metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m390-m391

Crystal structure of bis­­{2,4-di-tert-butyl-6-[(iso­propyl­imino)­meth­yl]phenolato-κ2N,O}zinc di­chloro­methane mono­solvate

aGuangzhou Super-Dragon Engineering Plastics Co. Ltd, People's Republic of China, and bGuangzhou Engineering, Technology Research Center, Guangzhou 510900, People's Republic of China
*Correspondence e-mail: hyz@gzselon.com

Edited by M. Weil, Vienna University of Technology, Austria (Received 17 July 2014; accepted 15 October 2014; online 5 November 2014)

In the title compound, [Zn(C18H28NO)2]·CH2Cl2, the ZnII atom is N,O-chelated by two crystallographically independent salicyl­aldehyde imine ligands, leading to a distorted tetra­hedral coordination sphere. The dihedral angle between the planes of the two metallacycles is 88.69 (6)°. Intra­molecular non-classical C—H⋯O hydrogen-bonding inter­actions are observed. In the crystal, the complex mol­ecules stack into columns along the a axis. Di­chloro­methane solvent mol­ecules are situated in the voids of this arrangement.

1. Related literature

For backgroud to poly(lactide) (PLA) and its copolymers, see: Wheaton & Hayes (2011[Wheaton, C. A. & Hayes, P. G. (2011). Comments Inorg. Chem. 32, 127-162.]); Chen et al. (2006[Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745-3752.]). For the use of bulky ligands coordinating to the active metal site to avoid undesirable transesterification during synthesis of lactides by ring-opening polymerization (ROP), see: Wu et al. (2006[Wu, J.-C., Yu, T.-L., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev. 250, 602-626.]). For a highly active zinc catalyst for the controlled polymerization of lactides, see: Williams et al. (2003[Williams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. J. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350-11359.]); Chamberlain et al. (2001[Chamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229-3238.]). For the preparation of zinc salicyl­aldehyde­imine complexes, see: Chisholm et al. (2001[Chisholm, M. H., Gallucci, J. C., Zhen, H. & Huffman, J. C. (2001). Inorg. Chem. 40, 5051-5054.]).

[Scheme 1]

2. Experimental

2.1. Crystal data

  • [Zn(C18H28NO)2]·CH2Cl2

  • Mr = 699.12

  • Monoclinic, P 21 /n

  • a = 13.6653 (17) Å

  • b = 14.6674 (18) Å

  • c = 19.663 (2) Å

  • β = 104.807 (2)°

  • V = 3810.4 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.82 mm−1

  • T = 173 K

  • 0.42 × 0.41 × 0.26 mm

2.2. Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.725, Tmax = 0.816

  • 22339 measured reflections

  • 8281 independent reflections

  • 6513 reflections with I > 2σ(I)

  • Rint = 0.024

2.3. Refinement

  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.101

  • S = 1.03

  • 8281 reflections

  • 413 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O1 0.98 2.37 3.018 (3) 123
C5—H5C⋯O1 0.98 2.32 2.967 (3) 123
C23—H23C⋯O2 0.98 2.35 2.994 (3) 122
C24—H24A⋯O2 0.98 2.33 2.986 (3) 124

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Related literature top

For backgroud to poly(lactide) (PLA) and its copolymers, see: Wheaton & Hayes (2011); Chen et al. (2006). For the use of bulky ligands coordinating to the active metal site to avoid undesirable transesterification during synthesis of lactides by ring-opening polymerization (ROP), see: Wu et al. (2006). For a highly active zinc catalyst for the controlled polymerization of lactides, see: Williams et al. (2003); Chamberlain et al. (2001). For the preparation of zinc salicylaldehydeimine complexes, see: Chisholm et al. (2001).

Experimental top

Synthesis of the ligand: Diisopropylamine (2.02 g, 20 mmol) was added dropwise to a solution of the 2,6-di-tert-butyl-salicylaldehyde (4.68 g, 20 mmol) in dry ethanol (60 ml) at room temperature over a period of 5 min. The mixture was stirred at 353 K for four hours. Then the solvent was removed by rotary evaporation, and the residue was recrystallizated from methanol. The ligand was isolated as a yellow solid in 20% yield.

Synthesis of the complex: In a Schlenk flask, ZnEt2 (1.22 g, 10 mmol) was added to the solution of the salicylaldehydeimine ligand (10 mmol in tetrahydrofuran) at room temperature. The reaction mixture was stirred in the absence of light for 3 hours at room temperature and was then filtered in the dark and the volume of the solution reduced to 5.0 ml. Pentane was added to afford the product as a light-green solid in ca. 50% yield. Single-crystals suitable for X-ray diffraction were grown by slow evaporation of a solution of the title compound in dichlormethane at room temperature.

Refinement top

Reflection (011) was affected by the beamstop and was omitted from the refinement. H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with a C—H distances of 0.95 (aromatic) and 0.99 Å (methylene) and with Uiso(H) = 1.2Ueq(C), and 0.98 Å for CH3 [Uiso(H)= 1.5Ueq(C)].

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
The molecular structure of the title complex with atom labelling and displacement ellipsoids drawn at the 30% probability level.

View of the crystal structure of title compound; H atoms are omitted for clarity.
Bis{2,4-di-tert-butyl-6-[(isopropylimino)methyl]phenolato-κ2N,O}zinc dichloromethane monosolvate top
Crystal data top
[Zn(C18H28NO)2]·CH2Cl2F(000) = 1496
Mr = 699.12Dx = 1.219 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5049 reflections
a = 13.6653 (17) Åθ = 2.1–27.0°
b = 14.6674 (18) ŵ = 0.82 mm1
c = 19.663 (2) ÅT = 173 K
β = 104.807 (2)°Block, light-green
V = 3810.4 (8) Å30.42 × 0.41 × 0.26 mm
Z = 4
Data collection top
Bruker APEXII area-detector
diffractometer
8281 independent reflections
Radiation source: fine-focus sealed tube6513 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 27.1°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 178
Tmin = 0.725, Tmax = 0.816k = 1818
22339 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0501P)2 + 2.0294P]
where P = (Fo2 + 2Fc2)/3
8281 reflections(Δ/σ)max < 0.001
413 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Zn(C18H28NO)2]·CH2Cl2V = 3810.4 (8) Å3
Mr = 699.12Z = 4
Monoclinic, P21/nMo Kα radiation
a = 13.6653 (17) ŵ = 0.82 mm1
b = 14.6674 (18) ÅT = 173 K
c = 19.663 (2) Å0.42 × 0.41 × 0.26 mm
β = 104.807 (2)°
Data collection top
Bruker APEXII area-detector
diffractometer
8281 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
6513 reflections with I > 2σ(I)
Tmin = 0.725, Tmax = 0.816Rint = 0.024
22339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.02Δρmax = 0.52 e Å3
8281 reflectionsΔρmin = 0.37 e Å3
413 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.231421 (16)0.615892 (14)0.299369 (11)0.02227 (7)
O10.12145 (10)0.68715 (9)0.31431 (7)0.0271 (3)
N20.36935 (12)0.66973 (11)0.33979 (8)0.0236 (3)
N10.18811 (12)0.49721 (10)0.33244 (8)0.0232 (3)
O20.23720 (10)0.61964 (10)0.20306 (7)0.0276 (3)
C10.04377 (14)0.65800 (13)0.33501 (9)0.0220 (4)
C190.31561 (14)0.63896 (12)0.17944 (10)0.0222 (4)
C20.03878 (15)0.71885 (13)0.33494 (9)0.0236 (4)
C70.11968 (15)0.68601 (13)0.35778 (10)0.0251 (4)
H70.17380.72690.35730.030*
C140.03560 (14)0.56642 (13)0.35720 (9)0.0228 (4)
C130.04928 (15)0.53872 (13)0.38081 (10)0.0244 (4)
H130.05190.47780.39670.029*
C150.10583 (14)0.49406 (13)0.35310 (9)0.0238 (4)
H150.08890.43570.36780.029*
C210.20705 (15)0.60533 (13)0.05374 (10)0.0264 (4)
C160.23887 (15)0.40931 (13)0.32679 (11)0.0276 (4)
H160.20700.36060.34960.033*
C180.22391 (19)0.38570 (15)0.24970 (12)0.0389 (5)
H18A0.15130.38220.22680.058*
H18B0.25560.32670.24560.058*
H18C0.25510.43290.22690.058*
C240.12496 (16)0.67508 (15)0.05796 (11)0.0333 (5)
H24A0.11760.67750.10620.050*
H24B0.06040.65690.02600.050*
H24C0.14440.73540.04440.050*
C330.42696 (14)0.68492 (13)0.29838 (10)0.0242 (4)
H330.49070.71130.32020.029*
C340.40723 (16)0.69940 (14)0.41395 (10)0.0295 (4)
H340.47140.73440.41830.035*
C230.17481 (18)0.50939 (14)0.07091 (11)0.0355 (5)
H23A0.22760.46540.06810.053*
H23B0.11140.49260.03700.053*
H23C0.16480.50890.11850.053*
C30.03675 (15)0.81732 (13)0.30842 (11)0.0278 (4)
Cl10.91415 (5)0.39983 (5)0.22012 (4)0.05363 (17)
Cl20.95759 (7)0.56715 (6)0.15546 (4)0.0742 (3)
C60.13092 (18)0.87132 (14)0.31363 (14)0.0397 (5)
H6A0.19170.84190.28460.060*
H6B0.12640.93370.29690.060*
H6C0.13470.87280.36270.060*
C200.30799 (14)0.63163 (12)0.10503 (9)0.0216 (4)
C310.49349 (15)0.68533 (13)0.19565 (10)0.0255 (4)
H310.55540.70490.22640.031*
C220.21423 (18)0.60298 (16)0.02269 (11)0.0361 (5)
H22A0.23680.66250.03540.054*
H22B0.14760.58880.05370.054*
H22C0.26290.55610.02790.054*
C250.39349 (15)0.64874 (13)0.08192 (10)0.0255 (4)
H250.38820.64250.03300.031*
C80.12791 (15)0.59650 (13)0.38169 (10)0.0244 (4)
C90.22116 (15)0.56725 (14)0.40596 (11)0.0284 (4)
C260.48822 (15)0.67477 (13)0.12575 (10)0.0258 (4)
C40.03558 (18)0.81635 (15)0.23040 (11)0.0360 (5)
H4A0.02330.78180.22490.054*
H4B0.03160.87900.21410.054*
H4C0.09770.78760.20250.054*
C350.4302 (3)0.61854 (19)0.46227 (13)0.0566 (8)
H35A0.36770.58450.45990.085*
H35B0.45890.63950.51060.085*
H35C0.47900.57890.44790.085*
C170.35026 (17)0.41501 (16)0.36411 (12)0.0381 (5)
H17A0.38230.46260.34220.057*
H17B0.38270.35620.36050.057*
H17C0.35790.42990.41380.057*
C50.05595 (18)0.86917 (14)0.35161 (12)0.0374 (5)
H5A0.05380.87110.40100.056*
H5B0.05550.93150.33350.056*
H5C0.11780.83800.34790.056*
C300.67305 (17)0.72050 (19)0.14855 (12)0.0439 (6)
H30A0.65910.77900.16830.066*
H30B0.72890.72790.12620.066*
H30C0.69170.67520.18630.066*
C270.57872 (15)0.68851 (14)0.09393 (11)0.0295 (4)
C320.40933 (14)0.66789 (13)0.22385 (9)0.0230 (4)
C370.87357 (19)0.51175 (18)0.19483 (13)0.0437 (6)
H37A0.80580.50960.16140.052*
H37B0.86780.54660.23680.052*
C290.55214 (17)0.76021 (15)0.03504 (12)0.0358 (5)
H29A0.53630.81830.05450.054*
H29B0.49330.73960.00150.054*
H29C0.60990.76850.01460.054*
C280.60274 (19)0.59837 (15)0.06249 (13)0.0398 (5)
H28A0.66060.60680.04220.060*
H28B0.54370.57860.02560.060*
H28C0.61930.55190.09950.060*
C360.3316 (2)0.7614 (2)0.43351 (13)0.0629 (9)
H36A0.31730.81290.40070.094*
H36B0.35900.78410.48150.094*
H36C0.26880.72770.43110.094*
C100.2250 (3)0.6212 (2)0.47101 (18)0.0754 (11)
H10A0.22750.68650.46010.113*
H10B0.16450.60810.50890.113*
H10C0.28560.60400.48600.113*
C120.2184 (2)0.46734 (19)0.4255 (2)0.0779 (11)
H12A0.28010.45160.43970.117*
H12B0.15910.45550.46460.117*
H12C0.21430.43030.38490.117*
C110.3154 (2)0.5852 (3)0.34809 (19)0.0842 (12)
H11A0.37500.56600.36350.126*
H11B0.31230.55060.30600.126*
H11C0.32030.65040.33710.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02082 (12)0.02398 (12)0.02386 (12)0.00122 (9)0.00912 (9)0.00045 (8)
O10.0244 (7)0.0247 (7)0.0362 (7)0.0010 (5)0.0151 (6)0.0008 (6)
N20.0242 (8)0.0261 (8)0.0197 (7)0.0019 (7)0.0038 (6)0.0007 (6)
N10.0239 (8)0.0229 (8)0.0248 (8)0.0020 (6)0.0098 (7)0.0011 (6)
O20.0219 (7)0.0388 (8)0.0227 (7)0.0043 (6)0.0069 (5)0.0003 (6)
C10.0219 (9)0.0256 (9)0.0192 (8)0.0018 (7)0.0067 (7)0.0016 (7)
C190.0215 (9)0.0208 (9)0.0246 (9)0.0003 (7)0.0061 (7)0.0019 (7)
C20.0261 (10)0.0232 (9)0.0221 (9)0.0012 (8)0.0075 (8)0.0015 (7)
C70.0241 (10)0.0260 (9)0.0267 (9)0.0033 (8)0.0092 (8)0.0021 (8)
C140.0214 (9)0.0249 (9)0.0226 (9)0.0001 (7)0.0064 (7)0.0004 (7)
C130.0268 (10)0.0243 (9)0.0234 (9)0.0007 (8)0.0089 (8)0.0018 (7)
C150.0264 (10)0.0223 (9)0.0233 (9)0.0011 (7)0.0076 (8)0.0028 (7)
C210.0268 (10)0.0279 (10)0.0230 (9)0.0014 (8)0.0035 (8)0.0007 (8)
C160.0266 (10)0.0233 (9)0.0365 (11)0.0045 (8)0.0149 (9)0.0039 (8)
C180.0449 (13)0.0316 (11)0.0401 (12)0.0075 (10)0.0108 (10)0.0073 (9)
C240.0287 (11)0.0368 (11)0.0313 (10)0.0033 (9)0.0020 (9)0.0015 (9)
C330.0216 (9)0.0266 (9)0.0236 (9)0.0022 (8)0.0043 (8)0.0012 (7)
C340.0287 (11)0.0395 (11)0.0191 (9)0.0070 (9)0.0039 (8)0.0025 (8)
C230.0374 (12)0.0312 (11)0.0344 (11)0.0091 (9)0.0026 (9)0.0014 (9)
C30.0294 (11)0.0239 (9)0.0332 (10)0.0031 (8)0.0133 (9)0.0020 (8)
Cl10.0483 (4)0.0510 (4)0.0571 (4)0.0032 (3)0.0053 (3)0.0029 (3)
Cl20.0979 (6)0.0661 (5)0.0702 (5)0.0349 (4)0.0430 (5)0.0148 (4)
C60.0418 (13)0.0267 (11)0.0575 (15)0.0087 (9)0.0253 (12)0.0071 (10)
C200.0221 (9)0.0211 (9)0.0208 (8)0.0005 (7)0.0042 (7)0.0008 (7)
C310.0221 (9)0.0295 (10)0.0243 (9)0.0024 (8)0.0048 (8)0.0009 (8)
C220.0363 (12)0.0459 (13)0.0236 (10)0.0045 (10)0.0033 (9)0.0043 (9)
C250.0288 (10)0.0283 (9)0.0204 (9)0.0001 (8)0.0080 (8)0.0006 (8)
C80.0233 (10)0.0293 (10)0.0227 (9)0.0002 (8)0.0097 (8)0.0013 (7)
C90.0246 (10)0.0299 (10)0.0353 (11)0.0005 (8)0.0159 (9)0.0018 (8)
C260.0250 (10)0.0279 (10)0.0267 (9)0.0002 (8)0.0105 (8)0.0023 (8)
C40.0406 (13)0.0345 (11)0.0354 (11)0.0045 (10)0.0142 (10)0.0080 (9)
C350.079 (2)0.0570 (16)0.0265 (12)0.0163 (15)0.0008 (13)0.0044 (11)
C170.0335 (12)0.0380 (12)0.0433 (13)0.0112 (10)0.0108 (10)0.0025 (10)
C50.0428 (13)0.0269 (11)0.0440 (13)0.0043 (9)0.0140 (11)0.0028 (9)
C300.0271 (12)0.0695 (17)0.0386 (12)0.0089 (11)0.0146 (10)0.0034 (12)
C270.0255 (10)0.0361 (11)0.0295 (10)0.0017 (8)0.0116 (8)0.0005 (8)
C320.0224 (9)0.0240 (9)0.0229 (9)0.0010 (7)0.0061 (7)0.0017 (7)
C370.0384 (13)0.0545 (15)0.0381 (12)0.0002 (11)0.0093 (10)0.0028 (11)
C290.0393 (12)0.0345 (11)0.0385 (12)0.0044 (9)0.0188 (10)0.0030 (9)
C280.0398 (13)0.0386 (12)0.0483 (13)0.0059 (10)0.0244 (11)0.0020 (10)
C360.076 (2)0.0688 (19)0.0339 (13)0.0311 (16)0.0052 (13)0.0218 (13)
C100.091 (2)0.082 (2)0.078 (2)0.0284 (18)0.067 (2)0.0262 (17)
C120.0624 (19)0.0434 (15)0.155 (3)0.0052 (14)0.077 (2)0.0251 (18)
C110.0269 (14)0.144 (3)0.078 (2)0.0172 (17)0.0057 (14)0.044 (2)
Geometric parameters (Å, º) top
Zn1—O11.9138 (13)C20—C251.380 (3)
Zn1—O21.9163 (13)C31—C261.367 (3)
Zn1—N12.0001 (15)C31—C321.422 (3)
Zn1—N22.0105 (16)C31—H310.9500
O1—C11.302 (2)C22—H22A0.9800
N2—C331.289 (2)C22—H22B0.9800
N2—C341.483 (2)C22—H22C0.9800
N1—C151.290 (2)C25—C261.412 (3)
N1—C161.482 (2)C25—H250.9500
O2—C191.303 (2)C8—C91.532 (3)
C1—C141.425 (3)C9—C111.508 (4)
C1—C21.438 (3)C9—C121.513 (3)
C19—C321.418 (3)C9—C101.517 (3)
C19—C201.444 (3)C26—C271.535 (3)
C2—C71.382 (3)C4—H4A0.9800
C2—C31.538 (3)C4—H4B0.9800
C7—C81.409 (3)C4—H4C0.9800
C7—H70.9500C35—H35A0.9800
C14—C131.415 (3)C35—H35B0.9800
C14—C151.447 (3)C35—H35C0.9800
C13—C81.372 (3)C17—H17A0.9800
C13—H130.9500C17—H17B0.9800
C15—H150.9500C17—H17C0.9800
C21—C221.531 (3)C5—H5A0.9800
C21—C201.535 (3)C5—H5B0.9800
C21—C241.536 (3)C5—H5C0.9800
C21—C231.538 (3)C30—C271.526 (3)
C16—C171.514 (3)C30—H30A0.9800
C16—C181.517 (3)C30—H30B0.9800
C16—H161.0000C30—H30C0.9800
C18—H18A0.9800C27—C281.530 (3)
C18—H18B0.9800C27—C291.538 (3)
C18—H18C0.9800C37—H37A0.9900
C24—H24A0.9800C37—H37B0.9900
C24—H24B0.9800C29—H29A0.9800
C24—H24C0.9800C29—H29B0.9800
C33—C321.445 (3)C29—H29C0.9800
C33—H330.9500C28—H28A0.9800
C34—C361.499 (3)C28—H28B0.9800
C34—C351.502 (3)C28—H28C0.9800
C34—H341.0000C36—H36A0.9800
C23—H23A0.9800C36—H36B0.9800
C23—H23B0.9800C36—H36C0.9800
C23—H23C0.9800C10—H10A0.9800
C3—C51.534 (3)C10—H10B0.9800
C3—C61.537 (3)C10—H10C0.9800
C3—C41.538 (3)C12—H12A0.9800
Cl1—C371.763 (3)C12—H12B0.9800
Cl2—C371.741 (3)C12—H12C0.9800
C6—H6A0.9800C11—H11A0.9800
C6—H6B0.9800C11—H11B0.9800
C6—H6C0.9800C11—H11C0.9800
O1—Zn1—O2111.62 (6)H22B—C22—H22C109.5
O1—Zn1—N196.67 (6)C20—C25—C26124.69 (17)
O2—Zn1—N1115.89 (6)C20—C25—H25117.7
O1—Zn1—N2114.73 (6)C26—C25—H25117.7
O2—Zn1—N296.21 (6)C13—C8—C7116.22 (17)
N1—Zn1—N2122.59 (6)C13—C8—C9123.19 (17)
C1—O1—Zn1127.12 (12)C7—C8—C9120.58 (17)
C33—N2—C34117.05 (16)C11—C9—C12108.7 (3)
C33—N2—Zn1118.72 (13)C11—C9—C10109.8 (3)
C34—N2—Zn1124.10 (12)C12—C9—C10107.2 (2)
C15—N1—C16117.05 (16)C11—C9—C8109.53 (18)
C15—N1—Zn1119.19 (13)C12—C9—C8112.46 (17)
C16—N1—Zn1123.36 (12)C10—C9—C8109.12 (19)
C19—O2—Zn1127.14 (12)C31—C26—C25116.67 (17)
O1—C1—C14122.61 (17)C31—C26—C27123.65 (18)
O1—C1—C2119.85 (17)C25—C26—C27119.68 (17)
C14—C1—C2117.53 (16)C3—C4—H4A109.5
O2—C19—C32122.75 (17)C3—C4—H4B109.5
O2—C19—C20119.47 (17)H4A—C4—H4B109.5
C32—C19—C20117.78 (16)C3—C4—H4C109.5
C7—C2—C1118.41 (17)H4A—C4—H4C109.5
C7—C2—C3121.52 (17)H4B—C4—H4C109.5
C1—C2—C3120.05 (16)C34—C35—H35A109.5
C2—C7—C8124.90 (18)C34—C35—H35B109.5
C2—C7—H7117.6H35A—C35—H35B109.5
C8—C7—H7117.6C34—C35—H35C109.5
C13—C14—C1120.40 (17)H35A—C35—H35C109.5
C13—C14—C15114.75 (16)H35B—C35—H35C109.5
C1—C14—C15124.70 (16)C16—C17—H17A109.5
C8—C13—C14122.49 (17)C16—C17—H17B109.5
C8—C13—H13118.8H17A—C17—H17B109.5
C14—C13—H13118.8C16—C17—H17C109.5
N1—C15—C14129.42 (17)H17A—C17—H17C109.5
N1—C15—H15115.3H17B—C17—H17C109.5
C14—C15—H15115.3C3—C5—H5A109.5
C22—C21—C20112.22 (17)C3—C5—H5B109.5
C22—C21—C24107.39 (17)H5A—C5—H5B109.5
C20—C21—C24110.06 (16)C3—C5—H5C109.5
C22—C21—C23106.78 (17)H5A—C5—H5C109.5
C20—C21—C23110.21 (16)H5B—C5—H5C109.5
C24—C21—C23110.09 (18)C27—C30—H30A109.5
N1—C16—C17110.34 (17)C27—C30—H30B109.5
N1—C16—C18109.12 (16)H30A—C30—H30B109.5
C17—C16—C18111.04 (18)C27—C30—H30C109.5
N1—C16—H16108.8H30A—C30—H30C109.5
C17—C16—H16108.8H30B—C30—H30C109.5
C18—C16—H16108.8C30—C27—C28108.68 (19)
C16—C18—H18A109.5C30—C27—C26112.16 (17)
C16—C18—H18B109.5C28—C27—C26109.24 (17)
H18A—C18—H18B109.5C30—C27—C29108.32 (18)
C16—C18—H18C109.5C28—C27—C29108.69 (17)
H18A—C18—H18C109.5C26—C27—C29109.68 (17)
H18B—C18—H18C109.5C19—C32—C31120.46 (16)
C21—C24—H24A109.5C19—C32—C33124.51 (17)
C21—C24—H24B109.5C31—C32—C33115.00 (17)
H24A—C24—H24B109.5Cl2—C37—Cl1111.36 (14)
C21—C24—H24C109.5Cl2—C37—H37A109.4
H24A—C24—H24C109.5Cl1—C37—H37A109.4
H24B—C24—H24C109.5Cl2—C37—H37B109.4
N2—C33—C32129.84 (18)Cl1—C37—H37B109.4
N2—C33—H33115.1H37A—C37—H37B108.0
C32—C33—H33115.1C27—C29—H29A109.5
N2—C34—C36109.88 (17)C27—C29—H29B109.5
N2—C34—C35110.76 (18)H29A—C29—H29B109.5
C36—C34—C35111.3 (2)C27—C29—H29C109.5
N2—C34—H34108.3H29A—C29—H29C109.5
C36—C34—H34108.3H29B—C29—H29C109.5
C35—C34—H34108.3C27—C28—H28A109.5
C21—C23—H23A109.5C27—C28—H28B109.5
C21—C23—H23B109.5H28A—C28—H28B109.5
H23A—C23—H23B109.5C27—C28—H28C109.5
C21—C23—H23C109.5H28A—C28—H28C109.5
H23A—C23—H23C109.5H28B—C28—H28C109.5
H23B—C23—H23C109.5C34—C36—H36A109.5
C5—C3—C6107.14 (17)C34—C36—H36B109.5
C5—C3—C4109.82 (17)H36A—C36—H36B109.5
C6—C3—C4107.07 (18)C34—C36—H36C109.5
C5—C3—C2111.19 (17)H36A—C36—H36C109.5
C6—C3—C2111.92 (16)H36B—C36—H36C109.5
C4—C3—C2109.58 (16)C9—C10—H10A109.5
C3—C6—H6A109.5C9—C10—H10B109.5
C3—C6—H6B109.5H10A—C10—H10B109.5
H6A—C6—H6B109.5C9—C10—H10C109.5
C3—C6—H6C109.5H10A—C10—H10C109.5
H6A—C6—H6C109.5H10B—C10—H10C109.5
H6B—C6—H6C109.5C9—C12—H12A109.5
C25—C20—C19118.17 (17)C9—C12—H12B109.5
C25—C20—C21121.55 (16)H12A—C12—H12B109.5
C19—C20—C21120.28 (16)C9—C12—H12C109.5
C26—C31—C32122.13 (18)H12A—C12—H12C109.5
C26—C31—H31118.9H12B—C12—H12C109.5
C32—C31—H31118.9C9—C11—H11A109.5
C21—C22—H22A109.5C9—C11—H11B109.5
C21—C22—H22B109.5H11A—C11—H11B109.5
H22A—C22—H22B109.5C9—C11—H11C109.5
C21—C22—H22C109.5H11A—C11—H11C109.5
H22A—C22—H22C109.5H11B—C11—H11C109.5
O2—Zn1—O1—C1117.19 (15)Zn1—N2—C34—C3572.3 (2)
N1—Zn1—O1—C14.09 (16)C7—C2—C3—C5121.9 (2)
N2—Zn1—O1—C1134.71 (14)C1—C2—C3—C559.4 (2)
O1—Zn1—N2—C33122.85 (14)C7—C2—C3—C62.1 (3)
O2—Zn1—N2—C335.58 (15)C1—C2—C3—C6179.21 (18)
N1—Zn1—N2—C33120.64 (14)C7—C2—C3—C4116.5 (2)
O1—Zn1—N2—C3452.74 (16)C1—C2—C3—C462.2 (2)
O2—Zn1—N2—C34170.01 (15)O2—C19—C20—C25177.27 (17)
N1—Zn1—N2—C3463.77 (16)C32—C19—C20—C253.2 (3)
O1—Zn1—N1—C150.81 (15)O2—C19—C20—C212.6 (3)
O2—Zn1—N1—C15117.16 (14)C32—C19—C20—C21176.92 (16)
N2—Zn1—N1—C15125.89 (14)C22—C21—C20—C251.1 (3)
O1—Zn1—N1—C16173.28 (14)C24—C21—C20—C25120.7 (2)
O2—Zn1—N1—C1655.31 (16)C23—C21—C20—C25117.7 (2)
N2—Zn1—N1—C1661.64 (16)C22—C21—C20—C19178.94 (17)
O1—Zn1—O2—C19128.66 (15)C24—C21—C20—C1959.4 (2)
N1—Zn1—O2—C19122.00 (15)C23—C21—C20—C1962.2 (2)
N2—Zn1—O2—C198.93 (16)C19—C20—C25—C261.3 (3)
Zn1—O1—C1—C147.0 (3)C21—C20—C25—C26178.82 (18)
Zn1—O1—C1—C2172.01 (12)C14—C13—C8—C70.2 (3)
Zn1—O2—C19—C325.2 (3)C14—C13—C8—C9178.99 (18)
Zn1—O2—C19—C20175.25 (12)C2—C7—C8—C130.9 (3)
O1—C1—C2—C7179.46 (17)C2—C7—C8—C9179.93 (18)
C14—C1—C2—C71.5 (3)C13—C8—C9—C11123.5 (3)
O1—C1—C2—C31.8 (3)C7—C8—C9—C1155.6 (3)
C14—C1—C2—C3177.24 (16)C13—C8—C9—C122.5 (3)
C1—C2—C7—C80.2 (3)C7—C8—C9—C12176.6 (2)
C3—C2—C7—C8178.92 (18)C13—C8—C9—C10116.3 (3)
O1—C1—C14—C13178.48 (17)C7—C8—C9—C1064.6 (3)
C2—C1—C14—C132.5 (3)C32—C31—C26—C252.3 (3)
O1—C1—C14—C156.2 (3)C32—C31—C26—C27176.98 (18)
C2—C1—C14—C15172.80 (17)C20—C25—C26—C311.5 (3)
C1—C14—C13—C81.9 (3)C20—C25—C26—C27177.80 (18)
C15—C14—C13—C8173.86 (17)C31—C26—C27—C303.3 (3)
C16—N1—C15—C14173.53 (18)C25—C26—C27—C30177.48 (19)
Zn1—N1—C15—C140.6 (3)C31—C26—C27—C28117.3 (2)
C13—C14—C15—N1178.47 (19)C25—C26—C27—C2862.0 (2)
C1—C14—C15—N12.9 (3)C31—C26—C27—C29123.7 (2)
C15—N1—C16—C17130.34 (19)C25—C26—C27—C2957.1 (2)
Zn1—N1—C16—C1757.0 (2)O2—C19—C32—C31178.00 (17)
C15—N1—C16—C18107.4 (2)C20—C19—C32—C312.5 (3)
Zn1—N1—C16—C1865.2 (2)O2—C19—C32—C334.2 (3)
C34—N2—C33—C32176.93 (19)C20—C19—C32—C33175.34 (17)
Zn1—N2—C33—C321.0 (3)C26—C31—C32—C190.3 (3)
C33—N2—C34—C36124.6 (2)C26—C31—C32—C33178.31 (18)
Zn1—N2—C34—C3651.1 (2)N2—C33—C32—C197.7 (3)
C33—N2—C34—C35112.0 (2)N2—C33—C32—C31174.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.982.373.018 (3)123
C5—H5C···O10.982.322.967 (3)123
C23—H23C···O20.982.352.994 (3)122
C24—H24A···O20.982.332.986 (3)124
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O10.982.373.018 (3)123
C5—H5C···O10.982.322.967 (3)123
C23—H23C···O20.982.352.994 (3)122
C24—H24A···O20.982.332.986 (3)124
 

Acknowledgements

This project was supported by the National Torch Program projects of China (grant No. 2011 GH031761).

References

First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChamberlain, B. M., Cheng, M., Moore, D. R., Ovitt, T. M., Lobkovsky, E. B. & Coates, G. W. (2001). J. Am. Chem. Soc. 123, 3229–3238.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationChen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2006). Macromolecules, 39, 3745–3752.  Web of Science CrossRef CAS Google Scholar
First citationChisholm, M. H., Gallucci, J. C., Zhen, H. & Huffman, J. C. (2001). Inorg. Chem. 40, 5051–5054.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWheaton, C. A. & Hayes, P. G. (2011). Comments Inorg. Chem. 32, 127–162.  Web of Science CrossRef CAS Google Scholar
First citationWilliams, C. K., Breyfogle, L. E., Choi, S. K., Nam, W., Young, V. J. Jr, Hillmyer, M. A. & Tolman, W. B. (2003). J. Am. Chem. Soc. 125, 11350–11359.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWu, J.-C., Yu, T.-L., Chen, C.-T. & Lin, C.-C. (2006). Coord. Chem. Rev. 250, 602–626.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 70| Part 12| December 2014| Pages m390-m391
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds