)
N20.9173 (4)0.2218 (4)0.89908 (19)0.0337 (8)
C10.6251 (5)0.0763 (5)0.8969 (3)0.0390 (10)
H10.57470.10280.85080.047*
C20.5945 (5)0.1437 (5)0.9581 (3)0.0424 (10)
C30.6691 (6)0.0975 (5)1.0262 (3)0.0452 (11)
H30.64970.13621.06910.054*
C40.7709 (5)0.0043 (5)1.0307 (2)0.0412 (10)
H40.82190.03271.07630.049*
C50.7973 (4)0.0650 (5)0.9666 (2)0.0341 (9)
C60.9054 (4)0.1741 (4)0.9658 (2)0.0316 (8)
C70.9931 (5)0.2257 (5)1.0288 (2)0.0440 (11)
H70.98450.19261.07480.053*
C81.0931 (5)0.3265 (5)1.0230 (3)0.0436 (11)
H81.15120.36171.06530.052*
C91.1071 (5)0.3750 (5)0.9549 (3)0.0411 (10)
C101.0156 (5)0.3184 (5)0.8947 (2)0.0381 (9)
H101.02310.34960.84820.046*
C110.4852 (6)0.2566 (6)0.9492 (3)0.0594 (14)
H11A0.39870.22430.91840.089*
H11B0.46700.28170.99660.089*
H11C0.51980.33630.92700.089*
C121.2165 (5)0.4814 (6)0.9444 (3)0.0553 (13)
H12A1.29190.43660.92610.083*
H12B1.25480.52490.99070.083*
H12C1.17260.55040.90990.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0228 (3)0.0200 (3)0.0332 (3)0.0001 (2)0.00542 (19)0.0011 (2)
S10.0219 (4)0.0171 (4)0.0374 (5)0.0005 (3)0.0084 (3)0.0000 (4)
O30.0387 (16)0.0309 (16)0.0461 (17)0.0077 (13)0.0152 (13)0.0018 (13)
O10.0323 (15)0.0262 (15)0.0500 (17)0.0075 (12)0.0067 (12)0.0064 (13)
O20.0223 (12)0.0289 (16)0.0499 (17)0.0067 (11)0.0065 (11)0.0046 (13)
O40.0371 (15)0.0236 (14)0.0455 (16)0.0052 (12)0.0135 (12)0.0051 (12)
O50.0361 (15)0.0212 (14)0.0536 (18)0.0039 (12)0.0151 (13)0.0065 (13)
O60.0266 (14)0.0299 (16)0.0601 (19)0.0038 (12)0.0013 (13)0.0091 (15)
O70.0286 (15)0.0234 (15)0.098 (3)0.0025 (12)0.0207 (17)0.0004 (17)
O80.0270 (16)0.0275 (17)0.134 (4)0.0013 (13)0.022 (2)0.000 (2)
N10.0345 (17)0.0336 (19)0.0351 (18)0.0003 (15)0.0102 (14)0.0042 (15)
N20.0352 (18)0.0307 (18)0.0336 (17)0.0043 (14)0.0033 (14)0.0016 (14)
C10.039 (2)0.036 (2)0.042 (2)0.0060 (19)0.0111 (18)0.0020 (19)
C20.045 (2)0.035 (2)0.051 (3)0.001 (2)0.017 (2)0.009 (2)
C30.059 (3)0.042 (3)0.040 (2)0.002 (2)0.024 (2)0.012 (2)
C40.050 (3)0.043 (3)0.033 (2)0.003 (2)0.0133 (19)0.0032 (19)
C50.037 (2)0.032 (2)0.034 (2)0.0064 (17)0.0093 (16)0.0015 (17)
C60.0318 (19)0.030 (2)0.034 (2)0.0048 (16)0.0078 (16)0.0014 (16)
C70.049 (3)0.047 (3)0.034 (2)0.002 (2)0.0034 (19)0.003 (2)
C80.044 (2)0.040 (3)0.044 (3)0.005 (2)0.0012 (19)0.012 (2)
C90.040 (2)0.035 (2)0.047 (3)0.0016 (19)0.0050 (18)0.005 (2)
C100.040 (2)0.036 (2)0.038 (2)0.0048 (19)0.0059 (17)0.0020 (19)
C110.061 (3)0.050 (3)0.073 (4)0.006 (3)0.028 (3)0.014 (3)
C120.042 (3)0.051 (3)0.069 (3)0.017 (2)0.003 (2)0.007 (3)
Geometric parameters (Å, º) top
Fe1—O82.080 (3)C1—H10.9300
Fe1—O72.091 (3)C2—C31.394 (7)
Fe1—O62.099 (3)C2—C111.494 (7)
Fe1—O52.110 (3)C3—C41.373 (7)
Fe1—N22.175 (3)C3—H30.9300
Fe1—N12.177 (3)C4—C51.392 (6)
S1—O31.466 (3)C4—H40.9300
S1—O21.477 (3)C5—C61.477 (6)
S1—O11.479 (3)C6—C71.388 (6)
S1—O41.480 (3)C7—C81.382 (7)
O5—H1O50.8346C7—H70.9300
O5—H2O50.9588C8—C91.379 (7)
O6—H1O60.9409C8—H80.9300
O6—H2O60.8339C9—C101.385 (6)
O7—H1O70.8346C9—C121.504 (7)
O7—H2O70.8248C10—H100.9300
O8—H1O80.7727C11—H11A0.9600
O8—H2O80.8889C11—H11B0.9600
N1—C11.337 (6)C11—H11C0.9600
N1—C51.354 (5)C12—H12A0.9600
N2—C101.336 (5)C12—H12B0.9600
N2—C61.345 (5)C12—H12C0.9600
C1—C21.389 (6)
O8—Fe1—O7173.50 (16)C2—C1—H1117.9
O8—Fe1—O690.06 (14)C1—C2—C3116.0 (4)
O7—Fe1—O686.71 (13)C1—C2—C11120.5 (5)
O8—Fe1—O589.18 (14)C3—C2—C11123.6 (4)
O7—Fe1—O585.26 (13)C4—C3—C2120.7 (4)
O6—Fe1—O591.46 (12)C4—C3—H3119.6
O8—Fe1—N290.98 (15)C2—C3—H3119.6
O7—Fe1—N293.10 (14)C3—C4—C5119.7 (4)
O6—Fe1—N2170.92 (13)C3—C4—H4120.1
O5—Fe1—N297.58 (13)C5—C4—H4120.1
O8—Fe1—N192.32 (15)N1—C5—C4120.2 (4)
O7—Fe1—N193.60 (14)N1—C5—C6116.1 (4)
O6—Fe1—N195.39 (13)C4—C5—C6123.7 (4)
O5—Fe1—N1172.99 (13)N2—C6—C7120.3 (4)
N2—Fe1—N175.55 (14)N2—C6—C5116.1 (4)
O3—S1—O2109.72 (18)C7—C6—C5123.6 (4)
O3—S1—O1109.88 (18)C8—C7—C6119.8 (4)
O2—S1—O1109.25 (18)C8—C7—H7120.1
O3—S1—O4109.51 (18)C6—C7—H7120.1
O2—S1—O4108.76 (17)C9—C8—C7120.3 (4)
O1—S1—O4109.70 (18)C9—C8—H8119.8
Fe1—O5—H1O5115.4C7—C8—H8119.8
Fe1—O5—H2O5114.8C8—C9—C10116.3 (4)
H1O5—O5—H2O5127.9C8—C9—C12123.1 (4)
Fe1—O6—H1O6120.9C10—C9—C12120.6 (4)
Fe1—O6—H2O6116.9N2—C10—C9124.4 (4)
H1O6—O6—H2O6119.3N2—C10—H10117.8
Fe1—O7—H1O7125.5C9—C10—H10117.8
Fe1—O7—H2O7115.7C2—C11—H11A109.5
H1O7—O7—H2O7118.0C2—C11—H11B109.5
Fe1—O8—H1O8120.9H11A—C11—H11B109.5
Fe1—O8—H2O8128.8C2—C11—H11C109.5
H1O8—O8—H2O8109.3H11A—C11—H11C109.5
C1—N1—C5119.2 (4)H11B—C11—H11C109.5
C1—N1—Fe1125.0 (3)C9—C12—H12A109.5
C5—N1—Fe1115.8 (3)C9—C12—H12B109.5
C10—N2—C6118.9 (4)H12A—C12—H12B109.5
C10—N2—Fe1124.9 (3)C9—C12—H12C109.5
C6—N2—Fe1116.3 (3)H12A—C12—H12C109.5
N1—C1—C2124.1 (4)H12B—C12—H12C109.5
N1—C1—H1117.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O4i0.831.922.734 (4)165
O5—H2O5···O2ii0.961.942.794 (4)147
O6—H1O6···O10.941.902.820 (4)167
O6—H2O6···O3iii0.831.952.765 (4)165
O7—H1O7···O4ii0.831.892.722 (4)175
O7—H2O7···O20.821.892.697 (4)167
O8—H1O8···O1iii0.771.952.719 (4)175
O8—H2O8···O3i0.891.912.792 (5)174
C4—H4···O4iv0.932.543.232 (5)132
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1O5···O4i0.831.922.734 (4)165
O5—H2O5···O2ii0.961.942.794 (4)147
O6—H1O6···O10.941.902.820 (4)167
O6—H2O6···O3iii0.831.952.765 (4)165
O7—H1O7···O4ii0.831.892.722 (4)175
O7—H2O7···O20.821.892.697 (4)167
O8—H1O8···O1iii0.771.952.719 (4)175
O8—H2O8···O3i0.891.912.792 (5)174
C4—H4···O4iv0.932.543.232 (5)132
Symmetry codes: (i) x, y+1, z; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C12H12N2)(H2O)4]SO4
Mr408.21
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.5790 (7), 9.6190 (9), 18.5500 (12)
β (°) 101.527 (5)
V3)1674.7 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.28 × 0.14 × 0.09
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.792, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
14477, 4868, 3305
Rint0.117
(sin θ/λ)max1)0.706
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.065, 0.196, 1.08
No. of reflections4867
No. of parameters223
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.84, 1.33

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006), CALC-OH (Nardelli, 1999).

 

Acknowledgements

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support. The Ministry of Education and Science of the Republic of Serbia is also thanked for support of the work of BMF and SBN (project Nos. 172014 and 172035).

References

First citationBoonlue, S., Theppitak, C. & Chainok, K. (2012). Acta Cryst. E68, m908.  CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationGaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHarvey, M., Baggio, S., Baggio, R. & Mombrú, A. (1999). Acta Cryst. C55, 1457–1460.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKwak, O. K., Min, K. S. & Kim, B. G. (2007). Acta Cryst. E63, m17–m19.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPotočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432–436.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSetifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSetifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309–316.  Web of Science CSD CrossRef CAS Google Scholar
First citationSetifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSuarez, S., Doctorovich, F., Harvey, M. A. & Baggio, R. (2013). Acta Cryst. C69, 351–355.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationVáhovská, L. & Potočňák, I. (2012). Acta Cryst. E68, m1524–m1525.  CSD CrossRef IUCr Journals Google Scholar
First citationXiao, H.-P., Shi, Z., Zhu, L.-G., Xu, R.-R. & Pang, W.-Q. (2003). Acta Cryst. C59, m82–m83.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationYang, H. (2009). Acta Cryst. E65, m1207.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYu, M., Liu, S.-X., Xie, L.-H., Cao, R.-G. & Ren, Y.-H. (2007). Acta Cryst. E63, m2110.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m1003–m1004.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds